С.В. Кузьмішина, С.О. Гнатуш, В.І. Баранов

Львівський національний університет імені Івана Франка, вул. Грушевського, 4, Львів, 79005, Україна, тел.: +38 (0322) 3943 57, e-mail: kuzmishyna_S_@ukr.net

МІКРОБІОТА ПОРОДНОГО ВІДВАЛУ ЦЕНТРАЛЬНОЇ ЗБАГАЧУВАЛЬНОЇ ФАБРИКИ ЧЕРВОНОГРАДСЫКОГО ГІРНИЧОПРОМИСЛОВОГО РАЙОНУ ЗА ВНЕСЕННЯ ЗОЛИ

Abstract

Мета. Встановити вплиє внесення золи із Добротвірської ТЕС до породи відвалу на чисельність окремих груп мікроорганізміб. Методи. Мікроскопічні гриби виябляли на сусло-агарі; целюлозоруйнувальні аеробні бактерії - на середовиці Гетченсона; олігонітрофільні бактериї - на середовиці Еибі; сульфатвідновлювальні та сірковідновъювальні бактерії - на середовицах Кравцова-Сорокіна із сульфатами та сіркою відповідно; безбарвні сіркоокиснювальні бактерї̈: нейтрофільні - на середовиці Бейєринка, ацидофільні - на середовииі Сільвериана-Люндгрена 9 K . рН проб порід відвалу визначали з використанняи рН-150М [1]. Результати. Визначено чисельність окремих груп мікроорганізмів породного відвалу Центральної збагачувальної фабрики (ЦЗФ) Червоноградського гірничопромистового району та показано залежсність ї кількості від внесення золи із Добротвірської ТЕС. Висновки. Внесення золи із Добротвірської ТЕС до породи відвалу ЦЗФ (250 $\left.2 / \mathrm{m}^{2}\right)$ сприятливо впливає на чисельність мікроскопічних грибів, олігонітрофільних бактерій та безбарвних сіркоокиснювальних нейтрофільних бактерій, однак спричиняє знижснню чисельності сірко- і сульфатвідновловальних бактерій, целолозоруйнувальних аеробних бактерій, а такожк безбарвних сіркоокиснювальних ачидофільних бактерій.

Ключові слова : мікробіота породних відвалів, мікроскопічні гриби, бактеріі, сірковідновповальні бактерії, сульфатвідновлювальні бактерії.

Червоноградський гірничопромисловий район Львівсько-Волинського кам’яновугільного басейну несе велике екологічно небезпечне навантаження, оскільки 211 га відведено під відвали порід. Породний відвал Центральної збагачувальної фабрики (ЦЗФ) має площу 76 га і висоту 68 м [3]. Субсстрати відвалу характеризуються незадовільними гідрологічними та агрохімічними показниками, низьким вмістом органічних речовин ($1-2 \%$) [4]. Вміст йонів важких металів у багато разів перевищує ГДК, водні стоки з відвалу мають високу кислотність ($\mathrm{pH} 2,7-3,5$) за рахунок утворення сульфатної кислоти при окисненні піриту (1-4\%) [2].

Кількісний та якісний склад мікроорганізмів вугільних відвалів змінюеться залежно від хімічного складу, фізичних властивостей, реакції середовища

[^0](рН), вмісту в ньому повітря, вологи та поживних речовин [11]. Кислотність грунтів визначає життедіяльність мікроорганізмів, впливаючи на доступність поживних речовин [6]. Надмірна кислотність грунтів пригнічує діяльність мікроорганізмів, що беруть участь у розкладанні органічних решток [11]. Поліпшення властивостей грунтів ізниження грунтової кислотності досягаються їх вапнуванням. Як вапняний матеріал доцільно використовувати золу, що знижує кислотність та збагачує субстрат органічними речовинами та мікроелементами, які впливають на нейтралізацію pH і життедіяльність мікроорганізмів $[6,8]$. Однак у районах із вологим кліматом грунти поступово повторно закислюються.

Відомо про зниження гідролітичної кислотності грунту за внесення висококальцієвмісної золи та попелу, отриманих при спалюванні бурого вугілля [5], про збільшення кількості амілолітичних та целюлозолітичних мікроорганізмів [9]. Відзначається зростання біорізноманітності деструкторів клітковини за внесення високих доз золи. Автори припускають, що показник мінералізації органічної речовини грунту досягає максимального значення у варіанті внесення у грунт 1000 кг золи на гектар [9]. Встановлено позитивний вплив вугільної золи на чисельність метанотрофних бактерій, мікроскопічних грибів і актиноміцетів та підвищення активності інвертази і фосфатаз за внесення золи у грунт у низьких дозах, а також як додаткових складових органічних компостів [12-15].

Метою нашого дослідження було встановити вплив внесення золи із Добротвірської ТЕС до породи відвалу ЦЗФ на чисельність окремих груп мікроорганізмів.

Матеріали і методи

Проби породи із ділянок, локалізованих під насадженнями Pinus sylvestris L. i Betula pendula L. (2-5 дерев) на схилах відвалу ЦЗФ аналізували у квітні 2014 року. У дослідні ділянки 2 і 4 вносили золу «під корінь» у вересні 2013 року, змішуючи її із субстратом ($250 \mathrm{r} / \mathrm{m}^{2}$), навколо стовбура під 5-річними саджанцями дерев. Контролем були ділянки 1 (під P. sylvestris) і 3 (під B. pendula), у які золу не вносили. Отримані проби поміщали у стерильні пакети. На поживні середовища висівали розведені розчини проб, узятих із відвалів. Інкубували у термостаті за температури $+28{ }^{\circ} \mathrm{C}$ [10]. Мікроскопічні гриби виявляли на сусло-агарі; целюлозоруйнувальні аеробні бактерії - на середовищі Гетченсона; олігонітрофільні бактерії - на середовищі Ешбі; сульфатвідновлювальні та сірковідновлювальні бактерії - на середовищах Кравцова-Сорокіна із сульфатами та сіркою відповідно; безбарвні сіркоокиснювальні бактерії: нейтрофільні - на середовищі Бейєринка, ацидофільні - на середовищі Сільвермана-Люндгрена 9 К [7, 10]. Підрахунок кількості колонієутворювальних одиниць (КУО/г грунту) проводили, враховуючи розведення та вологість грунтових проб, яку визначали за загальноприйнятою методикою [10]. pH проб порід відвалу визначали використовуючи електронний $\mathrm{pH}-150 \mathrm{M}$ [1].

Дослідження кислотності субстрату проводили у п'ятикратній, а посів на середовища - у трикратній повторностях. Для кожної проби визначали основні

статистичні показники (середнє арифметичне - М, стандартне відхилення від середнього арифметичного $-\mathrm{m}, \mathrm{M} \pm \mathrm{m}$, рівні достовірності ознак $-\sigma$). Отримані результати опрацьовували статистично, використовуючи програму "Microsoft Excel 2007".

Результати та їх обговорення

Беручи до уваги, що $\mathbf{~} \mathrm{H}$ субстратів впливає на електричний заряд мікробних клітин, стан їх мембран, окисно-відновні реакції, а з іншого боку рН залежить від складу мікроелементів у субстраті, визначали актуальну та потенційну кислотність, яка за характером витіснення йонів включає обмінну і гідролітичну, як в контрольному варіанті, так і при внесенні золи із Добротвірської TEC. Актуальна кислотність $\left(\mathrm{pH}_{\text {sör }}\right)$ - це pH грунтового розчину. Потенційна кислотність - це кислотність твердої фази грунту за впливу H^{+}i Al^{3+}. Обмінна кислотність ($\mathrm{pH}_{\text {саи }}$) виявляється при взаємодії твердої фази грунту з нейтральними солями (KCl). Гідролітична кислотність (Hr) визначається при обробці грунту $\mathrm{CH}_{3} \mathrm{COONa}$ і показує максимально можливу кількість H^{+}i Al^{3+}, що знаходяться в обмінному стані у грунті. Отже, за дії $\mathrm{KCl}_{\text {та } \mathrm{CH}_{3} \mathrm{COONa} \text { відбувається }}$ поступове витіснення із грунтового вбирного комплексу у грунтовий розчин обмінних йонів алюмінію та гідрогену, що надає розчину кислу реакцію. Тому у природних грунтах потенційна кислотність вища, ніж актуальна [1].

Субстрати під P. sylvestris (без внесення золи) мали більш кислу реакцію, порівняно із дослідними варіантами (із внесенням золи). Зміну кислотності за внесення золи спостерігали і у субстратах під B. pendula (табл. 1).

Таблиця 1
Вплив золи Доб́ротвірської ТЕС на кислотність суб́страту під Pinus sylvestris L. та Betula pendula L. на породному відвалі ЦЗФ

Table 1
Impact of coal ash from Dobrotvir TPP on substrate acidity value under Pinus sylvestris L. and Betula pendula L. on CEP waste heap

Варіант	Кислотність		
	$\mathbf{p H}_{\text {mux }}$	$\mathbf{p H}_{\mathrm{cu*}}$	$\mathbf{H r}$
Pinus sylvestris L. (контроль)	$4,4 \pm 0,33$	$3,24 \pm 0,005$	$6,24 \pm 0,06$
P. sylvestris (зола)	$5,13 \pm 0,39^{*}$	$3,55 \pm 0,09^{* * *}$	$6,43 \pm 0,07^{* *}$
Betula pendula L. (контроль)	$3,8 \pm 0,08$	$2,92 \pm 0,02$	$6,2 \pm 0,04$
B. pendula (зола)	$4,34 \pm 0,39^{*}$	$3,01 \pm 0,17$	$6,2 \pm 0,06$
Зола	$8,43 \pm 0,27$	-	-

Примітки: CEP - Central Enrichment Plant
((-)) - не визначали
(* ${ }^{*} \mathrm{p} \geq 0,95, \mathrm{n}=5 ;{ }^{* *}-\mathrm{p} \geq 0,99, \mathrm{n}=5 ;{ }^{* * *}-\mathrm{p} \geq 0,999, \mathrm{n}=5-$ вірогідність зміни порівняно із контролем)

Зниження рН при визначенні обмінної кислотності очевидно спричиняється тим, що утворюється хлористий алюміній, який є гідролітично кислою сіллю, і з його розпадом утворюється нова кількість йонів гідрогену, які і підкислюють розчин [1]. У досліджених зразках породи гідролітична кислотність виявилася нижчою, ніж обмінна. Очевидно, що антропогенно трансформований субстрат відвалів містить компоненти, які, взаємодіючи із ацетатом натрію, зв’язують йони алюмінію, що зумовлює зниження гідролітичної кислотності.

Проведені мікробіологічні дослідження проб породного відвалу ЦЗФ Червоноградського гірничопромислового району під насадженнями P. sylvestris і B. pendula. Аналізували проби породи відвалу без внесення золи (контроль; проби 1,3) і з внесенням золи (проби 2, 4).

Внесення золи до породи відвалу зумовило підвищення чисельності мікроскопічних грибів, у тч. дріжджів, (рис. $1, \mathrm{~A}$), порівняно із контрольними пробами, у які золу не вносили. Чисельність цієї групи мікроорганізмів є найвищою у дослідній пробі під P. sy/vestris і вдвічі знижується у пробі під B. pendula. У пробах без внесення золи цей показник зменшується у три рази порівняно із дослідними пробами.

Рис. 1. Вплив золи на чисельність мікроорганізмів відвалу ЦЗФ
$1-$ P. sylvestris (контроль); $2-P$. sylvestris (внесення золи); $3-B$. pendula (контроль); $4-$ B. pendula (внесення золи). A - мікроскопічні гриби, в т.ч. дріжджі; Б-безбарвні сіркоокиснювальні бактерії (нейтрофільні); В - олігонітрофільні бактерії; Г - сірковідновлювальні бактерії; Д-сульфатвідновлювальні бактерії; Е-безбарвні сіркоокиснювальні бактерії (ацидофільні)

Fig. 1. Impact of coal ash on microorganisms number of CEP waste heap
1 - the P. sylvestris (control); 2-P. sylvestris (coal ash applying); 3-B. pendula (control); $4-$ B. pendula (coal ash applying). A - microscopic fungi (including yeasts); B - colorless sulfur oxidizing neutrophilic bacteria; C - oligonitrophilic bacteria; D - sulfur reducing bacteria; E - sulfate reducing bacteria; F - colorless sulfur oxidizing acidophilic bacteria

Кількість безбарвних сіркоокиснювальних нейтрофільних бактерій (рис. 1, Б) також була вищою у пробах із додаванням золи. У контрольних пробах без внесення золи чисельність цієї групи мікроорганізмів є нижчою: у 4 рази - у пробі під P. sylvestris, та у 2 рази - під B. pendula.

Для олігонітрофільних бактерій (рис. 1, В) відмітили чітко виражене їх домінування у дослідних пробах із внесенням золи. У контрольних пробах чисельність цих бактерій була втричі меншою, порівняно із дослідними пробами, і не перевищувала 9000 КУО/г грунту.

Для сірковідновлювальних бактерій (рис. 1, Г) встановили, що внесення золи спричиняє зниження їх чисельності порівняно із контрольними пробами: у 10,6 разів - під P. sylvestris та у 10 разів - під B. pendula. Окрім того, під P. sylvestris спостерігали збільшену у 5 разів чисельність сірковідновлювальних бактерій порівняно із кількістю цих мікроорганізмів під B. pendula.

Внесення золи спричинило негативний вплив і на чисельність сульфатвідновлювальних бактерій, знижуючи її приблизно у 6 разів (рис. 1, Д).

У пробах без внесення золи виявили близько $30000 \mathrm{KVO/г} \mathrm{грунту}$, час як для дослідних проб кількість цих мікроорганізмів не перевищувала 5000 КУО/г грунту.

Кількість целюлозоруйнувальних аеробних бактерій аналізували методом обростання грудочок субстрату на середовищі Гетченсона. Загальну кількість грудочок приймали за 100% і вираховували у відсотках кількість грудочок, які обросли колоніями целюлозоруйнувальних бактерій. Встановлено, що внесення золи спричинило зменшення чисельності виявлених деструкторів целюлози: знижуючи даний показник до 85% - під B. pendula та 55% - під P. sylvestris, порівняно 3 контролем (рис. 2).

Рис. 2. Вплив золи на чисельність целюлозоруйнувальних аеробних бактерій відвалу ЦЗФ

1 - P. sylvestris (контроль); 2 - P. sylvestris (внесення золи); $3-$ B. pendula (контроль); 4 - B. pendula (внесення золи)

Fig. 2. Impact of coal ash on cellulose decomposing aerobic bacteria number of CEP waste heap
$1-P$. sylvestris (control); $2-P$. sylvestris (coal ash applying); $3-$ B. pendula (control); $4-$ B. pendula (coal ash applying)

Таким чином встановлено, що внесення золи із Добротвірської ТЕС до породи відвалу ЦЗФ (250 г/м \mathbf{M}^{2}) сприятливо впливає на чисельність мікроскопічних грибів, олігонітрофільних бактерій та безбарвних сіркоокиснювальних нейтрофільних бактерій, однак спричиняє зниження чисельності сірко- і сульфатвідновлювальних бактерій, целюлозоруйнувальних аеробних бактерій, а також безбарвних сіркоокиснювальних ацидофільних бактерій. Очевидно, що внаслідок зниження кислотності вихідного субстрату після внесення золи відбувається зміна едафічних умов.

С.В. Кузьмишина, С.А. Гнатуш, В.И. Баранов
Львовский национальный университет имени Ивана Франко, ул. Грушевского, 4, Львов, 79005 , Украина, тел.: + 38 (0322) 3943 57, e-mail: kuzmishyna_S_@ukr.net,

МИКРОБИОТА ПОРОДНОГО ОТВАЛА ЦЕНТРАЛЬНОЙ ОБОГАТИТЕЛЬНОЙ ФАБРИКИ ЧЕРВОНОГРАДСКОГО ГОРНОПРОМЫШЛЕННОГО РАЙОНА ПРИ ВНЕСЕНИИ ЗОЛЫ

Реферат

Цель. Устанобить впияиие внесения золы с Добротєорской ТЭС к породе отвала на численность микроорганизмов различных групп. Методы. Микроскопические грибы учитывали на сусло-агаре; аэробные целлюлозоразруиаючие бактерии - на среде Гетченсона; олигонитрофильные бактерии - на среде Эиби; сульфатвосстанаєливаюиие и серовосстанаєливаюиие бактерии - на средах Кравцова-Сорокина с сульфатами и серой соответственно; бесцветные сероокисляюиче бактерии: нейтрофильные - на среде Бейеринка, ацидофильные - на среде Сильвермана-Люндгрена 9К. рН проб пород отвала опредеэяли с помоиью рН-150М. Результаты. Определена численность разиичных групп микроорганизмов породного отвала Центральной обогатительной фабрики Черєоноградского горнопромыииенного района и показана забисимость их количества от внесения золы с Добротворской ТЭС. Выводы. Внесение золы с Добротворской ТЭС к породе отвала ЦОФ (250 г/ m^{2}) благоприятно влияет на численность микроскопических грибов, олигонитрофильных бактерий и бесцветных сероокисляюицих нейтрофильных бактерий, однако приєодит к снижсению численности серо- и сульфатбосстанавлиєаюицих бактерий, аэробных целполозоразруиаюцих бактерий, а также бесцбетных сероокисляюиих ацидофильных бактерий.

Ключевые слов а: микробиота породных отвалов, микроскопические грибы, аэробные целлюлозоразруиаюице бактерии, олигонитрофилы, сероокисляюицие бактерии, серовосстанавливаюцие бактерии, сульфатвосстанавлибаюцие бактерии.

S.V. Kuzmishyna, S.O. Hnatush, V.I. Baranov
Ivan Franko National University of Lviv, 4, Hrushevsky Str., Lviv, 79005, Ukraine, tel.; +38 (0322) 3943 57, e-mail: kuzmishyna_S_@ukr.net

MICROBIOTA OF THE CENTRAL ENRICHMENT PLANT WASTE HEAPS OF CHERVONOGRAD MINING REGION AFTER COALASH APPLYING

Abstract

Summary Aim. To determine the effect of coal ash from Dobrotvir thermal power plant to waste heaps gangue applying on the number of different groups of microorganisms. Methods. Microscopic fungi (including yeasts) were revealed on Mash-agar; cellulose decomposing aerobic bacteria - on Hetchenson medium; oligonitrophilic bacteria - on Ashby medium; sulfate and sulfur reducing bacteria - on Kravtsov-Sorokin media, with SO_{4}^{2-} and S^{0} respectively; colorless sulfur oxidizing bacteria: neutrophilic - on Beyerinck medium, acidophilic - on Silverman and Lundgren 9 K medium. The pH of waste heaps gangue samples were determined by pH meter pH -150M. Results. Different groups of microorganisms from Central Enrichment Plant waste heap of Chervonograd mining region are enumerated and the dependence of their number on the coal ash applying is shown. Conclusions. Coal ash from Dobrotvir TPP to CEP waste heap gangue applying ($250 \mathrm{~g} / \mathrm{m}^{2}$) makes a positive impact on the number of microscopic fungi, oligonitrophilic bacteria and on colorless sulfur oxidizing neutrophilic bacteria. Meanwhile coal ash applying causes decrease in the number of sulfur and sulphate reducing bacteria, cellulose decomposing aerobic bacteria and colorless sulfur oxidizing acidophilic bacteria.

Key words : waste heaps microbiota, microscopic fungi, cellulose decomposing aerobic bacteria, oligonitrophilic bacteria, sulfur oxidizing bacteria, sulfur reducing bacteria, sulfate reducing bacteria.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Аринуикина E. B. Руководство по химическому анализу почв. 2-е изд. М.: МГУ, 1970. - 488 c.
2. Баранов В. І., Гузь, М. М., Гавриляк М. С., Вачук С. П. Вивчення вмісту важких металів у деревних рослин на декастованих грунтах породного відвалу вугільних шахт//Наук. вісн. НЛТУ України : зб. наук.-техн. пр. - Л., 2010. - 20, № 1. - C. 68-72.
3. Баранов B. I. Екологічний опис породного відвалу вугільних шахт ЦЗФ «ЗАТ Львівсистеменерго» як об'єкта для озеленення // Вісн. Львів. ун-ту. Сер. біол. - 2008. - Вип. 46. - С. 172-178.
4. Баранов В. І., Книи I. Б. Хіміко-мінералогічний склад порід відвалу вугільних шахт ЦЗФ «Львівсистеменерго» та їх вплив на проростання насіння // Промислова ботаніка: стан та перспективи розвитку: матеріали V міжнар. наук. конф. - Донецьк, 2007. - С. 36-37.
5. Гібчинська М. А., Баиуцька У. Б., Левандовска Л. В. Вплив золи бурого вугілля на фізичні властивості грунту // Науковий вісник НЛТУ України: зб. наук.-техн. пр. - Л., 2009. - 19, ㅇo 9. - С. 67-71.
6. Гордеева А. Зола в помощь [Электрон. ресурс] // Советская Белоруссия, 2012. - № 164. - Режим доступа к журналу: http://www.sb.by/sad-i-ogorod/article/ zola-v-pomoshch.html.
7. Гудзь С.П., Гнатуии С.О., Яворська Г.В., Білінська І.С., Борсукевич Б.М. Практикум з мікробіології: підручник: [для студ. вищ. навч. закл.]. - Л: ЛНУ ім. І. Франка, 2014. - 436 с.
8. Зола вугільна [Електрон. ресурс]// Мала гірнича енциклопедія. В 3 т. / За ред. Білецького В. С. - Донецьк: Донбас, 2004. - 576 с. - Режим доступу: http://www.experts.in.ua/baza/doc/download/gorZ.pdf.
9. Коростелёва Л.А., Третьякова О.И., Доценко С.П., Исаева Т.А. Влияние отходов элеваторов и золы от их сжигания на микрофлору ризосферы, ризопланы и филлопланы озимой пшеницы [Электрон. ресурс] // Научный журнал КубГАУ, 2013. - 87, № 3. - Режим доступа к журналу: http://ej.kubagro. ru/2013/03/pdf/40.pdf.
10. Теппер Е. З., Шельникова В. К., Переверзева Г. И. Практикум по микробиологии. - 3-е изд. - М.: Агропромиздат, 1987. - 239 с.
11. Яроико М. Кислотність грунтів таїї вплив на живлення рослин // Агроном. -2013. - № 1. - C. 30-33.
12. Emmerling C., Liebner C., Haubold-Rosar M., Katzur J. and SchrÖder D. // Plant and Soil. 220: 129-138, 2000.
13. Nayak AK., Raja R., Rao KS., Shukla $A K$. An others. Effect of fly ash application on soil microbial response and heavy metal accumulation in soil and rice plant// Ecotoxicol. Environ. Saf. May, 2014. ISSN 0147-6513.
14. Singh $J S$., Pandey VC. Fly ash application in nutrient poor agriculture soils: impact on methenotrophs population dynamics and paddy yields// Ecotoxicol. Environ. Saf. Mar., 2013; 89:43-51.
15. Surridge AKJ,, A. van der Merwe, Kruger R. Preliminary microbial studies on the impact of plants and South African fly ash on amelioration of crude oil polluted acid soils// World of coal Ash (WOCA) Conference. May, 4-7, 2009. - Lexington, KY, USA.

Стаття надійшла до редакції 20.10.2014 р.

[^0]: © С.В. Кузьмішина, С.О. Гнатуш, В.I. Баранов, 2014

