УДК 759.873.088.5:661.185

Т.П. Пирог^{1,2}, Т.А. Шевчук¹, К.А. Береговая²

¹Институт микробиологии и вирусологии им. Д.К. Заболотного НАН Украины, ул. Академика Заболотного, 154, Киев ДСП, Д03680, Украина ²Национальный университет пищевых технологий, ул. Владимирская, 68, Киев, 01601, Украина

МЕТАБОЛИЗМ ГЛЮКОЗЫ У ПРОДУЦЕНТА ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ *NOCARDIA VACCINII* IMB B-7405

В клетках продуцента поверхностно-активных веществ (ПАВ) Nocardia vaccinii IMB B-7405, выращенного на глюкозе, определены ключевые ферменты метаболизма этого субстрата.

Установлено, что у штамма IMB B-7405 катаболизм глюкозы осуществляется через глюконат (активность $\Phi A \square^+$ -зависимой глюкозодегидрогеназы 698±35 нмоль мин⁻¹·мг⁻¹ белка). Окисление глюконата до 6-фосфоглюконата катализируется глюконокиназой (178±9 нмоль мин⁻¹·мг⁻¹ белка). Вовлечение 6-фосфоглюконата в пентозофосфатный цикл осуществляется при участии конститутивной НАДФ⁺-зависимой 6-фосфоглюконатдегидрогеназы (активность 357±17 нмоль мин⁻¹·мг⁻¹ белка).

Полученные данные являются основой для теоретических расчетов оптимального молярного соотношения концентраций энергетически неравноценных субстратов для повышения синтеза ПАВ N. vaccinii IMB B-7405 на их смеси.

Ключевые слова: Nocardia vaccinii IMB B-7405, поверхностно-активные вещества, метаболизм глюкозы, активность ферментов.

В предыдущих исследованиях [1, 3, 4, 7, 19, 20] была показана возможность интенсификации синтеза поверхностно-активных веществ (ПАВ) при культивировании Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017 и Nocardia vaccinii IMB B-7405 на смеси ростовых субстратов. В работах [3, 4, 7, 19, 20] было установлено, что образование ПАВ *R. erythropolis* IMB Ac-5017 и *A. calcoaceticus* IMB B-7241 на смеси энергетически избыточного (гексадекан) и энергетически дефицитных (глицерин, этанол) субстратов зависит от способа подготовки инокулята, концентрации моносубстратов в смеси, а также их молярного соотношения.

В работе [1] исследовали синтез ПАВ при культивировании *N. vaccinii* IMB В-7405 на смешанных субстратах (гексадекан и глюкоза, этанол и глюкоза, гексадекан и глицерин, глюкоза и глицерин). Установлено, что условная концентрация ПАВ в таких условиях выращивания штамма IMB В-7405 была в 2–3,5 раза выше, чем на соответствующих моносубстратах, а максимальные показатели синтеза ПАВ наблюдались на смеси глицерина и глюкозы.

При культивировании микроорганизмов на смешанных субстратах для обеспечения максимальной конверсии углерода в целевой продукт необходимо установление оптимального для его синтеза молярного соотношения концентраций моносубстратов в смеси [4, 5, 7, 19]. А это, в свою очередь, требует проведения теоретических расчетов энергетических потребностей синтеза ПАВ и биомассы

© Т.П. Пирог, Т.А. Шевчук, К.А. Береговая, 2015

на энергетически дефицитном субстрате с последующим определением концентрации энергетически избыточного субстрата, восполняющей энергетические расходы на этот процесс, как было установлено нами ранее для микробного полисахарида этаполана и поверхностно-активных веществ R. erythropolis IMB Ac-5017 и *A. calcoaceticus* IMB B-7241 [5, 7, 19]. Для осуществления таких теоретических расчетов необходимо знать пути метаболизма соответствующих моносубстратов у продуцентов ПАВ. В предыдущих исследованиях [2] мы показали, что у *N. vaccinii* IMB B-7405 метаболизм глицерина до дигидроксиацетонфосфата (интермедиат гликолиза) может осуществляться двумя путями: через глицерин-3-фосфат и дигидроксиацетон.

Цель данной работы – исследовать пути метаболизма глюкозы у штамма *N. vaccinii* IMB B-7405.

Материалы и методы. Объектом исследований являлся выделенный нами из загрязненных нефтью образцов почвы штамм *Nocardia vaccinii* K-8, зарегистрированный в Депозитарии микроорганизмов Института микробиологии и вирусологии им. Д.К. Заболотного Национальной академии наук Украины под номером IMB B-7405.

Штамм *N. vaccinii* IMB B-7405 выращивали на жидкой минеральной среде (г/л): NaNO₃ – 0,5, MgSO₄·7H₂O – 0,1, CaCl₂·2H₂O – 0,1, KH₂PO₄ – 0,1, FeSO₄·7H₂O – 0,001, дрожжевой автолизат – 0,5 (по объему). В качестве источника углерода и энергии использовали глюкозу в концентрации 1 %.

В качестве инокулята использовали культуру из экспоненциальной фазы роста, выращенную на среде указанного выше состава, содержащей 0,5 % субстрата. Количество посевного материала (10⁴–10⁵ кл/мл) составляло 5 % от объема питательной среды. Культивирование бактерий осуществляли в колбах объемом 750 мл со 100 мл среды на качалке (220 об/мин) при 28–30°С в течение 28–32 ч (до середины экспоненциальной фазы роста).

Для получения бесклеточных экстрактов культуральную жидкость, полученную после выращивания *N. vaccinii* IMB B-7405 в жидкой минеральной среде с глюкозой, центрифугировали (4000 g, 15 мин, 4 °C). Осадок клеток дважды отмывали от остатков среды 0,05 М К⁺-фосфатным буфером (pH 7,0), центрифугируя (4000 g, 15 мин, 4 °C). Отмытые клетки ресуспендировали в 0,05 М К⁺-фосфатном буфере (pH 7,0) и разрушали ультразвуком (22 кГц) 3 раза по 60 с при 4 °C на аппарате УЗДН-1. Дезинтеграт центрифугировали (12000 g, 30 мин, 4 °C), осадок отбрасывали, надосадочную жидкость использовали в качестве бесклеточного экстракта.

Активность 6-фосфофруктокиназы (КФ 2.7.1.11) анализировали по скорости образования фруктозо-1,6-дифосфата, которую определяли по окислению НАДН при 340 нм в сопряженной реакции с альдолазой, триозофосфатизомеразой и α-глицерофосфатдегидрогеназой [25].

Активность 6-фосфоглюконатдегидратазы (КФ 4.2.1.12) [25] анализировали по скорости образования пирувата, которую определяли по окислению НАДН при 340 нм в сопряженной реакции с лактатдегидрогеназой.

Активность глюкозодегидрогеназы (КФ 1.1.1.47) определяли по скорости образования глюконо-1,5-лактона, которую измеряли спектрофотометрически по восстановлению НАД(Φ)⁺ при 340 нм с использованием глюкозы в качестве донора электронов [17].

Активность глюкозодегидрогеназы (КФ 1.1.1.118 [11] и 1.1.1.119 [9]) анализировали по скорости образования глюконо-1,5-лактона, которую определяли по восстановлению НАД⁺ и НАДФ⁺ соответственно при 340 нм с использованием глюкозы в качестве донора электронов.

Активность глюкозодегидрогеназы (КФ 1.1.5.2) анализировали по скорости образования глюконо-1,5-лактона, которую определяли по восстановлению дихлорфенолиндофенола в присутствии феназинметасульфата при 600 нм [8] с использованием глюкозы в качестве донора электронов.

Активность глюкозодегидрогеназы (КФ 1.1.5.9) анализировали по скорости образования глюконо-1,5-лактона, которую определяли по восстановлению дихлорфенолиндофенола при 540 нм [22] с использованием глюкозы в качестве донора электронов.

Активность глюконатдегидрогеназы (КФ 1.1.1.215) определяли по скорости образования 2-кетоглюконата, которую измеряли спектрофотометрически по восстановлению НАДФ⁺ при 340 нм с использованием глюконата натрия в качестве донора электронов [13].

Активность глюконатдегидрогеназы (КФ 1.1.99.3) анализировали по скорости образования 2-кетоглюконата, которую определяли по восстановлению дихлорфенолиндофенола при 540 нм с использованием глюконата натрия в качестве донора электронов [26].

Активность глюконокиназы (КФ 2.7.1.12) определяли по скорости образования 6-фосфоглюконата, которую измеряли по восстановлению НАДФ⁺ при 340 нм в сопряженной реакции с 6-фосфоглюконатдегидрогеназой [15].

Активность 6-фосфоглюконатдегидрогеназы (КФ 1.1.1.44 [11], КФ 1.1.1.351 [21] и КФ 1.1.1.343 [18]) анализировали по скорости образования рибулозо-5фосфата, которую определяли по восстановлению НАДФ⁺, НАД(Ф)⁺ и НАД⁺ соответственно при 340 нм с использованием 6-фосфоглюконата натрия в качестве донора электронов.

Содержание белка в бесклеточных экстрактах рассчитывали по Бредфорд [10]; активность ферментов определяли при 28–30 °С – температуре, оптимальной для роста *N. vaccinii* IMB B-7405.

Все опыты проводили в 3 повторностях, количество параллельных определений в экспериментах составляло от 3 до 5. Статистическую обработку экспериментальных данных проводили, как описано ранее [1, 3, 7, 19, 20]. Различия средних показателей считали достоверными при уровне значимости р < 0,05.

Результаты. Катаболизм глюкозы у микроорганизмов может осуществляться путем гликолиза (путь Эмбдена–Мейергофа–Парнаса, или фруктозо-1,6дифосфатный), Энтнера–Дудорова (2-кето-3-дезокси-6-фосфоглюконатный-(КДФГ)-путь), в пентозофосфатном цикле или расщеплением через глюконат [6]. Пентозофосфатный цикл не является основным путем катаболизма глюкозы, поскольку функционирует у всех живых организмов, выполняя две жизненно необходимые функции: синтез восстановительных эквивалентов для процессов конструктивного метаболизма и синтез рибозы, необходимой для образования нуклеиновых кислот [6].

Наши эксперименты показали, что в бесклеточном экстракте, полученном из выращенных на глюкозе клеток *N. vaccinii* IMB B-7405, не обнаружена активность ключевых ферментов гликолиза (6-фосфофруктокиназа) и КДФГ-пути (6-фосфоглюконатдегидратаза) (табл. 1). В связи с этим дальнейшие исследования были посвящены определению активности различных глюкозодегидрогеназ, принимающих участие в расщеплении глюкозы через глюконат (рисунок).

y <i>Iv. vaccinu</i> IVIB B-7405				
Путь	Ключевой фермент	Активность,		
катаболизма		нмоль·мин ⁻¹ ·мг ⁻¹ белка		
Гликолиз	6-фосфофруктокиназа (КФ 2.7.1.11)	0		
Энтнера-	6-фосфоглюконатдегидратаза (КФ 4.2.1.12)			
Дудорова		0		
(КДФГ-путь)				
	НАД(Ф) ⁺ -зависимая глюкозодегидрогеназа	7+0.03		
	(КФ 1.1.1.47)	/±0,03		
	НАД ⁺ -зависимая глюкозодегидрогеназа	0		
	(КФ 1.1.1.118)	0		
Расщепление	НАДФ ⁺ -зависимая глюкозодегидрогеназа	5+0.02		
через глюконат	(КФ 1.1.1.119)	5±0,02		
1	ПХХ-зависимая глюкозодегидрогеназа	0		
	(КФ 1.1.5.2)	0		
	ФАД ⁺ -зависимая глюкозодегидрогеназа	(09+25		
	(КФ 1.1.5.9)	098±33		

Активность ключевых ферментов метаболизма глюкозы у N vaccinii IMR B-7405

Примечание. ПХХ – пирролохинолинхинон.

Рисунок. Катаболизм глюкозы. Расщепление через глюконат.

Глюкозодегидрогеназы: КФ 1.1.1.47 – НАД(Φ)⁺-зависимая, КФ 1.1.1.118 – НАД⁺-зависимая, КФ 1.1.1.119 – НАД Φ ⁺-зависимая, КФ 1.1.5.2 – пирролохинолинхинон-зависимая, КФ 1.1.5.9 – ФАД⁺-зависимая.

Глюконатдегидрогеназы: КФ 1.1.1.215 – НАДФ⁺-зависимая, КФ 1.1.99.3 – ФАД⁺-зависимая.

6-фосфоглюконатдегидрогеназы: КФ 1.1.1.44 – НАДФ⁺-зависимая, КФ 1.1.1.351 – НАД(Ф)⁺-зависимая, КФ 1.1.1.343 – НАД⁺-зависимая.

Другие ферменты: КФ 2.7.1.12 – глюконокиназа, КФ 4.2.1.12 – 6-фосфоглюконат-дегидратаза, КФ 2.7.1.13 – кетоглюконокиназа, КФ 1.1.1.43 – 2-кето-6-фосфоглюконатредуктаза. ЦТК – цикл трикарбоновых кислот Из литературы [8, 9, 14, 17, 22] известно, что окисление глюкозы до глюконата у микроорганизмов может осуществляться НАД⁺, НАДФ⁺, НАД(Ф)⁺, пирролохинолинхинон(ПХХ)- и ФАД⁺-зависимыми ферментами. Так, например, НАД(Ф)⁺-зависимые глюкозодегидрогеназы функционируют у ряда архей, окисляющих глюкозу до глюконата в нефосфорилированном КДФГ-пути [17]. ПХХ-зависимые ферменты обнаружены у многих энтеробактерий, в частности, представителей родов *Escherichia, Salmonella, Pantoea* [8], а также псевдомонад [12, 16]. ФАД⁺-зависимые глюкозодегидрогеназы были впервые обнаружены в 1951 г. у *Aspergillus oryzae*, однако до настоящего времени остаются мало изученными ферментами [22]. В течение последнего десятилетия охарактеризованы ФАД⁺-зависимые дегидрогеназы грибов *Aspergillus terreus, Penicillium lilacinoechinulatum, Glomerella cingulate* [22]. Интерес к этим ферментам обусловлен их применением для получения глюкозных биосенсоров.

Исследования показали, что в клетках *N. vaccinii* IMB B-7405 окисление глюкозы осуществляется через глюконат при участии ФАД⁺-зависимой глюкозодегидрогеназы (табл. 1). Отметим, что этот мембрансвязанный фермент преимущественно функционирует у эукариот, а среди прокариот обнаружен у бактерий *Burkholderia cepacia* [22].

Вовлечение глюконата, образовавшегося при окислении глюкозы, в дальнейший метаболизм осуществляется при участии глюконатдегидрогеназ (рисунок). У бактерий рода *Gluconobacter* образование 2-кетоглюконата из глюконата катализируется мембрансвязанной ФАД⁺-зависимой дегидрогеназой [23], а у представителей рода *Acetobacter* – НАДФ⁺-зависимым ферментом [13].

Поскольку у *N. vaccinii* IMB B-7405 окисление глюкозы катализируется ФАД⁺-зависимой глюкозодегидрогеназой (см. табл. 1), которая является мембрансвязанным ферментом, то логично предположить, что и в окислении глюконата принимает участие также мембрансвязанная ФАД⁺-зависимая дегидрогеназа. Однако в бесклеточном экстракте штамма IMB B-7405, выращенного на глюкозе, мы не обнаружили активности ни одной из двух возможных глюконатдегидрогеназ, однако выявили активность глюконокиназы – фермента, осуществляющего образование 6-фосфоглюконата из глюконата (табл. 2, рисунок).

Таблица 2

Фермент	КФ номер	Активность, нмоль·мин ⁻¹ ·мг ⁻¹ белка
НАДФ⁺-зависимая глюконатдегидрогеназа	1.1.1.215	0
ФАД+-зависимая глюконатдегидрогеназа	1.1.99.3	0
Глюконокиназа	2.7.1.12	178±9

Активность ферментов вовлечения глюконата в метаболизм у штамма *N. vaccinii* IMB B-7405, растущего на глюкозе

6-Фосфоглюконат у большинства микроорганизмов вовлекается далее в путь Энтнера–Дудорова при участии 6-фосфоглюконатдегидратазы (рисунок) [6, 16]. Однако наши исследования показали, что этот фермент не функционирует у штамма *N. vaccinii* IMB B-7405, растущего на глюкозе (табл. 1 и 3). В то же время известно, что у *E. coli* и бактерий рода *Pseudomonas* существует альтернативный вариант вовлечения 6-фосфоглюконата в дальнейший метаболизм через пентозофосфатный цикл, катализируемый 6-фосфоглюконатдегидро-

геназами (рисунок) [16, 24]. Отметим, что есть 6-фосфоглюконатдегидрогеназы двух типов: конститутивные (НАД(Φ)⁺- и НАД Φ ⁺-зависимые) – участвуют в окислительной ветви пентозофосфатного цикла, обеспечивая синтез восстановительных эквивалентов и рибозы для биосинтетических процессов, и индуцибельные (НАД⁺-зависимые) – функционируют в альтернативном пути вовлечения 6-фосфоглюконата в метаболизм [16, 24].

В бесклеточном экстракте *N. vaccinii* IMB B-7405, полученном из клеток, выращенных на глюкозе, активность индуцибельной НАД⁺-зависимой 6-фосфоглюконатдегидрогеназы была крайне низкой (около 6 нмоль·мин⁻¹·мг⁻¹ белка), в то время как активность НАД(Φ)⁺-зависимого конститутивного фермента достигала 357 нмоль·мин⁻¹·мг⁻¹ белка (табл. 3).

Таблица 3

Фермент	КФ номер	Активность, нмоль·мин ⁻¹ ·мг ⁻¹ белка
6-фосфоглюконатдегидратаза	4.2.1.12	0
НАДФ⁺-зависимая 6-фосфоглюконатдегидрогеназа	1.1.1.44	357±17
НАД(Ф)⁺- зависимая 6-фосфоглюконатдегидрогеназа	1.1.1.351	0
НАД ⁺ - зависимая 6-фосфоглюконатдегидрогеназа	1.1.1.343	6±0,03

Активность ферментов вовлечения 6-фосфоглюконата в метаболизм *N. vaccinii* IMB B-7405

Таким образом, у *N. vaccinii* IMB B-7405 глюкоза окисляется до глюконата ФАД⁺-зависимой глюкозодегидрогеназой; при участии глюконокиназы образовавшийся глюконат превращается в 6-фосфоглюконат, который вовлекается в пентозофосфатный цикл с помощью конститутивной 6-фосфоглюконатдегидрогеназы. Следовательно, у штамма IMB B-7405 (в отличие от большинства микроорганизмов) пентозофосфатный цикл является основным путем катаболизма глюкозы.

Полученные данные являются исходными для проведения теоретического расчета оптимального молярного соотношения глюкозы и глицерина в смешанном субстрате для биосинтеза ПАВ *N. vaccinii* IMB B-7405.

Пирог Т.П.^{1,2}, Шевчук Т.А.¹, Берегова Х.А.²

¹Інститут мікробіології і вірусології ім. Д.К. Заболотного НАН України, Київ ² Національний університет харчових технологій, Київ, Україна

МЕТАБОЛІЗМ ГЛЮКОЗИ У ПРОДУЦЕНТА ПОВЕРХНЕВО-АКТИВНИХ РЕЧОВИН *NOCARDIA VACCINII* IMB B-7405

Резюме

У клітинах продуцента поверхнево-активних речовин (ПАР) *Nocardia vaccinii* IMB B-7405, вирощеного на глюкозі, визначено ключові ферменти метаболізму цього субстрату.

Встановлено, що у штаму IMB B-7405 катаболізм глюкози здійснюється через глюконат (активність ФАД⁺-залежної глюкозодегідрогенази 698±35 нмоль·хв⁻¹·мг⁻¹ білка). Окиснення глюконату до 6-фосфоглюконату каталізується глюконокіназою

(178±9 нмоль·хв⁻¹·мг⁻¹ білка). Залучення 6-фосфоглюконату до пентозофосфатного циклу здійснюється за участю конститутивної НАДФ⁺-залежної 6-фосфоглюконатдегідрогенази (активність 357±17 нмоль·хв⁻¹·мг⁻¹ білка).

Одержані дані є основою для теоретичних розрахунків оптимального молярного співвідношення концентрацій енергетично нерівноцінних субстратів для підвищення синтезу ПАР *N. vaccinii* IMB B-7405 на їх суміші.

Ключові слова: *Nocardia vaccinii* IMB В-7405, поверхнево-активні речовини, метаболізм глюкози, активність ферментів.

Pirog T.P.^{1,2}, Shevchuk T.A.¹, Beregova K.A.²

¹Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv ²National University of Food Technologies, Kyiv, Ukraine

GLUCOSE METABOLISM IN SURFACTANTS PRODUCER NOCARDIA VACCINII IMV B-7405

Summary

Key enzymes of glucose metabolism were detected in the cells of surfactants producer *Nocardia vaccinii* IMV B-7405 grown on this substrate.

It has been established that glucose catabolism is performed through gluconate (FAD⁺-dependent glucose dehydrogenase activity 698±35 nmol·min⁻¹·mg⁻¹ of protein).

Oxidation of gluconate to 6-phosphogluconate is catalised by gluconokinase $(178\pm9 \text{ nmol}\cdot\text{min}^{-1}\cdot\text{mg}^{-1} \text{ of protein})$. 6-Phosphogluconate was involved into pentose phosphate cycle by constitutive NADP⁺-dependent 6-phosphogluconate dehydrogenase (activity $357\pm17 \text{ nmol}\cdot\text{min}^{-1}\cdot\text{mg}^{-1}$ of protein).

The data obtained serve as the basis for theoretical calculations of optimal molar ratio of concentrations of energetically nonequivalent substrates for intensifying the surfactants synthesis on their mixture.

K e y w o r l d s: *Nocardia vaccinii* IMV B-7405, surfactants, glucose metabolism, activity of enzymes

- Кудря Н., Пирог Т. Особливості синтезу поверхнево-активних речовин Nocardia vaccinii IMB B-7405 на суміші ростових субстратів // Ukrainian food journal. – 2013. – 2, N 2. – С. 203–209.
- 2. *Мащенко О. Ю., Шевчук Т. А., Пирог Т.П.* Особливості метаболізму гліцерину у продуцента поверхнево-активних речовин *Nocardia vaccinii* IMB B-7405 // Наукові праці НУХТ. – 2013. – № 50. – С. 41–46.
- 3. Пирог Т.П., Шевчук Т.А., Конон А.Д., Шулякова М.А., Иутинская Г.А. Синтез поверхностно-активных веществ Acinetobacter calcoaceticus ИМВ В-7241 и Rhodococcus erythropolis ИМВ Ас-5017 в среде с глицерином // Микробиол. журнал. – 2012.– 74, № 1. – С. 20–27.
- 4. *Пирог Т.П., Шулякова М.О., Шевчук Т.А.* Змішані субстрати у природних умовах і біотехнологічних процесах // Biotechnologia Acta. 2013. **6**, N 6. P. 28–44.
- 5. Подгорский В.С., Иутинская Г.А., Пирог Т.П. Интенсификация технологий микробного синтеза. – К.: Наук. думка, 2010. – 327 с.
- Современная микробиология. Прокариоты / Под ред. Й. Ленгелера, Г. Древса, Г. Шлегеля. – Т. 1. – М.: Мир, 2005. – 654 с.

- 7. Шулякова М.О., Пирог Т.П. Визначення оптимального молярного співвідношення гліцерину та гексадекану для синтезу поверхнево-активних речовин *Rhodococcus erythropolis* IMB Ac-5017 // Наукові праці НУХТ. – 2012. – № 47. – С. 33–39.
- Andreeva I.G., Golubeva L.I., Kuvaeva T.M., Gak E.R., Katashkina J.I., Mashko S.V. Identification of *Pantoea ananatis* gene encoding membrane pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and pqqABCDEF operon essential for PQQ biosynthesis // FEMS Microbiol. Lett. – 2011. – 318, N 1. – P. 55–60.
- Avigad G., Alroy Y., Englard S. Purification and properties of a nicotinamide adenine dinucleotide phosphate-linked aldohexose dehydrogeanse from *Gluconobacter cerinus* // J. Biol. Chem. – 1968. – 243, N 8. – P.1936–1941.
- Bradford M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. 72, N 3. P. 248-254.
- Bridges R.B., Palumbo M.P., Wittenberger C.L. Purification and properties of an NADP-specific 6-phosphogluconate dehydrogenase from *Streptococcus faecalis* // J. Biol. Chem. – 1975. – 250, N 15. – P. 6093–6100.
- Buch A., Archana G., Naresh Kumar G. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing *Pseudomonas aeruginosa* P4 under phosphorus deficiency // Res. Microbiol. – 2008. – **159**, N 9–10. – P. 635–642.
- Chiyonobu T., Shinagawa E., Adachi O., Ameyama M. Purification, crystallization and properties of 2-ketogluconate reductase from Acetobacter rancens // Agric. Biol. Chem. – 1976. – 40, N 1. – P.175–184.
- 14. *Hu A.S., Cline A.L.* The regulation of some sugar dehydrogenases in a pseudomonad // Biochim. Biophys. Acta. – 1964. – **93**, N 2. – P. 237–245.
- 15. Izu H., Adachi O., Yamada M. Purification and characterization of the Escherichia coli thermoresistant gluconokinase encoded by the gntK gene // FEBS Lett. – 1996. – 394, N 1. – P. 14–16.
- 16. Lessie T.G., Phibbs P.V. Jr. Alternative pathways of carbohydrate utilization in pseudomonads // Annu. Rev. Microbiol. 1984. 38. P. 359–388.
- Milburn C.C., Lamble H.J., Theodossis A., Bull S.D., Hough D.W., Danson M.J., Taylor G.L. The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus // J. Biol. Chem. 2006. 281, N 21. 14796–14804.
- Ohara H., Uchida K., Yahata M., Kondo H. NAD-specific 6-phosphogluconate dehydrogenase in lactic acid bacteria // Biosci. Biotechnol. Biochem. – 1996. – 60, N 4. – P. 692–693.
- Pirog T. P., Konon A. D., Shevchuk T. A., Bilets I. V. Intensification of biosurfactant synthesis by Acinetobacter calcoaceticus IMV B-7241 on a hexadecane–glycerol mixture // Microbiology. – 2012. – 81, N 5. – P. 565–572.
- 20. Pirog T., Shulyakova M., Sofilkanych A., Shevchuk. T., Maschenko O. Biosurfactant synthesis by Rhodococcus erytropolis IMV Ac -5017, Acinetibacter calcoaceticus IMV B-7241, Nocardia vaccinii IMV B-7405 on byproduct of biodiesel product // Food Bioprod. Process. – 2013. – DOI 10.1016/j.fbp.2013.09.003.
- Stournaras C., Maurer P., Kurz G. 6-phospho-D-gluconate dehydrogenase from Pseudomonas fluorescens. Properties and subunit structure // Eur. J. Biochem. – 1983. – 130, N 2. – P. 391–396.

- 22. Sygmund C., Staudigl P., Klausberger M., Pinotsis N., Djinović-Carugo K., Gorton L., Haltrich D., Ludwig R. Heterologous overexpression of Glomerella cingulata FADdependent glucose dehydrogenase in Escherichia coli and Pichia pastoris // Microb. Cell Fact. – 2011. – 10:106. doi: 10.1186/1475-2859-10-106.
- Toyama H., Furuya N., Saichana I., Ano Y., Adachi O., Matsushita K. Membranebound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from *«Gluconobacter dioxyacetonicus»* IFO 3271: molecular properties and gene disruption // Appl. Environ. Microbiol. – 2007. – **73**, N 20. – P. 6551–6556.
- Wang I.N., Dykhuizen D.E. Variation of enzyme activities at a branched pathway involved in the utilization of gluconate in *Escherichia coli* // Evolution. 2001. 55, N 5. P. 897–908.
- Wheller P.R. Catabolic pathways for glucoce, glycerol and 6-phosphogluconate in Mycobacterium leprae grown in Armadillo tissues // J. Gen. Microbiol. – 1983. – 129, N 5. – P. 1481–1495.
- 26. Yum D.Y., Lee Y.P., Pan J.G. Cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase from *Erwinia cypripedii* ATCC 29267 in *Escherichia coli* // J. Bacteriol. 1997. **179**, N 21. P. 6566–6572.

Отримано 16.02.2015