MIHEPAЛOГIЧНИЙ ЖУРНАЛ MINERALOGICAL JOURNAL (UKRAINE)

УДК 550.42:552.311(477)

Г.В. Артеменко, И.А. Самборская

ГЕОХИМИЧЕСКИЕ ОТЛИЧИЯ ПЕРИДОТИТОВЫХ И ПИРОКСЕНИТОВЫХ КОМАТИИТОВ ЗЕЛЕНОКАМЕННЫХ ПОЯСОВ ПРИАЗОВСКОГО И СРЕДНЕПРИДНЕПРОВСКОГО МЕГАБЛОКОВ УКРАИНСКОГО ЩИТА

В Призовском мегаблоке распространены Al-деплетированные, Ti-обогащенные коматииты (барбертонский тип), а в Среднеприднепровском — Al-недеплетированные и Ti-деплетированные коматииты (йилгарнский тип), что свидетельствует о разном составе мантии при формировании мезоархейских зеленокаменных поясов. Геохимические данные указывают на существование более мощного палеоархейского фундамента в Приазовском мегаблоке. Перидотитовые коматииты из кумулятивных частей потоков характеризуются наиболее высокими значениями содержания рудных элементов — Cr, Ni, Co.

Перидотитовые и пироксенитовые коматииты — характерная часть осадочно-вулканогенных толщ мезоархейских зеленокаменных поясов Среднеприднепровского и Приазовского мегаблоков [1, 4, 5, 7-10]. Они формировались в условиях значительного частичного плавления мантийного субстрата на глубине не менее 100-200 км и поэтому их состав отражает состав архейской мантии [11, 12]. Химический состав коматиитов контролируется составом источника и рестита; давлением, температурой и степенью частичного плавления мантийного субстрата; типом плавления (равновесным, фракционным, динамическим); степенью фракционной кристаллизации и/или аккумуляции.

В данной работе рассмотрены геохимические характеристики метаморфизованных коматиитов зеленокаменных структур (3С): Косивцевской и Новогоровской Приазовского и Сурской и Высокопольской Среднеприднепровского мегаблоков. Новогоровскую 3С некоторые исследователи рассматривают как тектонический фрагмент Среднеприднепровского мегаблока [2, 3]. Редкие и редкоземельные элементы (РЗЭ) в изучаемых образцах определены с помощью метода *ICP-MS* во ВСЕГЕИ (г. Санкт-Петербург, Российская Федерация).

Зеленокаменные пояса Среднеприднепровского и Приазовского мегаблоков существенно различны по структурному положению, составу и мощности слагающих их пород [2, 3]. При этом геологические данные указывают на их общий структурный план [2], геохронологические — на одновозрастность (3,2-3,0 млрд лет) [10], а геофизические — на существенные различия в строении земной коры [6]. Под Приазовским блоком граница М находится на глубине 46-34 км, характеризуется платообразной формой и осложнена локальными поднятиями и опусканиями [7]. Зеленокаменные пояса на Приазовском блоке представлены многочисленными наложенными (рифтогенными) структурами: Новогоровской, Косивцевской, Сорокинской и др. Гранит-зеленокаменными ассоциациями сложена преобладающая площадь Гуляйпольского блока. Мантия под этим блоком имеет дунитпироксенитовый состав, в отличие от эклогитовой мантии под окружающими его гранулитовыми блоками. На Приазовском мегаблоке зеленокаменные пояса узкие (редко более 1,0-1,5 км), их мощность - 1,5-2,0 км. Эти

© Г.В. Артеменко, И.А. Самборская, 2009

Рис. 1. Распределение РЗЭ в метаморфизованных коматиитах Среднеприднепровского и Приазовского мегаблоков: незалитые значки — пироксенитовые коматииты и перидотитовые коматииты со спинифекс структурой, залитые — кумулятивные образования с пегматоидной структурой

Рис. 2. Мультиэлементная диаграмма для метаморфизованных коматиитов Среднеприднепровского и Приазовского мегаблоков. *Условные обозначения* на рис. 1

моно- или синклинальные структуры, расположенные в пределах крупных региональных разломов, предположительно глубоко эродированы.

Среднеприднепровский мегаблок — типичный гранит-зеленокаменный кратон архейского возраста. Глубина мантии Среднеприднепровского мегаблока колеблется от 28 до 56 км, под зеленокаменными структурами наблюдаются ее выступы до 28-35 км, а между ними она опускается до отметок 45-55 км и имеет холмистую или субгоризонтальную поверхность [6]. В восточной части Среднеприднепровского мегаблока фиксируются группы наклонных границ, которые отождествляются с зоной его регионального поддвига под Приазовский мегаблок. Для Среднеприднепровского мегаблока характерны брахиальные (до 30×15 км), амебовидные или близкие к линейным зеленокаменные синформы. Мощность осадочно-вулканогенных толщ 5-10 км [2, 3].

Новогоровская ЗС. Перидотитовый коматиит (скв. 300 С, обр. 91-249) характеризуется пегматоидной, "пятнистой" структурой. Главные породообразующие минералы представлены: изометричными зернами частично серпентинизированного (длиной до 1 см) оливина, удлиненными табличками и ксеноморфными зернами пироксена, замещенного тремолитом. Количество оливина и пироксена примерно одинаковое и преобладает над мелкозернистой основной массой (мезокумулат). Присутствуют ксеноморфные рудные минералы (1-2 %). Для породы характерно высокое содержание MgO — 39,68 % (*mg* = 0,8), низкая щелочность (Na₂O + $K_2O = 0,42$ %); содержание Cr — 825 ppm, Ni — 807 (табл. 1, 2). Согласно [11, 12], это Al-недеплетированная порода: Al₂O₃/TiO₂ = 27,43; CaO/Al₂O₃ = 0,82; $(Gd/Yb)_{MN} = 1,18$. Концентрация P39 — около 1,0*РМ. Распределение РЗЭ дифференцированное — $(La/Sm)_N = 2,12; (Gd/Yb)_N = 1,18$ (рис. 1). На мультиэлементной диаграмме на графиках распределения элементов выделяются отрицательная аномалия Nb и положительные аномалии Sr и Eu (рис. 2). Последние обусловлены наложенными процессами. Расплав, из которого образовались перидо-

Таблица 1. Химический состав метаморфизованных перидотитовых и пироксенитовых коматиитов Среднеприднепровского и Приазовского мегаблоков УЩ

Компонент, %	1/89-230	2/89-262	3/91-249	4/91-241	5/90-231	6/2182	7/2183
SiO ₂	45,36	46,87	46,04	50,86	44,18	40,87	38,63
TiO ₂	0,36	0,50	0,08	0,39	0,36	Следы	Следы
Al_2O_3	4,14	6,74	2,21	4,65	5,70	0,77	0,95
FeOtot	12,82	13,26	9,02	11,62	15,23	10,14	12,04
MnO	0,26	0,27	0,29	0,31	0,45	0,18	0,19
MgO	30,95	22,09	39,68	20,98	27,51	44,83	40,07
CaO	5,12	9,01	1,82	9,61	5,42	2,26	7,07
Na ₂ O	0,22	0,58	0,42	0,50	0,64	Следы	Следы
K ₂ Õ	0,06	0,06	Следы	0,17	0,05	"	"
P_2O_5	0,06	0,08	0,03	0,05	0,09	0,21	0,18
Сумма	100,00	100,00	100,00	100,00	100,00	100,00	100,00
CaO/Al ₂ O ₃	1,23	1,34	0,82	2,07	0,95	2,95	7,47
Al_2O_3/TiO_2	11,61	13,62	27,43	11,84	15,59	_	_
Κφ, %	43,53	62,39	23,78	57,14	56,73	24,27	32,25
Mg/Fe	2,02	1,39	3,68	1,51	1,51	3,70	2,78
MgO/FeOtot	2,41	1,67	4,10	1,81	1,81	4,42	3,32

П р и м е ч а н и е. *Метаморфизованные коматииты*: 1 — перидотитовый, Косивцевская 3С, скв. 832, инт. 244,8—245,0 м (89-230); 2 — пироксенитовый, там же, скв. 794, инт. 127,7—127,9 м (89-262); 3 — перидотитовый, Новогоровская 3С, скв. 300 С, гл. 323,6 м (91-249); 4 — пироксенитовый, там же, скв. 300 С, гл. 302 м (91-241); 5 — то же, Высокопольская 3С, скв. 21133, гл. 209 м (90-231); 6 — перидотитовый, Сурская 3С, Павловский участок, скв. 1473/15, инт. 45—46 м (2182); 7 — то же, там же, скв. 1473/17, инт. 47—48 м (2183). Образцы 2182, 2183 из коллекции В.И. Сукача. Результаты химических анализов пересчитаны на "сухой остаток", где железо представлено как FeOtot [FeOtot = (Fe₂O₃ 0,9) + FeO]. Химические анализы выполнены в ИГМР им. Н.П. Семененко НАН Украины.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Компонент, %	1/89-230	2/89-262	3/91-249	4/91-241	5/90-231	6/2182	7/2183	8/8/228
$ \begin{array}{c cccc} Cs & 0,46 & 0,07 & < 0,10 & < 0,10 & < 0,10 & < 0,10 & < 0,10 & - \\ Sr & 30,10 & 70,70 & 37,70 & 8,40 & 25,50 & 20,50 & 56,80 & 67,70 \\ Ba & 6,14 & 8,08 & 28,10 & 4,91 & 11,30 & 9,86 & 15,90 & 4,17 \\ Nb & 1,17 & 1,87 & 0,34 & 1,69 & 1,33 & < 0,50 & 0,65 \\ Y & 5,00 & 8,59 & 1,43 & 7,13 & 7,42 & 0,25 & 0,31 & 2,71 \\ Zr & 12,10 & 26,90 & 7,45 & 22,90 & 20,90 & 1,79 & 1,73 & 7,88 \\ Zn & 84,70 & 82,20 & 30,10 & 72,00 & 103,00 & 54,00 & 56,00 & - \\ Ge & 1,85 & 2,10 & 1,53 & 2,09 & 1,36 & 0,90 & 1,04 & - \\ Pb & 4,18 & 1,94 & 0,68 & < 1,00 & 2,00 & < 1,00 & - \\ Th & 0,17 & 0,37 & 0,13 & 0,80 & 0,40 & - & - & 0,21 \\ U & <1,10 & 0,15 & < 0,05 & 2,29 & 0,10 & 0,02 & 0,02 & 0,16 \\ Mo & 0,56 & 0,84 & 0,60 & <1,00 & <1,00 & <1,00 & - \\ V & 145,00 & 210,00 & 23,70 & 91,66 & 105,00 & 16,40 & 16,80 & 82,20 \\ Cr & 2570,00 & 2300,00 & 825,00 & 1530,00 & 1850,00 & 3490,00 & 3590,00 & 1650,00 \\ Co & 137,00 & 120,00 & 88,00 & 34,50 & 116,00 & 162,00 & 113,00 \\ Ni & 841,00 & 542,00 & 807,00 & 384,00 & 363,00 & 1080,00 & 1990,00 & 1520,00 \\ Cu & 57,70 & 69,50 & 4,78 & 65.00 & 144,00 & 2,90 & 4,80 & - \\ Th & 0,34 & 0,88 & 0,18 & 0,60 & 0,62 & 0,03 & 0,30 & - \\ Th & 0,34 & 0,88 & 0,18 & 0,60 & 0,62 & 0,03 & 0,03 & - \\ Th & 0,34 & 0,88 & 0,18 & 0,60 & 0,62 & 0,03 & 0,03 & - \\ Th & 0,34 & 0,88 & 0,18 & 0,60 & 0,62 & 0,03 & 0,30 & - \\ Th & 0,34 & 0,88 & 0,18 & 0,60 & 0,62 & 0,03 & 0,30 & - \\ Th & 0,34 & 0,48 & 0,17 & 0,75 & 0,57 & 0,02 & 0,02 & 0,25 \\ Nd & 1,51 & 2,81 & 0,68 & 3,13 & 2,34 & 0,09 & 0,06 & 1,12 \\ Sm & 0,42 & 0,86 & 0,22 & 0,95 & 0,67 & 0,02 & 0,03 & 0,36 \\ Tb & 0,11 & 0,21 & 0,03 & 0,21 & 0,14 & 0,01 & 0,01 & 0,01 \\ Gd & 0,58 & 1,16 & 0,20 & 1,14 & 0,80 & 0,02 & 0,03 & 0,36 \\ Tb & 0,11 & 0,21 & 0,03 & 0,21 & 0,14 & 0,01 & 0,01 & 0,01 \\ Fr & 0,43 & 0,82 & 0,13 & 0,81 & 0,76 & 0,02 & 0,03 & 0,36 \\ Tb & 0,11 & 0,21 & 0,03 & 0,21 & 0,14 & 0,01 & 0,01 & 0,01 \\ Fr & 0,43 & 0,82 & 0,60 & 0,13 & 0,25 & 0,40 & - & - & 0,37 \\ Td & 0,78 & 0,74 & 0,14 & 0,76 & 0,02 & 0,03 & 0,36 \\ Tb & 0,11 & 0,21 & 0,03 & 0,22 & 1,65 & 1,7$	Rb	0,97	1,15	<2,00	<2,00	<2,00	<2,00	<2,00	<2,00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cs	0,46	0,07	<0,10	<0,10	<0,10	<0,10	<0,10	_
Ba 6,14 8,08 28,10 4,91 11,30 9,86 15,90 4,17 Nb 1,17 1,87 0,34 1,69 1,33 <0,50	Sr	30,10	70,70	37,70	8,40	25,50	20,50	56,80	67,70
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ba	6,14	8,08	28,10	4,91	11,30	9,86	15,90	4,17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nb	1,17	1,87	0,34	1,69	1,33	<0,50	<0,50	0,65
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y	5,00	8,59	1,43	7,13	7,42	0,25	0,31	2,71
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zr	12,10	26,90	7,45	22,90	20,90	1,79	1,73	7,88
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn	84,70	82,20	30,10	72,00	103,00	54,00	56,00	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ga	6,42	8,85	1,51	5,82	6,03	0,89	1,05	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ge	1,85	2,10	1,53	2,09	1,36	0,90	1,04	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pb	4,18	1,94	0,68	<1,00	2,00	<1,00	<1,00	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Th	0,17	0,37	0,13	0,80	0,40	_	_	0,21
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	U	<1,10	0,15	<0,05	2,29	0,10	0,02	0,02	0,16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Мо	0,56	0,84	0,60	<1,00	<1,00	<1,00	<1,00	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V	145,00	210,00	23,70	91,60	105,00	16,40	16,80	82,20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cr	2570,00	2300,00	825,00	1530,00	1850,00	3490,00	3590,00	1650,00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Co	137,00	120,00	88,00	84,50	116,00	162,00	187,00	113,00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni	841,00	542,00	807,00	384,00	363,00	1080,00	1090,00	1520,00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cu	57,70	69,50	4,78	65,00	14,00	2,90	4,80	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn	0,44	0,59	Не опр.	_	_	_	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sb	0,29	<0,10	<0,10	_	_	_	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hf	0,34	0,88	0,18	0,60	0,62	0,03	0,03	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Та	0,09	0,12	0,02	0,13	<0,10	<0,10	<0,10	0,10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W	0,41	0,17	0,68	<0,50	<0,50	3,07	1,56	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T1	0,03	0,12	0,02	_	_	_	_	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	La	0,88	2,06	0,72	2,60	2,25	0,08	0,07	0,97
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ce	1,97	4,31	1,39	5,52	4,59	0,63	0,13	1,96
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pr	0,27	0,60	0,17	0,75	0,57	0,02	0,02	0,25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nd	1,51	2,81	0,68	3,13	2,34	0,09	0,06	1,12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sm	0,42	0,86	0,22	0,95	0,67	0,02	0,03	0,32
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Eu	0,14	0,25	0,077	0,20	0,14	0,01	0,01	0,11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gd	0,58	1,16	0,20	1,14	0,80	0,02	0,03	0,36
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tb	0,11	0,21	0,03	0,21	0,14	< 0,01	0,01	0,07
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dy	0,69	1,24	0,19	1,13	1,06	0,04	0,03	0,45
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Но	0,17	0,30	0,054	0,28	0,29	0,01	0,01	0,11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Er	0,43	0,82	0,13	0,81	0,76	0,02	0,02	0,30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tm	0,07	0,12	0,02	0,1	0,11	0,01	0,01	0,04
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Yb	0,45	0,74	0,14	0,68	0,72	0,01	0,02	0,29
$ \begin{bmatrix} \text{Ce}/\text{Yb} \end{bmatrix}_{N} & 1,22 & 1,62 & 2,76 & 2,26 & 1,77 & 17,50 & 1,81 & 1,88 \\ \begin{bmatrix} \text{La}/\text{Sm} \end{bmatrix}_{MN} & 1,35 & 1,55 & 2,12 & 1,77 & 2,17 & 2,59 & 1,51 & 1,96 \\ \begin{bmatrix} \text{Th}/\text{Sm} \end{bmatrix}_{MN} & 2,11 & 2,25 & 3,09 & 4,40 & 3,12 & - & - & 3,42 \\ \begin{bmatrix} \text{Nb}/\text{Th} \end{bmatrix}_{MN} & 0,82 & 0,60 & 0,31 & 0,25 & 0,40 & - & - & 0,37 \\ \begin{bmatrix} \text{Gd}/\text{Yb} \end{bmatrix}_{MN} & 1,07 & 1,30 & 1,18 & 1,39 & 0,92 & 1,65 & 1,24 & 1,03 \\ \begin{bmatrix} \text{Y} \end{bmatrix}_{MN} & 1,10 & 1,89 & 0,31 & 1,57 & 1,63 & 0,06 & 0,07 & 0,60 \\ \begin{bmatrix} \text{Yb} \end{bmatrix}_{MN} & 0,91 & 1,50 & 0,28 & 1,38 & 1,46 & 0,02 & 0,04 & 0,59 \\ \end{bmatrix} $	Lu	0,08	0,11	0,03	0,09	0,12	< 0,01	0,01	0,05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$[Ce/Yb]_N$	1,22	1,62	2,76	2,26	1,77	17,50	1,81	1,88
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[La/Sm] _{MN}	1,35	1,55	2,12	1,77	2,17	2,59	1,51	1,96
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[Th/Sm] _{MN}	2,11	2,25	3,09	4,40	3,12	—	-	3,42
$ \begin{bmatrix} \text{Gd/Yb} \end{bmatrix}_{MN} & 1,07 & 1,30 & 1,18 & 1,39 & 0,92 & 1,65 & 1,24 & 1,03 \\ \begin{bmatrix} \text{Y} \end{bmatrix}_{MN} & 1,10 & 1,89 & 0,31 & 1,57 & 1,63 & 0,06 & 0,07 & 0,60 \\ \begin{bmatrix} \text{Yb} \end{bmatrix}_{MN} & 0,91 & 1,50 & 0,28 & 1,38 & 1,46 & 0,02 & 0,04 & 0,59 \\ \begin{bmatrix} \text{Ti} \ \text{Yl} \end{bmatrix} & 396\ 00 & 328\ 00 & 294\ 00 & 320\ 00 & 259\ 00 & 259\ 00 & 0 & 0 & 0 \\ \end{bmatrix} $	[Nb/Th] _{MN}	0,82	0,60	0,31	0,25	0,40	—	-	0,37
$ \begin{bmatrix} [Y]_{MN} & 1,10 & 1,89 & 0,31 & 1,57 & 1,63 & 0,06 & 0,07 & 0,60 \\ [Yb]_{MN} & 0,91 & 1,50 & 0,28 & 1,38 & 1,46 & 0,02 & 0,04 & 0,59 \\ [Ti (Y] & 396 00 & 328 00 & 294 00 & 320 00 & 259 00 & 0,04 & 0,59 \\ \end{bmatrix} $	[Gd/Yb] _{MN}	1,07	1,30	1,18	1,39	0,92	1,65	1,24	1,03
$ \begin{bmatrix} Yb \end{bmatrix}_{MN} & 0.91 & 1.50 & 0.28 & 1.38 & 1.46 & 0.02 & 0.04 & 0.59 \\ TT (X) & 396.00 & 328.00 & 294.00 & 320.00 & 259.00 & 0.02 & 0.04 & 0.59 \\ \end{bmatrix} $	[Y] _{<i>MN</i>}	1,10	1,89	0,31	1,57	1,63	0,06	0,07	0,60
$ [T_{1}/V] = 396.00 328.00 294.00 320.00 250.00 0 0 0 0 0 0 0 0 0$	[Yb] _{MN}	0,91	1,50	0,28	1,38	1,46	0,02	0,04	0,59
$ 11/1]_{MN}$ 520,00 520,00 227,00 520,00 237,00 - - -	[Ti/Y] _{MN}	396,00	328,00	294,00	320,00	259,00	—	-	—

П р и м е ч а н и е. Нормирование на состав хондрита и примитивную мантию выполнено по [13]. Привязки проб — в табл. 1.

титовые коматииты, контаминирован коровым веществом — $[Nb/Th]_{MN} = 0.31$ [11, 12] (табл. 2).

Пироксенитовый коматиит (скв. 300 С, гл. 302 м, обр. 91-241) сложен амфиболизированными пироксеновыми зернами, расположенными хаотично, и идиоморфными рудными минералами (5-10 %). Характерно высокое содержание СаО (9,61 %). Содержание MgO - 20,98 % (*mg* = 0,40), Cr - 1530 ppm, Ni — 384 (табл. 1, 2). Порода Аl-деплетированная, Ті-обогащенная: $Al_2O_3/TiO_2 = 11,84;$ $CaO/Al_2O_3 = 2,07; (Gd/Yb)_{MN} = 1,39 [12]. Кон-$ центрация РЗЭ — около 5,0*РМ. Распределение РЗЭ дифференцированное: $(La/Sm)_N =$ = 1,77; (Gd/Yb)_N = 1,39 (рис. 1). На мультиэлементной диаграмме на графиках распределения элементов выделяются отрицательные аномалии Nb, Sr, Eu (рис. 2). Расплав, из которого образовались пироксенитовые коматииты, контаминирован коровым веществом — [Nb/Th]_{MN} = 0,25 [12] (табл. 2).

Косивцевская ЗС. Перидотитовый коматиит (скв. 832, обр. 89-230) имеет структуру спинифекс. В шлифе наблюдаются субпараллельные (пластинчатая структура), а местами и беспорядочно ориентированные (лучистая структура) скелетные игольчатые кристаллы частично серпентинизированного оливина (длиной до 1 см). Мелкозернистая матрица состоит из пироксена и оливина. Установлено высокое содержание MgO — 30,95 %, коэффициент магнезиальности породы (mg) равен 0,60; содержание Cr — 2570 ppm, Ni — 841 (табл. 1, 2). Пород Аl-деплетированная и Тiобогащенная: Al₂O₃/TiO₂ = 11,6; CaO/Al₂O₃ = = 1,23; (Gd/Yb)_{MN} = 1,07 [12]. Концентрация РЗЭ — около 3,0 * РМ. Распределение ЛРЗЭ дифференцированное: $(La/Sm)_N = 1,4;$ (Gd/Yb)_N = 0,97 (рис. 1). На спайдер-диаграмме выделяются положительные аномалии Ті и Sr (рис. 2). Последняя обусловлена, вероятно, наложенными процессами. Расплав, из которого образовался перидотитовый коматиит, контаминирован коровым веществом [Nb/Th]_{MN} = 0,82 [12] (табл. 2).

Перидотитовый коматиит (скв. 746, обр. 8-228) имеет петельчатую структуру. Главные породообразующие минералы представлены изометричными зернами серпентинизированного (длиной до 1 см) оливина (до 90 %), удлиненными табличками тремолита (10 %) и рудной пылью. Порода отличается относительно высоким значением содержания Ni — 1520 ppm, Cr — 1650. Концентрация РЗЭ — около 1,0*PM. Распределение ЛРЗЭ дифференцированное — $(La/Sm)_N = 1,96; (Gd/Yb)_N = 1,03$ (рис. 1). На спайдер-диаграмме выделяются отрицательные аномалии Nb, Ва и положительная — Sr (рис. 2). Расплав, из которого образовался перидотитовый коматиит, контаминирован коровым веществом — $[Nb/Th]_{MN} = 0,37$ [12] (табл. 2).

Пироксенитовый коматиит (Зеленовский участок, скв. 791, обр. 89-262) имеет сланцеватую текстуру. Он состоит из амфиболизированного клинопироксена (90 %) и рудных минералов (до 10 %). Содержание MgO — 22,09 % (*mg* = 0,40), Cr — 2300 ppm, Ni — 542 (табл. 1, 2). Согласно [11, 12], пироксенитовый коматиит Al-деплетированный и Ті-обогащенный: Al₂O₃/TiO₂ = 13,62; CaO/Al₂O₃ = 1,34; $(Gd/Yb)_{MN} = 1,30$ (табл. 2). Концентрация РЗЭ — около 2,0*РМ. Распределение РЗЭ дифференцированное: $(La/Sm)_N = 1,55;$ $(Gd/Yb)_N = 1,30$ (рис. 1). На мультиэлементной диаграмме выделяется отрицательная аномалия Nb, Eu и положительная — Sr (рис. 2). Аномалии Eu и Sr обусловлены наложенными вторичными процессами. Расплав для пироксенитовых коматиитов был контаминирован коровым веществом — [Nb/Th]_{MN}= = 0,60 (табл. 2).

Сурская ЗС. Перидотитовые коматииты (Павловский участок, скв. 1473/15, инт. 45-46 м, обр. 2182; там же, скв. 1437/17, инт. 47-48 м, обр. 2183) — кумулятивные образования, имеющие порфироподобную структуру за счет вкраплений темно-зеленого цвета (серпентинизированного оливина). В них наблюдается высокое содержание MgO (38,63-40,87%), mg = 0,7—0,8. Содержание Cr варьирует от 3490 до 3590 ppm, Ni — от 1080 до 1090 (табл. 1, 2). Это Al-недеплетированная порода: $CaO/Al_2O_3 = 2,95-7,47; (Gd/Yb)_{MN} = 1,24-$ 1,65 [11, 12]. Концентрация РЗЭ низкая — 0,1-0,3*PM. Распределение РЗЭ дифференцированное: $(La/Sm)_N = 1,51-2,59; (Gd/Yb)_N =$ = 1,24—1,65 (рис. 1).

Высокопольская ЗС. Пироксенитовый коматиит (скв. 21133, обр. 90-231). Мелкозернистая, сильно измененная порода, сложенная игольчатыми кристаллами актинолита. По содержанию MgO — 27,51 % эту породу можно отнести к перидотитовым коматиитам, но она характеризуется более высокими значениями

содержания алюминия и кальция, чем исследуемые образцы перидотитовых коматиитов. Содержание Cr — 1850 ppm, Ni — 363 (табл. 1, 2). Пироксенитовый коматиит Al-недеплетированный: $Al_2O_3/TiO_2 = 15,59$; CaO/Al_2O_3 = = 0,95; (Gd/Yb)_{MN} = 0,92 [12] (табл. 1, 2). Концентрация P3Э — около 4*PM. Распределение ЛРЗЭ дифференцированное: (La/Sm)_N = = 2,17; (Gd/Yb)_N = 0,92 (рис. 1). На мультиэлементной диаграмме выделяются отрицательные аномалии Nb, Sr и Eu (рис. 2). Расплав для пироксенитовых коматиитов был контаминирован коровым веществом — [Nb/Th]_{MN} = = 0,40 (табл. 2).

Выводы. В результате выполненных геохимических исследований установлено, что в Приазовском мегаблоке распространены преимущественно Аl-деплетированные, Тi-обогащенные перидотитовые и пироксенитовые коматииты (барбертонский тип), а в Среднеприднепровском — АІ-недеплетированные и Ті-деплетированные коматииты (йилгарнский тип) (рис. 3). Перидотитовые и пироксенитовые коматииты зеленокаменных поясов Приазовского мегаблока характеризуются низким значением отношения Al₂O₃/TiO₂ (11,6–13,6) и высоким – (Gd/Yb)_N (1,1–1,3), что предполагает их образование при частичном плавлении гранатового перидотита в источнике и удалении обогащенного гранатом рестита [12]. АІ-недеплетированные перидотитовые коматииты Среднеприднепровского мегаблока со средним по величине значением отношения Al₂O₃/TiO₂ (15,6) и (Gd/Yb)_N = 0,9 выплавля-

Рис. 3. Диаграмма Al₂O₃/TiO₂ — MgO для метаморфизованных коматиитов Приазовского (*1*) и Среднеприднепровского (*2*) мегаблоков

лись на меньшей глубине или при более высокой степени частичного плавления гранатового перидотита в источнике и удалении безгранатового рестита. Перидотитовые и пироксенитовые коматииты Приазовского мегаблока отличаются значительно большим значением отношения CaO/Al_2O_3 , чем аналогичные породы Среднеприднепровского мегаблока. Это значение отношения сильно зависит от давления в очаге генерации коматиитовых расплавов и указывает на выплавление коматиитовых расплавов в Приазовском мегаблоке при более высоком давлении, чем в Среднеприднепровском.

Полученные геохимические данные указывают на существование более мощной палеоархейской сиалической коры в Приазовском мегаблоке, на которой закладывались мезоархейские зеленокаменные пояса. Расплавы перидотитовых и пироксенитовых коматиитов были контаминированы коровым веществом [Nb/Th]_{MN} < 1. В наибольшей степени контаминированы коматииты Новогоровской 3С.

Перидотитовые коматииты с пегматоидной, порфироподобной структурой из кумулятивных частей потоков характеризуются значительно более низким содержанием РЗЭ, чем коматииты со спинифекс структурами. В то же время для них характерны наиболее высокие значения концентрации рудных элементов: в кумулятивных перидотитовых коматиитах Косивцевской 3С — Ni (1520 ppm), Cr (1650), Co (113), в перидотитовых коматиитах Павловского участка Сурской 3С — Ni (1090 ppm), Cr (3590), Co (187).

ISSN 0204-3548. Mineral. Journ. (Ukraine). 2009. 31, No 2

- 1. Бобров А.Б., Малюк Б.И. Петрология расслоенных потоков коматиитов Косивцевской зеленокаменной структуры (Украинский щит) // Геохимия.— 1991. № 11. С. 1573—1585.
- 2. Бобров О.Б., Сіворонов А.О., Малюк Б.І., Лисенко О.М. Тектонічна будова зеленокам'яних структур Українського щита // Зб. наук. праць УкрДГРІ. — 2002. — № 1—2. — С. 46—67.
- 3. *Глевасский Е.Б.* Зеленокаменные пояса и перспективы поисков золотого оруденения в Приазовье // Минерал. журн. 1996. **18**, № 4. С. 72—88.
- 4. *Данилович Л.Г.* Петрологические типы коматиитов Среднего Приднепровья (Украинский щит) // Докл. АН УССР. Сер. Б. 1981. № 1. С. 17—21.
- 5. *Зеленокаменные* пояса фундамента Восточно-Европейской платформы (геология и петрология вулканитов). Л. : Наука, 1988. 215 с.
- 6. Насад А.Г., Пигулевский П.И., Кичурчак В.М., Берзенин Б.З. К вопросу комплексирования геофизических материалов при построении среднемасштабных карт докембрийских образований (на примере Среднеприднепровского и Приазовского геоблоков УЩ) // Регіональні геологічні дослідження в Україні і питання створення Держгеолкарти-200: Тез. доп. І наук.-вироб. наради геологів-зйомщиків (17—22 верес., м. Гурзуф). К., 2001. С. 64—66.
- 7. Сиворонов А.А., Бобров А.Б., Смоголюк А.Г., Трощак С.А. Метаморфизованная коматиит-толеитовая формация Сурской зеленокаменной структуры (Среднее Приднепровье) // Геол. журн. 1983. № 3. С. 108—121.
- 8. Сиворонов А.А., Малюк Б.И., Смоголюк А.Г., Бобров А.Б. Коматииты зеленокаменных поясов Среднего Приднепровья. Ст. 2. Петрохимические особенности // Бюлл. Моск. о-ва испытателей природы. — 1989. — 64, вып. 1. — С. 101—115.
- 9. *Сукач В.В., Ільвицький М.М.* Розшаровані коматиїтові потоки Сурської зеленокам'яної структури та їх потенційна металоносність // Зб. наук. праць УкрДГРІ. — 2005. — № 2. — С. 63—69.
- 10. *Щербак Н.П., Артеменко Г.В., Лесная И.М., Пономаренко А.Н.* Геохронология раннего докембрия Украинского щита. Архей. — Киев : Наук. думка, 2006. — 321 с.
- Borming Jahn, Gruau G., Glikson A.Y. Komatiites of the Onverwacht Group, S. Africa : REE Geochemistry, Sm/Nd Age and Mantle Evolution // Contribs Mineral. and Petrol. – 1982. – 80. – P. 25–40.
- 12. Sproule R.A., Lesher C.M., Ayer J.A. et al. Spatial and temporal variations in the geochemistry of komatiitic in the Abitibi greenstone belt // Precambr. Res. 2002. 115. P. 153-186.
- Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts : implications for mantle composition and processes // Magmatism in the Ocean Basins : Geol. Soc. Spec. Publ. / A.D. Saunders, M.J. Norry. – 1989. – No 42. – P. 313–345.

Ин-т геохимии, минералогии и рудообразования им. Н.П. Семененко НАН Украины, Киев

Поступила 03.03.2009

РЕЗЮМЕ. У Призовському мегаблоці поширені Al-деплетовані і збагачені на Ті коматіїти (барбертонський тип), а у Середньопридніпровському — Al-недеплетовані та Ті-деплетовані коматіїти (йілгарнський тип), що свідчить про різний склад мантії у процесі формування мезоархейських зеленокам'яних поясів. Геохімічні відомості вказують на існування потужнішого палеоархейського фундаменту в Приазовському мегаблоці. Перидотитові коматіїти з кумулятивних частин потоків характеризуються найвищими значеннями вмісту рудних елементів — Cr, Ni, Co.

SUMMARY. Al-depleted and Ti-enriched komatiites (Barberton type) are spread in the Peri-Azovian megablock, Alundeleted komatiites and Ti-depleted komatiites (Yilgarn type) — in the Middle-Dniper megablock that evidences for different composition of the mantle during forming the Mezoarchaean greenstone belts. The geochemistry data indicate the existence of a more thick Paleoarchaean basement in the Peri-Azovian megablock. The peridotite komatiite from cumulative parts of flows are characterized by the highest concentration of ore elements — Cr, Ni, Co.