УДК 549.514.81:544.23.022.51:(543.442.2 + 543.429.23)

Е.А. Калиниченко, А.Б. Брик, Л.М. Степанюк, А.М. Калиниченко

Институт геохимии, минералогии и рудообразования им. Н.П. Семененко НАН Украины 03680, г. Киев-142, Украина, пр. Акад. Палладина, 34 E-mail: kalinichenko@igmr.gov.ua

ОСОБЕННОСТИ СТРУКТУРЫ МЕТАМИКТНОГО ЦИРКОНА ПО ДАННЫМ РФА И ЯМР

С использованием методов рентгенофазового анализа и ядерного магнитного резонанса исследованы формы вхождения протонов и кремния и особенности структуры метамиктного (с высоким содержанием U) и кристаллического циркона из гранитов Украинского щита. Показано, что в структуре метамиктного образца (поглощенная доза $D \approx 8 \cdot 10^{18} \, \alpha$ -распад/г, III стадия метамиктизации) присутствуют кристаллическая и аморфная фазы циркона. Последняя содержит, кроме того, небольшое количество слабоупорядоченной фазы кварца, аморфного гидратированного кремнезема ($Si_{1-y}O_{2-y}(OH)_y$) и, предположительно, аморфного ZrO_2 , который при отжиге трансформируется в t-ZrO₂. Структура циркона с низким содержанием U (поглощенная доза $D\approx 2\cdot 10^{18}$ α-распад/г, І стадия метамиктизации) в основном кристаллическая, с небольшой примесью аморфной фазы циркона. В метамиктном цирконе присутствуют ОН-группы (1,2 мас. % H₂O), преимущественно Si-OH-группы в аморфном гидратированном кремнеземе. В цирконе I стадии метамиктизации таких групп на порядок меньше $(0,1 \text{ мас. } \% \text{ H}_2\text{O})$. Предполагается, что количество OH-групп в метамиктной фазе циркона отражает активность воды в магматической и постмагматической истории минерала. Показано, что в метамиктном и кристаллическом цирконе в граничном слое зоны на расстоянии до 2 нм от оси трека ядра отдачи могут формироваться фазы SiO_2 и ZrO_2 вследствие более быстрого понижения температуры, чем в остальной структуре. Показано, что структура метамиктного циркона рекристаллизуется на $\approx 90~\%$ в температурном интервале T = 600 - 1000~°C в течение трех часов и сопровождается частичным перераспределением ОН-групп в структуре, частичной дегидроксилацией аморфной фазы, снижением ее количества, образованием и исчезновением фазы t-ZrO₃.

Введение. Циркон ZrSiO₄ — акцессорный минерал магматических, метаморфических и осадочных пород, в незначительном количестве содержащийся в лунных минералах, метеоритах и тектитах. Обычно циркон содержит 5—4000 ppm U и 2—2000 — Тh и широко используется в U-Th-Pb датировании геологических объектов [2, 7, 15]. Альфа-распад радиоактивных элементов (в основном U и Th), изоморфно замещающих атомы Zr, обусловливает разрушение кристаллической структуры и переход циркона в метамиктное состояние.

Природу метамиктности циркона длительное время исследуют с применением комплекса физико-химических методов [2—10, 14, 15, 17]. В зависимости от накопленной дозы α -облучения (D) выделяют три стадии разру-

© Е.А. КАЛИНИЧЕНКО, А.Б. БРИК, Л.М. СТЕПАНЮК, А.М. КАЛИНИЧЕНКО, 2012

шения структуры циркона [7]. В слабометамиктном цирконе ($D < 3 \cdot 10^{18} \, \alpha$ -распад/г — I стадия) преобладают точечные дефекты. При средней метамиктности ($D = (3-8) \cdot 10^{18}$ α-распад/г — II стадия) структура состоит из кристаллических областей с точечными дефектами и треков аморфизованного вещества. В метамиктном цирконе ($D > 8 \cdot 10^{18} \, \alpha$ -распад/г— III стадия) дальний порядок отсутствует, структура пористая [4, 6, 7, 10, 17]. Полностью метамиктная структура представляет собой наноразмерные блоки кристаллического циркона размером ≈10 нм, ориентированно включенные в аморфный матрикс [6, 7]. Возможно формирование аморфных фаз SiO₂ и ZrO₂ [6].

Разрушение кристаллической структуры при авторадиации обусловлено главным образом смещениями атомов из равновесных положений при столкновениях с массивными

ядрами отдачи, образующимися при α-распаде радиоактивных ядер [4, 6, 7, 9, 15]. Вдоль трека ядра отдачи формируется аморфная область, окруженная зонами с нарушенной структурой, содержащими точечные дефекты. Перекрывание аморфизированных областей и накопление структурных нарушений приводит к метамиктизации структуры.

В цирконах с разной степенью метамиктизации в зависимости от их состава и геологической истории могут присутствовать молекулы H_2O и/или OH-групп (до $\sim 16,0$ мас. % воды) [6, 10, 14, 15, 17, 19]. Представления о возможных механизмах вхождения H-содержащих групп в структуру циркона и их роли в метамиктизации и рекристаллизации остаются дискуссионными. Предполагается, что незначительная часть ($\leq 0,1$ мас. %) OH-групп захватывается при кристаллизации, большая часть молекул H_2O и/или OH-групп внедряются в процессе или после радиационных разрушений [10, 14, 15, 17].

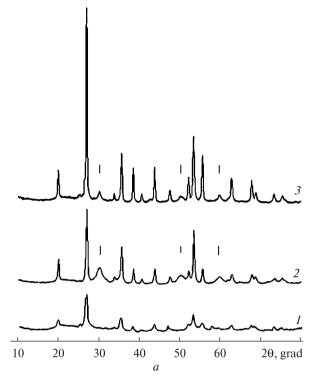
Для многих образцов циркона характерно зональное строение [6, 7, 10, 14, 15, 17]. В ряде метамиктных цирконов присутствуют микрообласти с малыми аналитическими суммами оксидов элементов (91—98 мас. %) и высоким содержанием актиноидов (особенно U и Th) и катионов M^{2+} (Ca, Fe), что объясняется изменениями в разрушенной структуре в гидротермальных условиях [10, 14, 17]. В метамиктных цирконах с суммой оксидов \approx 100 мас. % количество катионов M^{2+} и H-содержащих групп незначительное [6, 17].

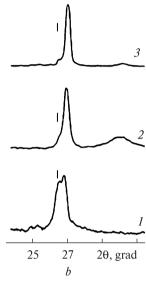
Нагрев метамиктного циркона при температуре $T > 800\,^{\circ}\text{C}$ в течение ~ 1 ч приводит к существенным изменениям и частичному восстановлению структуры: при $T = 850-1100\,^{\circ}\text{C}$ формируются фазы ZrO_2 и SiO_2 , при $T \sim 1120-1500\,^{\circ}\text{C}$ в оксидах происходят фазовые переходы с одновременной рекристаллизацией структуры с образованием гранул размером $\leq 1\,\mu\text{m}$ [7, 10, 19].

Исследования метамиктных цирконов с помощью метода ядерного магнитного резонанса (ЯМР) позволили установить ряд характерных особенностей структуры метамиктных цирконов, в том числе наличие кристаллических и аморфных областей, большое количество дефектов в кристаллических областях, формирование фаз SiO_2 и ZrO_2 в аморфных областях [2—5, 7—9, 15 и др.]. По данным ЯМР ^{29}Si , метамиктизация циркона происходит при

дозе $D_{max} \approx 1 \cdot 10^{19} \, \alpha$ -распад/г, что соответствует рентгеноструктурным данным [3, 5, 7—9].

Несмотря на большой объем исследований представления о механизмах радиационного поражения структуры циркона, формах воды в цирконе и ее роли в метамиктизации и рекристаллизации остаются дискуссионными [3—10, 14, 15, 17, 19].


Цель данной работы — выяснение особенностей состава и структуры метамиктных цирконов из магматических пород Украинского щита (УЩ), форм вхождения Н-содержащих групп и кремния в исследованные образцы и возможной роли таких групп в процессе метамиктизации.


Объекты и методы исследования. Был исследован циркон из чаусовского гранита Среднего Побужъя (обр. 1, коричневая окраска, высокое содержание U) и габбро-монцонита Новоукраинского массива (обр. 2, светлокоричневая окраска, содержание U существенно меньше). Возраст циркона обеих проб 2,04 млрд лет. Поверхность граней отдельных кристаллов обр. 1 сильно трещиноватая. С помощью микрозонда обнаружено зональное строение зерен, усложненное трещиноватостью. Зональность, вероятно, "магматическая", представляет собой чередование концентрических зон, различающихся по содержанию примесей, в основном Fe и Ca (табл. 1).

Образец 1 последовательно прогревали в интервале T = 150 - 1000 °C в течение 1 ч, после чего проводили его исследование.

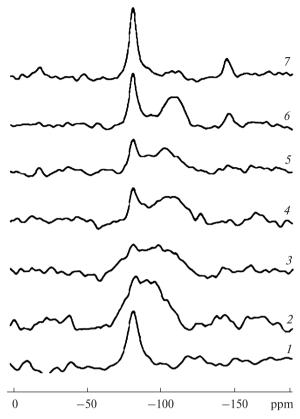
В качестве основных методов исследования использовали РФА (рентгенофазовый анализ) и ЯМР высокого разрешения (MAS ЯМР) на ядрах ¹Н и ²⁹Si. Дифрактограммы и спектры ЯМР регистрировали при комнатной температуре. Дифрактограммы регистрировали на дифрактометре ДРОН-4-07 в излучении Си-Кα линии анода с Ni-фильтром в отраженном пучке при геометрии съемки по Бреггу-Бретано в угловом интервале $10-80^{\circ}$ с шагом 0,05. Спектры ЯМР регистрировали на импульсном спектрометре с Фурье преобразованием AVANCE-400 (Bruker). Частота вращения образцов 5 кГц. ЯМР ²⁹Si, время задержки между импульсами 60 с. Химические сдвиги б измеряли в миллионных долях (м. д. (ррт)) относительно тетраметилсилана (ТМС).

Экспериментальные результаты и их обсуждение. Данные РФА. На рис. 1 приведены дифрактограммы обр. 1, исходного и после отжи-

Puc. 1. Дифрактограммы обр. 1: исходного (1) и после отжига при температуре T = 900 (2) и 1000 °C (3) в диапазоне $2\theta = 10 - 80^{\circ}$ (a), $25 - 30^{\circ}$, в разном масштабе (b). Указано положение рефлексов t-ZrO₂ (a) и SiO₂ (b) *Fig.* 1. Diffractogramms of sample 1: origin (1) and after annealing at temperature T = 900 (2) and 1000 °C (3) in the range $2\theta = 10 - 80$ grad (a), 25 - 30 grad, in the dif-

ferent scales (b). The peaks of t-ZrO₂ (a) and SiO₂ (b)

are marked

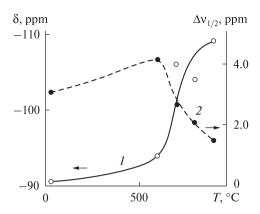

га при T=900 и 1000 °C. Указаны рефлексы тетрагонального (t) ZrO_2 (рис. 1, a) и кристаллического кварца (рис. 1, b), остальные рефлексы соответствуют кристаллическому циркону. Фазовый состав исследованного обр. 1 приведен в табл. 2.

Необходимо отметить, что дифракционные пики не расщепляются несмотря на видимую зональность обр. 1, хотя рядом с более узкими пиками отчетливо проявляются

диффузные дифракционные полосы. Это соответствует данным РФА для метамиктных цирконов [7]. Все рефлексы дифрактограммы исходного образца уширены, что указывает на наличие блоков кристаллов $ZrSiO_4$ низкой кристалличности в объеме аморфной фазы (широкий фоновый рефлекс в диапазоне $2\theta = 20-40^{\circ}$ [7]). Отчетливо проявляется рефлекс от кварца низкой кристалличности.

Таблица 1. Химический состав обр. 1 из гранита УЩ, мас. % Table 1. The chemical analysis of sample 1 from the Ukrainian Shield, mas. %

Зона	SiO ₂	Al_2O_3	CaO	FeO	PbO	HfO ₂	ZrO_2	UO ₂	Общее количество
Светлая	31,73	0	0,01	0,02	0,32	2,08	64,55	0,53	99,24
Темная	27,78	0	1,74	1,62	0,13	1,98	56,86	0,59	90,70
Светлая	31,31	0	0	0,01	0,30	2,28	65,75	0,16	99,81
	32,08	0	0,01	0	0,13	2,08	62,73	0,4	97,43
	32,33	0	0,01	0,02	0,27	2,34	60,80	0,31	96,08
Темная	28,50	0	1,78	2,01	0,08	1,95	54,88	0,44	89,64
Светлая	32,85	0	0,01	0	0,35	2,24	63,79	0,14	99,38
Темная	28,48	0	2,33	2,76	0,09	1,87	52,54	1,07	89,14
Светлая	32,11	0	0,01	0,04	0,67	2,28	63,05	1,0	99,16
Темная	27,57	0,17	2,29	2,48	0,19	1,73	52,27	0,94	87,64
Светлая	32,52	0	0,01	0,01	0,22	2,18	62,86	0,17	97,97
	32,27	0	0	0	0,19	2,49	63,19	0,2	98,34
	33,28	0	0,02	0,02	0,21	2,27	63,18	0,02	99,00



Puc. 2. Спектры *MAS* ЯМР ²⁹Si исходного обр. 2 (1) и обр. 1: исходного (2) и после отжига при T=600 (3), 700 (4), 800 (5), 900 (6) и 1000 (7) °C. Символами отмечены вращательные сателлиты

Fig. 2. 29 Si MAS NMR spectra of origin sample 2 (1) and of sample 1: origin (2) and after annealing at T = 600 (3), 700 (4), 800 (5), 900 (6) and 1000 (7) °C. The spinning satellites are marked by asterisks

В процессе прогрева при T=900 и $1000\,^{\circ}\mathrm{C}$ интенсивность рефлексов от кварца и аморфной фазы снижается, кристаллического циркона — возрастает. После прогрева при $T=900\,^{\circ}\mathrm{C}$ появляются рефлексы от $t\text{-ZrO}_2$ слабой кристалличности, интенсивность которых заметно снижается после прогрева при $T=1000\,^{\circ}\mathrm{C}$. Следует отметить, что по данным РФА, в обр. 1 нет включений моноклинного ZrO_2 , иногда присутствующих в цирконе [7].

B спектре MAS ЯМР ^{29}Si исходного обр. 2 присутствует одна узкая компонента на $\delta=-81,0$ м. д. (рис. 2), что указывает на поглощенную дозу α -излучения $D\approx 2\cdot 10^{18}$ α -распад/г [7, 9]. Спектр исходного обр. 1 состоит из двух, узкой и широкой, слабо разрешенных компонент на $\delta_1=-81,0$ и $\delta_2\approx-90$ м. д. соответственно, с соотношением значений интенсивности $I_1:I_2\approx 0,1:1$. Форма сигнала характерна для циркона с поглощенной дозой

Рис. 3. Химический сдвиг δ (*1*) и ширина на половине высоты $\Delta v_{1/2}$ (*2*) сигнала *MAS* ЯМР ²⁹Si, обусловленного ядрами ²⁹Si в аморфной фазе обр. 1, в зависимости от температуры прогрева

Fig. 3. The chemical shift δ (1) and the line width at half-height $\Delta v_{1/2}$ (2) of the ²⁹Si MAS NMR signal due to ²⁹Si nuclei in amorphous phase of sample 1 versus annealing temperature

 $D\approx7,5\cdot10^{18}$ α -распад/г [7]. Компоненты спектра обусловлены ядрами 29 Si в кристаллической и аморфной структуре циркона соответственно [3, 5, 7—9]. После прогрева при $T=600\,^{\circ}$ С линия на δ_2 уширяется, после дальнейшего прогрева — сужается (практически линейно с ростом температуры) и смещается в низкочастотную область (рис. 3). В ходе прогрева при $T\geq600\,^{\circ}$ С интенсивность компоненты на δ_1 растет, на δ_2 — снижается (рис. 4). После отжига при $T=1000\,^{\circ}$ С интенсивность узкой компоненты заметно возрастает, компонента из двух составляющих на $-108\,$ и $\approx-111\,$ м. д. малоинтенсивна (рис. 2, 7).

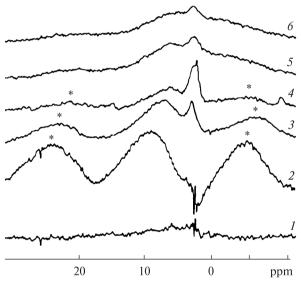

Спектры MAS ЯМР 1 Н исходных образцов заметно различаются (рис. 5). Спектр обр. 1 представлен широкой (значительно более ин-

Таблица 2. Фазовый состав и интенсивность дифракционных рефлексов обр. 1 из гранита УЩ Table 2. The phase composition and the X-ray peak intensities of sample 1 from the Ukrainian Shield

T. 0C		Рефлекс			
T, °C	Фаза	2θ, grad	Интенсивность, I , c^{-1}		
Исх.	ZrSiO ₄	26,75	3426		
	SiO ₂	26,55	3177		
900	ZrSiO ₄	26,85	27		
	SiO ₂	26,55	26,55		
	t-ZrO ₂	29,95	30,15		
1000	ZrSiO ₄	27	15548		
	SiO ₂	26,55	2303		
	t-ZrO ₂	30,15	1480		

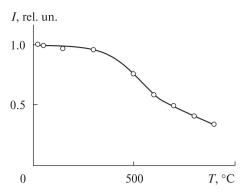

Puc. 4. Puc. 4. Относительные интенсивности линий в спектре *MAS* ЯМР 29 Si обр. 1, обусловленные ядрами 29 Si в аморфной (*1*) и кристаллической (*2*) структуре циркона, в зависимости от температуры прогрева *Fig. 4.* The relative intensities of lines in 29 Si MAS NMR spectra of sample 1, due to 29 Si nuclei in amorphous (*1*) and crystalline (*2*) zircon structure versus annealing temperature

Рис. 5. Спектры *MAS* ЯМР ¹Н исходного обр. 2 (1) и обр. 1: исходного (2) и после отжига при T=500 (3), 600 (4), 700 (5) и 800 (6) °C. Символами отмечены вращательные сателлиты

Fig. 5. ¹H MAS NMR spectra of origin sample 2 (1) and sample 1: origin (2) and after annealing at T = 500 (3), 600 (4), 700 (5) and 800 (6) °C. The spinning satellites are marked by asterisks

тенсивной) и узкой линиями на $\delta_1 = 9.0$ и $\delta_2 = 2.5$ м. д., обусловленными протонами ОНгрупп в аморфной и кристаллической структуре циркона соответственно [3]. Эти компоненты присутствуют и в спектре обр. 2, однако интенсивность широкой компоненты низкая. Это соответствует тому, что ОН-группы являются основной формой Н-содержащих групп в метамиктном цирконе, по данным

Puc. 6. Зависимость относительной интенсивности сигнала ЯМР 1 H обр. 1 от температуры прогрева *Fig.* 6. The relative intensity of 1 H NMR signal of sample 1 versus annealing temperature

инфракрасной спектроскопии (ИКС) [10, 14, 17, 19].

Исходя из интенсивности сигналов в стационарных спектрах ЯМР 1 H, количество ОНгрупп в обр. 1, 2 составляет 1,2 и 0,1 мас. % H $_2$ O соответственно. В качестве эталона использовали природный тальк.

После прогрева обр. 1 при $T=200-300\,^{\circ}\mathrm{C}$ интенсивность сигнала немного снижается, при $500\,^{\circ}\mathrm{C}$ — форма и интенсивность компонент заметно меняются, при $600\,^{\circ}\mathrm{C}$ — в узкой компоненте проявляются две составляющие (рис. 5, 6). В результате увеличения температуры прогрева широкая компонента смещается в низкочастотную область при снижении ее интенсивности. В интервале $T=500-700\,^{\circ}\mathrm{C}$ снижается интенсивность широкой компоненты, при T=700-900 — интенсивности обеих компоненты.

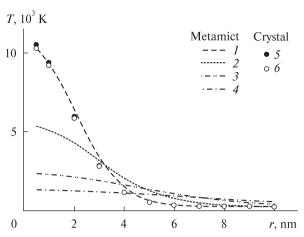
Распределение температуры в окрестности трека ядра отдачи. В образцах метамиктного циркона предполагается формирование аморфных фаз ZrO₂ и SiO₂, фазы кварца [3, 6, 7]. Предположительно, нанофазы составляющих оксидов могут формироваться при высоких значениях локальной температуры, возникающих во время прохождения ядер отдачи. Распределение температуры твердого тела в окрестности трека частицы имеет следующий вид [2]:

$$T(r,t) = T_0 + \frac{Q}{4\pi C\rho} \cdot \frac{1}{K_T t} \cdot \exp\left(-\frac{r^2}{4K_T t}\right),$$

где T — температура на расстоянии r от оси трека через время t после прохождения частицы, T_0 — начальная температура твердого тела, Q — энергия, высвобождающаяся на единицу

ISSN 0204-3548. Mineral. Journ. (Ukraine). 2012. 34, No 3

длины трека, C — теплоемкость, ρ — плотность, $K_T = \kappa/C\rho$ — коэффициент температуропроводности, κ — коэффициент теплопроводности.


Чтобы установить, могло ли происходить образование нанофаз составляющих оксидов, было определено распределение температуры в окрестности трека ядра отдачи Th с энергией $E_0=78$ кэВ и плотностью энергии разрушения Q=3,7 кэВ/нм [7] в кристаллическом и метамиктном цирконе.

Значение Q соответствует длине трека, на которой наблюдается основное количество структурных нарушений: $l_0 \approx 21$ нм [7]. Полученное распределение значений T(r,t) в окрестности трека ядра отдачи в метамиктном цирконе с учетом теплоемкости [16] и теплопроводности [18] циркона при T=298 К приведены на рис. 7. В кристаллическом цирконе температура немного ниже (рис. 7, затемненные символы).

Обсуждение результатов. Исходя из полученных данных РФА и ЯМР, в структуре исследованных образцов присутствуют дефектная кристаллическая и аморфная фазы циркона при существенно различающемся их соотношении.

Следует отметить зональность обр. 1 при повышенном содержании U, Са и Fe, пониженном — Zr, Si, Hf, Pb и малой сумме оксидов в темных зонах и отсутствии замещений Са и Fe в светлых зонах при достаточно высоком содержании U в некоторых из них (табл. 1). Такое строение отражает и условия локального баланса при кристаллизации в геологическом окружении и дальнейшие изменения в постмагматических процессах в гидротермальных условиях структуры, значительно разрушенной вследствие авторадиации [6, 10, 17]. Вероятнее всего, темные зоны имеют структуру разной степени аморфности с заметным количеством воды, светлые зоны — дефектную кристаллическую с незначительным количеством Н-содержащих групп, микрофазы SiO₂ и ZrO₂ возможны во всех зонах.

Относительное количество кристаллической фазы в исходном обр. 1 по данным РФА можно оценить в 20-25%, предполагая, что в ходе отжига при T=1000 °C (табл. 2; рис. 1, a) структура метамиктного циркона в основном рекристаллизуется [6, 7]. Приблизительно такое соотношение количества слабокристаллической и аморфной фаз в исходном обр. 1 и

Рис. 7. Распределение температуры T(r,t) в структуре метамиктного циркона в зависимости от расстояния r от оси трека через t=1 (1), 2 (2), 5 (3) и 10 (4) пс после прохождения ядра отдачи Th с $E_0=78$ кэВ. Приведено распределение T(r,t=1 пс) в структуре кристаллического циркона после прохождения ядра отдачи Th с $E_0=78$ (5) и 20 (6) кэВ

Fig. 7. The temperature distribution T(r, t) in metamict zircon structure as a function of distance r from a path axis of 78 keV Th-recoil in t = 1 (1), 2 (2), 5 (3) and 10 (4) pc. The distributions T(r, t = 1 pc) in crystalline zircon structure for 78 (5) and 20 (6) keV

по данным ЯМР ²⁹Si (рис. 2, 2). Данные РФА и ЯМР ²⁹Si соответствуют поглощенной дозе α -излучения $D \approx (7-8) \cdot 10^{18} \, \alpha$ -распад/г [7].

Фазовый состав метамиктной фазы исследованных образцов однозначно не определен. По данным РФА и ЯМР, метамиктная фаза в обр. 1 в основном состоит из аморфного циркона. По-видимому, присутствуют и полимеризованные SiO_4 -тетраэдры, на что указывает наличие фазы кварца.

Параметры сигнала ЯМР 29 Si (рис. 2) в исходном обр. 1 ($\delta = -90$, $\Delta v_{1/2} = 40$ м. д.) характерны для ядер 29 Si в аморфной фазе метамиктного циркона, ширина сигнала обусловлена наличием разных структурных конфигураций атомов Si в такой структуре [3, 5, 7—9]. В результате отжига при $T > 600\,^{\circ}$ С линия ЯМР 29 Si смещается в низкочастотную область (рис. 2), что указывает на конденсацию $\mathrm{SiO_4}$ -тетраэдров с разным количеством других атомов в ближайшем окружении ядер 29 Si [7] и трансформацию пространственных конфигураций кремния [12, 13].

Рост интенсивности узкой компоненты и снижение широкой в спектре ЯМР 29 Si после отжига при $T=700\,^{\circ}$ C (рис. 4) указывают на начало рекристаллизации циркона. Однако отжиг при $T=800\,^{\circ}$ C не приводит к заметному

изменению интенсивности компонент (рис. 4). По-видимому, изменения в кристаллической фазе циркона при такой температуре в основном способствуют повышению упорядоченности структуры.

После отжига при $T=700-800\,^{\circ}\mathrm{C}$ параметры широкой компоненты приближаются к таковым для конфигурации Q^3 в аморфном силикагеле (-103 и 17 м. д. соответственно [11]). Одинаковое соотношение значений интенсивности узкой линии и компоненты на -103 м. д. при такой температуре (рис. 2) и повышение интенсивности узкой линии (рис. 4) указывают на возрастание количества атомов Si в конфигурации Q^3 после отжига при $800\,^{\circ}\mathrm{C}$.

После отжига при T = 900 °C интенсивность широкой линии не меняется (рис. 4), однако интенсивность компоненты на ≈ -103 м. д. заметно снижается и появляется компонента из двух составляющих на ≈ -108 и -112 м. д. (рис. 2, 6). Эти сигналы, вероятнее всего, обусловлены микрофазами SiO2 кварцевого и кристобалитового типов [11], формирующимися в процессе отжига при T = 900 °C. Это соответствует предположению о том, что низкочастотный сдвиг сигнала ЯМР ²⁹Si указывает на формирование аморфных фаз SiO2 и ZrO₂ при метамиктизации [3]. Вместе с тем следует заметить, что сигнал ЯМР 29 Si на $\delta \approx$ ≈ -100 м. д. обр. 1 после отжига может быть обусловлен и структурным окружением ядер 29 Si в конфигурации Q^3 и, частично, искажением параметров сигнала вследствие кластеризации ионов нескольких координационных полиэдров [8].

Исходя из данных ЯМР 29 Si, при T=1000 °C рекристаллизация циркона завершается, в структуре остается незначительное количество разных типов кристаллических фаз SiO_2 , что соответствует литературным [7] и полученным данным РФА.

По данным РФА, фаза ZrO_2 в исходном обр. 1 не наблюдается. В результате прогрева при $T=900\,^{\circ}\mathrm{C}$ проявляется фаза $t\text{-}ZrO_2$, количество которой заметно снижается после прогрева при $T=1000\,^{\circ}\mathrm{C}$ (рис. 1, a). Это соответствует данным о повышении степени кристалличности ZrO_2 в интервале $T=600-900\,^{\circ}\mathrm{C}$ [7]. Фаза $t\text{-}ZrO_2$ формируется в процессе отжига метамиктного циркона при $T>600\,^{\circ}\mathrm{C}$, в метамиктном цирконе возможно наличие аморфного ZrO_2 [6, 7].

Фаза SiO₂ в исходном обр. 1 могла образоваться в ходе кристаллизации либо аморфизации структуры вследствие авторадиации [7], а также в результате последующих изменений разрушенной структуры в гидротермальных условиях [10]. На возможность образования составляющих оксидов вследствие авторадиации указывают полученные значения температуры в окрестности трека ядра отдачи в цирконе (рис. 7). Компьютерное моделирование аморфизации структуры циркона проводится при $T_a = 5~000~{\rm K}$ и $t = 2~{\rm nc}$ [4]. Было показано, что радиус зоны наибольших структурных разрушений для ядра отдачи Th с E_0 = = 20 кэВ в кристаллическом цирконе составляет $R_a \sim 2$ нм от оси трека $l_0 \approx 6$ нм [1]. Из полученных распределений T(r, t) следует, что при прохождении ядра отдачи *Th* на расстоянии $r \le 2$ нм от оси трека в течение $t \sim 2$ пс поддерживается температура $T \ge T_a$, в течение $t \sim 5$ пс — температура $T \geq T_{melt}$, где $T_{melt} =$ = 2000—2500 °C — температура плавления циркона [16]. На большом расстоянии температура быстро снижается (рис. 7). Учитывая температурные диапазоны структурных изменений в метамиктном цирконе при T > 800 °C [7], можно предположить, что формирование и трансформация фаз ZrO₂ и SiO₂ и рекристаллизация структуры циркона могут происходить при прохождении ядра отдачи в граничном слое зоны $r \sim 2$ нм в течение $t \sim 5$ пс. Это соответствует данным компьютерного моделирования о формировании слоя полимеризованного SiO, и рекристаллизации в основном в граничном слое аморфных областей [7].

По данным ЯМР 1 Н, в исходном обр. 1 присутствует заметное количество ОН-групп (1,2 мас. % $_2$ О) в разном структурном окружении (рис. 5). Значительная часть таких групп (0,35 мас. % $_2$ О) остается в структуре и после отжига при $_2$ 0 оС (рис. 6). Небольшое снижение интенсивности спектра после прогрева при $_2$ 1 200—300 °C (рис. 6) можно объяснить наличием в исходном обр. 1 адсорбированных молекул $_2$ О [3]. Соответствующая малоинтенсивная компонента (на $_2$ 3 $_3$ 4 $_3$ 5 $_4$ 8 ppm) не будет проявляться на фоне широкой линии.

Интенсивность широкой компоненты на δ_1 в спектре ЯМР 1 Н растет при повышении степени метамиктности циркона [3]. Эта компонента обусловлена протонами в основном Si-OH-групп в структурном окружении аморф-

ного циркона [3], относительно слабосвязанными в структуре и разрушающимися в результате прогрева при $T=500-600\,^{\circ}\mathrm{C}$ (рис. 5, 6). По-видимому, в подобном окружении находятся слабосвязанные Si-OH-группы в гелях SiO₂, модифицированных Ti и Zr [12] и Zr [13], которые обусловливают компоненты на ≈ 10 и 7,3 м. д. в спектрах ЯМР MAS^{-1} Н этих структур. Менее стабильные OH-группы, повидимому, находятся в темных зонах обр. 1 (с наиболее разрушенной структурой) и были захвачены в гидротермальных условиях в процессе диффузии воды в структуру [10, 17].

Узкая компонента на $\delta_2 \approx 2.5$ м. д. в спектре ЯМР MAS ¹H обр. 1 с высокой термической стабильностью (до $T \sim 1000$ °C, рис. 5) характерна для образцов циркона с разной степенью метамиктности [3]. Эта компонента обусловлена протонами ОН-групп, захваченных на дефектах кристаллической структуры при ее формировании [10, 13]. Расщепление этой линии на две компоненты после прогрева при T = 600 °C, вероятнее всего, обусловлено локализацией ОН-групп в кристаллической фазе обр. 1 в двух структурных позициях атомов О и возле вакансий кремния □_{Si} [14]. Такое распределение ОН-групп характерно для кристаллической структуры, сформировавшейся при рекристаллизации аморфного циркона в гидротермальных условиях в геологической среде [10].

Дегидроксилация обр. 1 начинается при $T = 500 \, {\rm ^oC}$, происходит в основном в температурном диапазоне рекристаллизации циркона $(T = 600-900 \, ^{\circ}\text{C})$, однако и после этого в структуре остается заметное количество ОНгрупп (~0,36 мас. %, рис. 6). Снижение интенсивности узкой линии в спектре ЯМР ¹Н после прогрева при T = 700 °C (рис. 5) больше, чем степень дегидроксилации (0,12 мас. %, рис. 6). Поэтому можно предположить, что при такой температуре, кроме дегидроксилации, происходит и перераспределение части ОН-групп из кристаллической фазы в аморфную. В таких процессах участвуют преимущественно ОН-группы, расположенные возле вакансий _{□Si} (более прочно связанные [14]), на что указывает заметное снижение интенсивности высокочастотной составляющей узкой компоненты (рис. 5, 5). Это соответствует и данным ЯМР ²⁹Si относительно повышения упорядоченности кристаллической фазы в обр. 1 при T = 700 °C.

Исходя из полученных данных, можно предположить наличие в исходном обр. 1 аморфного гидратированного кремнезема $Si_{1-r}O_{2-r}$ × × (OH),. Параметры сигнала ЯМР ²⁹Si после отжига обр. 1 при T = 700 - 800 °C (рис. 2) указывают на возрастание количества атомов Si в пространственной конфигурации Q^3 , подобной таковой в аморфном силикагеле SiO₂ × $\times nH_2O$. Предполагается, что SiO₄-тетраэдры в конфигурации Q^3 представляют собой структурные дефекты в тетраэдрическом каркасе: SiO₄-тетраэдр соединен с тремя тетраэдрами вместо четырех, при наличии терминальных SiOH-групп на поверхности или дефектах структуры [11, 12]. Поскольку ОН-группы, слабосвязанные в аморфном матриксе, удаляются при T = 500-600 °C (рис. 5, 6), повышение количества атомов Si в конфигурации Q^3 , повидимому, указывает на частичное перераспределение ОН-групп из кристаллической фазы в аморфную при T = 700-800 °С. После отжига при $T=1000\,^{\circ}\mathrm{C}$ компонента на $\delta ≈$ \approx −103 м. д. в спектре ЯМР ²⁹Si исчезает (рис. 2), хотя в структуре еще остаются ОНгруппы (рис. 5, 6).

Соответственно, изменение формы спектра MAS ЯМР 1 Н в процессе прогрева при T=700-800 $^{\circ}$ С частично может быть обусловлено и некоторым перераспределением ОНгрупп, оставшихся в структуре, в том числе внедрением части из них в структуру кристаллических доменов циркона, образующихся при рекристаллизации [19].

Таким образом, механизм метамиктизации исследованных образцов и рекристаллизацию обр. 1 при отжиге можно представить следующим образом. Вследствие относительно низкого содержания U структурные нарушения в обр. 2, обусловленные авторадиацией, в значительной мере рекомбинировали [7]. Соответственно, при поглощенной дозе $D \approx 2 \cdot 10^{18}$ α -распад/г структура обр. 2 кристаллическая (возможно, при наличии структурных дефектов) с незначительным количеством аморфной фазы.

В обр. 1 при поглощенной дозе $D \leq 8 \cdot 10^{18}$ α -распад/г присутствуют кристаллическая (с небольшим количеством ОН-групп, захваченных, предположительно, в структурных позициях атомов О и возле вакансий \Box_{Si}) и аморфная фазы циркона с заметным количеством ОН-групп, при небольшом количестве малоупорядоченной фазы кварца и аморфного

кремнезема и, предположительно, ZrO₂. Повидимому, структура обр. 1, существенно разрушенная вследствие авторадиации в зонах с высоким содержанием U, подвергалась дальнейшим изменениям в гидротермальных условиях, в частности замещениям атомами Са и Fe, внедрением OH-групп в аморфную структуру и частичной рекристаллизации. Это обусловило формирование зональной структуры обр. 1 [10, 17]. Структура светлых зон обр. 1, вероятнее всего, дефектная кристаллическая и сформировалась при частичной рекристаллизации метамиктного циркона в гидротермальных условиях [6, 10]. На частичную рекристаллизацию обр. 1 в геологических условиях указывает и заметное количество термически стабильных ОН-групп после отжига при 900 °C [10].

В результате отжига при $T \approx 500 - 900$ °C структура аморфной фазы обр. 1 существенно меняется. При T = 500-600 °C из структуры удаляется заметное количество слабосвязанных ОН-групп. При $T \approx 700-800$ °C возрастает количество аморфного кремнезема в конфигурации Q^3 , предположительно, вследствие частичного перераспределения ОН-групп в структуре. При T = 900 °C формируются фазы SiO2 кварцевого и кристобалитового типов и t-ZrO₂, количество которых существенно снижается при T = 1000 °C. Рекристаллизация аморфного циркона начинается при $T = 700 \, {\rm ^{o}C}$. При $T = 800 \, {\rm ^{o}C}$ повышается упорядоченность дефектной кристаллической фазы. Дальнейшая рекристаллизация циркона происходит при T = 900-1000 °C из метамиктного циркона, ZrO_2 и SiO_2 , содержание которых снижается.

Таким образом, полученные результаты показывают, что рекристаллизация метамиктной фазы циркона в исследованном обр. 1 происходит в температурном интервале T = 600— 1000 °С и сопровождается частичной дегидроксилацией аморфной фазы, снижением ее количества, появлением и исчезновением фазы t-ZrO₂ и кристаллических фаз SiO₂ разного типа. Это соответствует данным об изменениях в структуре метамиктного циркона при прогреве на воздухе. Изменения в форме ИКспектров начинаются при $T \sim 500$ °C, полностью спектры меняются при T = 900-1300 °C [15, 19]. По данным электронной микроскопии высокого разрешения, при T = 827 °C начинается эпитаксиальная рекристаллизация

гранул кристаллического циркона на пространственно-связанных частицах (в аморфном матриксе), при $T=927\,^{\circ}\mathrm{C}$ кристаллические домены продолжают расти, наноразмерные зерна $t\text{-}\mathrm{ZrO}_2$ формируются в еще аморфной области, при $T=1127\,^{\circ}\mathrm{C}$ образец состоит из монокристаллов циркона, аморфных доменов и ZrO_2 не остается [7].

Следует отметить, что низкое содержание ОН-групп в исследованном обр. 1 (~1 мас. %) не могло существенно влиять на процессы метамиктизации. Вероятнее всего, такое количество ОН-групп отражает активность воды в гранитной магме или в постмагматических процессах в гидротермальных условиях. Тем не менее, полученные результаты показывают, что количество ОН-групп в метамиктной фазе циркона из гранитов УЩ взаимосвязано с изменениями в структуре и наряду с содержанием Са и Fe может быть отнесено к одному из основных показателей таких изменений.

Выводы. 1. Показано, что в структуре метамиктного циркона (поглощенная доза $D \approx 8 \cdot 10^{18} \, \alpha$ -распад/г) присутствуют кристаллическая (с небольшим количеством захваченных ОН-групп) и аморфная фазы, последняя содержит, кроме циркона, небольшое количество сильно дефектной фазы кварца и аморфного гидратированного кремнезема ($\mathrm{Si}_{1-x}\mathrm{O}_{2-x}\times\times (\mathrm{OH})_x$) и, предположительно, аморфного ZrO_2 , который трансформируется при отжиге в t- ZrO_2 . Структура циркона с низким содержанием U (доза $D \approx 2 \cdot 10^{18} \, \alpha$ -распад/г) в основном кристаллическая, при небольшом количестве аморфной фазы циркона.

- 2. Установлено, что в структуре метамиктного циркона присутствует заметное количество ОН-групп (1,2 мас. % H_2O). Это в основном Si-OH-группы в гидратированном аморфном кремнеземе, небольшая часть захваченные на дефектах в кристаллической структуре. Содержание ОН-групп в кристаллическом цирконе низкое (0,1 мас. % H_2O). Предполагается, что количество ОН-групп в метамиктной фазе циркона отражает активность воды в магматической и постмагматической истории минерала.
- 3. Вычисленные распределения локальной температуры в метамиктном и кристаллическом цирконе, обусловленные радиоактивным распадом U, показали, что на расстоянии до 2 нм от оси трека ядра отдачи температура превышает температуру плавления циркона в

течение $t \sim 5$ пс. Вследствие быстрого спада температуры (по сравнению с остальной структурой) в граничном слое этой зоны могут образовываться фазы SiO_2 и ZrO_2 . Эти результаты согласуются с экспериментально обнаруженными различными формами оксидов кремния в метамиктном цирконе.

4. Установлено, что структура метамиктного циркона рекристаллизуется на $\approx 90\%$ в температурном интервале $T=600-1000\,^{\circ}\mathrm{C}$ в течение 3 ч и сопровождается частичной дегидроксилацией аморфной фазы, уменьшением ее количества, появлением и исчезновением фазы $t\text{-}\mathrm{ZrO}_2$ и, предположительно, частичным перераспределением ОН-групп в структуре.

ЛИТЕРАТУРА

- 1. *Гречанівський О.Є*. Комп'ютерне моделювання каскадів зміщених атомів в структурі циркону // Геохімія та рудоутворення. 2009. № 27. С. 71—73.
- 2. *Липова И.М.* Природа метамиктных цирконов. М.: Атомиздат, 1972. 158 с.
- 3. Пономаренко А.Н., Брик А.Б., Гречановский А.Е. и ∂р. Физические модели, методы исследования и свойства метамиктных цирконов // Мінерал. журн. 2009. 31, № 2. С. 20—38.
- 4. Ashbrook S.E., Farnan I. Solid-state ¹⁷O nuclear magnetic resonance spectroscopy without isotopic enrichment: direct detection of bridging oxygen in radiation damaged zircon // Solid State Nucl. Magn. Reson. 2004. 26, No 2. P. 105—112.
- 5. *Balan E., Mauri F., Pickard C.J. et al.* The aperiodic states of zircon: an ab initio molecular dynamics study // Amer. Miner. 2003. **88**, No 11—12. P. 1769—1777.
- Ellsworth S., Navrotsky A., Ewing R.C. Energetics of radiation damage in natural zircon (ZrSiO₄) // Phys. and Chem. Minerals. — 1994. — 21, No 2. — P. 140— 149.
- 7. Ewing R.C., Meldrum A., Wang L.-M. et al. Radiation Effects in Zircon // Rev. Miner. Geochem. 2003. 53, No 1. P. 387—425.
- 8. *Farnan I.* ²⁹Si NMR characterisation of the crystalline-amorphous transition in ZrSiO₄ // Phase Transitions. 1999. **69**, Is. 1. P. 47—60.
- Farnan I., Balan E., Pickard C.J., Mauri F. The effect of radiation damage on local structure in the crystalline fraction of ZrSiO₄: Investigating the ²⁹Si NMR response to pressure in zircon and reidite // Amer. Miner. 2003. 88, No 11–12. P. 1663–1667.
- Geisler T., Pidgeon R.T., Kurtz R. et al. Experimental hydrothermal alteration of partially metamict zircon // Ibid. — 2003. — 88, No 10. — P. 1496—1513.
- Graetch H., Gies H., Topalovic J. NMR, XRD and IR study on microcrystalline opals // Phys. and Chem. Minerals. 1997. 24, No 2. P. 131—138.

- 12. Gunawidjaja P.N., Holland M.A., Mountjoy G. et al. The effects of different heat treatment and atmospheres on the NMR signal and structure of TiO₂—ZrO₂—SiO₂ sol-gel materials // Solid State Nucl. Magn. Reson. 2003. 23. P. 88—106.
- Lapina O.B., Khabibulin D.F., Terskikh V.V. Multinuclear NMR study of silica fiberglass modified with zirconia // Ibid. 2011. 39, No 3—4. P. 47—57.
- Nasdala L., Beran A., Libowitzky E., Wolf D. The Incorporation of Hydroxyl Groups and Molecular Water in Natural Zircon (ZrSiO₄) // AJS. 2001. 301, No 10. P. 831—857.
- 15. *Nasdala L., Zhang M., Kempe U. et al.* Spectroscopic methods applied to zircon // Rev. Miner. Geochem. 2003. **53**, No 1. P. 427—467.
- O'Neill H.St.C. Free energy of formation of zircon and hafnon // Amer. Miner. 2006. 91, No 7. P. 1134—1141.
- 17. Perez-Sob C., Villasec C., del Tanago J. G., Nasdala L. The composition of zircon in the peraluminous hercynian granites of the Spanish central system batholith // Can. Miner. 2007. 45. P. 509—527.
- Shi Y., Huang X., Yan D. Mechanical Properties and Toughening Behavior of Particulate-Reinforced Zircon Matrix Composites // J. Mater. Sci. Lett. — 1999. — 18, No 3. — P. 213—217.
- Zhang M., Salje E.K.H., Ewing R.C. OH species, U ions, and CO/CO₂ in thermally annealed metamict zircon (ZrSiO₄) // Amer. Miner. 2010. 95, No 11—12. P. 1717—1724.

Поступила 04.07.2012

О.А. Калініченко, О.Б. Брик, Л.М. Степанюк, А.М. Калініченко

ОСОБЛИВОСТІ СТРУКТУРИ МЕТАМІКТНОГО ЦИРКОНУ ЗА ДАНИМИ РФА І ЯМР

3 використанням методів рентгенофазового аналізу і ядерного магнітного резонансу досліджено форми входження протонів та кремнію і особливості структури метаміктного (з високим вмістом U) та кристалічного циркону із гранітів Українського щита. Показано, що в структурі метаміктного зразка (поглинута доза $D \approx 8 \cdot 10^{18} \, \alpha$ -розпад/г, III стадія метаміктизації) присутні кристалічна і аморфна фази циркону, остання містить, окрім того, невелику кількість дефектної фази кварцу, аморфного гідратованого кремнезему $(Si_{1-x}O_{2-x}(OH)_x)$ і, за припущенням, аморфного ZrO_2 , який внаслідок відпалу трансформується в t-ZrO₂. Структура циркону з низьким вмістом U (поглинута доза $D \approx 2 \cdot 10^{18} \,\alpha$ -розпад/г, І стадія метаміктизації) здебільшого кристалічна, за невеликої кількості аморфної фази циркону. У метаміктному цирконі присутні ОН-групи (1,2 мас. % H₂O), переважно Si-OH-групи в гідратованому аморфному кремнеземі. В цирконі І стадії метаміктизації таких груп на порядок менше (0,1 мас. % Н₂О). Припускається, що кількість ОНгруп в метаміктній фазі циркону відображає активність води в магматичній і постмагматичній історії мінералу. Показано, що в метаміктному і кристалічному цирконі в граничному шарі зони на відстані до 2 нм від осі трека ядра віддачі можуть формуватися фази SiO_2 і ZrO_2 внаслідок швидшого зниження температури, ніж у решті структури. Встановлено, що структура метаміктного циркону рекристалізується на $\approx 90~\%$ у температурному інтервалі T=600-1000~% протягом 3 год і супроводжується частковим перерозподілом ОН-груп в структурі, частковою дегідроксилацією аморфної фази, зниженням її кількості, формуванням і зникненням фази t- ZrO_2 .

E.A. Kalinichenko, A.B. Brik, L.M. Stepanyuk, A.M. Kalinichenko

STRUCTURE PECULIARITIES OF METAMICT ZIRCON BY X-RAY DIFFRACTION AND NMR DATA

Proton and silica incorporation forms and structure features of metamict (with high U content) and crystalline zircons from the granites of the Ukrainian Shield were investigated by X-ray diffraction and nuclear magnetic resonance methods. It is shown that the structure of the metamict sample (the dose $D \approx 8 \cdot 10^{18} \,\alpha$ -decay/g, the third

metamictization stage) includes crystalline and amorphous zircon phases. The latter, in addition, contains small amounts of low-ordered quartz phase, amorphous hydrated silica $(Si_{1-x}O_{2-x}(OH)_x)$ and, supposedly, amorphous ZrO_2 transforming into t-ZrO₂ at annealing. The zircon structure with low U content (the absorbed dose $D \approx 2 \cdot 10^{18} \, \text{a-de-}$ cay/g, the first metamictization stage) is mainly crystalline. with low amount of amorphous zircon phase. The metamict zircon contains the noticeable amount of OH-groups (1.2 mas. % H₂O), mainly, Si-OH-groups in amorphous hydrated silica. The amount of hydroxyl groups in zircon of the first metamictization stage is by an order lower (0.1 mas. % H₂O). It is supposed, that the amount of OHgroups in metamict zircon phase is demonstrated water activity in the magmatic and postmagmatic history of the mineral. It is shown that the phases of SiO₂ and ZrO₂ can be formed in metamict and crystalline zircon in the boundary layer at the distance of 2 nm from a track axis of a Th-recoil due to the fast temperature decrease relative to the rest of the structure. It is established that the structure of metamict zircon is recrystallized by $\approx 90 \%$ in the temperature range of T = 600-1000 °C during 3 h and is accompanied by partial redistribution of OH-groups in the structure, partial dehydroxylation and decrease of amount of the amorphous phase, by formation and disappearance of the t-ZrO2 phase.