УДК 552.4:549.6+549.5(477)

# ОСОБЛИВОСТІ СКЛАДУ ПОРОДОУТВОРЮВАЛЬНИХ МІНЕРАЛІВ ВИСОКОТИТАНИСТИХ МЕТАБАЗИТІВ ЧЕМЕРПІЛЬСКОЇ СТРУКТУРИ (СЕРЕДНЄ ПОБУЖЖЯ)

### В. Гаценко

Інститут геохімії, мінералогії та рудоутворення ім. М. П. Семененка НАН України, просп. акад. Палладіна, 34, 03142 Київ, Україна E-mail: igmr@igmof.gov.ua

Викладено результати дослідження породоутворювальних мінералів високотитанистих метабазитів, які виявлено в Чемерпільській структурі Середнього Побужжя. Ці породи є унікальними як для Середнього Побужжя, так і для всього Українського щита, тому що всі відомі досі породи основного складу віком 2 млрд років і більше мають низький або помірний вміст титану. Високотитанисті метабазити та апобазитові метасоматити складаються з плагіоклазу (An<sub>0–100</sub>), залізистої та магнезіальної рогової обманки, біотиту (анітуфлогопіту), альмандину та майже стехіометричного ільменіту. Концентратором Ті є ільменіт. У біотиті з біотитових амфіболітів, де слюда наявна в породоутворювальній кількості, вміст ТіО<sub>2</sub> майже такий, як у породі. Внесок TiO<sub>2</sub> інших мінералів несуттєвий. У породоутворювальних плагіоклазу та залізистістю амфіболу.

*Ключові слова:* плагіоклаз, рогова обманка, біотит, альмандин, титан, амфіболіт, апобазитовий метасоматит, Чемерпільська структура, Середнє Побужжя.

Чемерпільська структура розміщена в Середньому Побужжі, безпосередньо в зоні Тальнівського розлому Синицівського блока Голованівської шовної зони. Цей блок є найбільше зануреним та інтенсивно тектонізованим осьовим блоком Голованівської шовної зони [8]. Найпоширенішими породами є гранітоїди тетіївського, побузького й уманського комплексів, серед яких у ядрах синформних структур наявні реліктові складчасті фрагменти метаморфічних порід бузької, росинсько-тікицької серій [4], та, можливо, блоки сильно діафторованих гранулітових метаморфітів дністерсько-бузької серії, а також синскладчасті базит-гіпербазитові тіла капітанівсько-деренюхінського комплексу. По породах архейського фундаменту утворилися тектоніти, діафторити і метасоматити.

Розташування в зоні Тальнівського розлому зумовлює складність геологічної будови та досить інтенсивну метасоматичну переробку вихідних порід Чемерпільської структури. Детальний опис геологічної будови Чемерпільської ділянки наведено в працях [7, 9]. Найпоширенішими породами тут є біотитові, гранат-біотитові, силіманіт-біотитові гнейси та кристалосланці, які часто більше чи менше зазнали метасоматичних змін; наявні також гранатовмісні та безгранатові біотит-двопольовошпатові граніти, плагіограніти, мігматити та плагіомігматити, олівінові кальцифіри та утворені під час їхньої гранітизації кліно-, двопіроксенові скарни і гранат-піроксенові скарноїди, окварцьовані біотит-, гранат-амфіболові, іноді силіманітовмісні метасоматично змінені кристалосланці, чис-

© Гаценко В., 2012

ленні гранат-амфіболові, силіманіт-гранат-біотитові, гранат-піроксен-амфіболові та інші метасоматити, а також локально поширені метабазити, серед яких ми виділяємо породи, вміст ТіО<sub>2</sub> у яких перевищує 2,5 % (2,62–4,85 %).

Високотитанисті метабазити є нетиповими для Середнього Побужжя. Хоча вік порід з підвищеним вмістом титану остаточно не визначено, проте він, принаймні, перевищує 2 млрд років (за накладеним метаморфогенним цирконом [3]). А в межах Українського щита (УЩ) високотитанисті основні породи в значних масштабах зафіксовані тільки в зв'язку зі значно молодшими (1,75–1,80 млрд років) анортозит-рапаківігранітними плутонами. Усі інші відомі породи основного складу віком 2 млрд років і більше в межах УЩ, окрім досліджуваних у межах Чемерпільської ділянки, мають звичайний толеїтовий склад переважно з низьким або помірним вмістом титану. Тому високотитанисті метабазити Чемерпільської структури стали об'єктом нашого детального вивчення [1–3 та ін.].

Досліджувані нами високотитанисті метабазити представлені дайкоподібними тілами лейкократових біотитових амфіболітів (виявлені глибокою свердловиною 10 у західній частині Чемерпільської ділянки), амфіболітів, кварцових та кварц-гранатових амфіболітів (розкриті картувальною свердловиною 35 у центральній частині ділянки). Гранатові амфіболіти зафіксовано в нижній частині розрізу свердловини 10 (проба 10-287,5), також свердловинами 13 (проба 13-115,7) та 48 (проби 48-116,1 та 48-127,0). Вони утворюють малопотужні ксенолітоподібні тіла. Також ми вивчали високотитанисті апобазитові метасоматити, представлені біотитовими кристалосланцями, що їх у вигляді малопотужних тіл виявлено свердловиною 48 серед високотитанистих гранатових амфіболітів.

Результати досліджень петрографічних особливостей та речовинного складу високотитанистих метабазитів Чемерпільської структури описано в працях [1, 2], результати вивчення акцесорного циркону – у статті [3].

Наша мета – вивчити особливості складу породоутворювальних мінералів зазначених порід та з'ясувати внесок кожного мінералу в загальну підвищену титанистість порід.

Хімічний склад мінералів ми вивчали з широким залученням електронної мікроскопії. Хімічний склад головних породоутворювальних мінералів визначали за допомогою растрового електронного мікроскопа JSM-6700F, обладнаного енергодисперсійною системою для мікроаналізу JED-2300 ("JEOL", Японія), аналітик Ю. Литвиненко. Хімічний склад ільменіту визначено на рентгенівському мікроаналізаторі JXA-5 ("JEOL", Японія), аналітик Л. Канунікова. Дослідження проводили в Інституті геохімії, мінералогії та рудоутворення імені М. П. Семененка НАН України (м. Київ).

Характерними мінералами високотитанистих метабазитів Чемерпільської структури є плагіоклаз, рогова обманка, біотит, гранат та ільменіт.

Польові шпати у високотитанистих метабазитах представлені головно **плагіоклазом**. У кварц-гранатових, гранатових амфіболітах, амфіболітах св. 35 та апобазитових метасоматитах у невеликій кількості (< 1 %) наявний калієвий польовий шпат. Плагіоклаз є одним з головних породоутворювальних мінералів високотитанистих метабазитів, у біотитових амфіболітах його вміст сягає 50 %, у кварц-гранатових амфіболітах – доходить до 40 %. Кожному різновиду порід високотитанистих метабазитів відповідає плагіоклаз певного складу (табл. 1). Його хімічний склад коливається від анортитового й бітовнітового в гранатових амфіболітах і біотитових кристалосланцях до олігоклазового й альбітового в поодиноких зерен – у біотитових амфіболітах та біотитових кристалосланцях. У кварц-гранатових амфіболітах хімічний склад плагіоклазу відповідає андезину.

#### Таблиця 1

| Порода Номер<br>взірця        |          | Плагіоклаз | An     | Ab    | Or   | п  |
|-------------------------------|----------|------------|--------|-------|------|----|
| p. v                          | 10-69,7  |            | 22,99  | 77,01 | 0    | 7  |
|                               | 10-82,3  | Олігоклаз  | 24,30  | 75,70 | 0    | 8  |
| ыотитовии                     | 10-156,8 |            | 20,20  | 79,80 | 0    | 13 |
| амфтоолтт                     |          | Альбіт     | 0      | 100   | 0    | 2  |
|                               | 10-216,3 | Олігоклаз  | 24,06  | 75,94 | 0    | 4  |
| Кварц-гранатовий              | 35-41,4  |            | 37,92  | 62,08 | 0    | 5  |
| амфіболіт                     | 35-45,0  |            | 37,57  | 62,43 | 0    | 6  |
| Кварцовий<br>амфіболіт        | 35-48,8  | Андезин    | 33,54  | 66,46 | 0    | 4  |
|                               | 10-287,5 | Анортит    | 94,95  | 3,80  | 1,24 | 9  |
| Гроноторий                    | 13-115,7 | Firepuir   | 76,81  | 22,03 | 1,17 | 10 |
| т ранатовии                   | 48-116,1 | DITOBHIT   | 88,28  | 11,72 | 0    | 1  |
| амфіобліт                     | 48-116,1 |            | 100    | 0     | 0    | 8  |
|                               | 48-127,0 | Анортит    | 100    | 0     | 0    | 7  |
| Біотитовий<br>кристалосланець | 48-124,1 |            | 100    | 0     | 0    | 10 |
|                               | 48-124,1 | Альбіт     | 0      | 100   | 0    | 2  |
|                               | 48-125,1 | Анортит    | 100,00 | 0     | 0    | 5  |
|                               | 48-125,1 | Бітовніт   | 86,17  | 13,83 | 0    | 2  |
|                               | 48-125,1 | Альбіт     | 0      | 100   | 0    | 2  |

Середній мінальний склад плагіоклазу з високотитанистих амфіболітів та апобазитових метасоматитів Чемерпільської структури, %

Будь-яких ознак зональності в плагіоклазах високотитанистих метабазитів не виявлено. Нема також антипертитів і мірмекітів.

У високотитанистих біотитових амфіболітах простежуються численні малопотужні (від 0,5 до 7,0 см) плагіоклазові прошарки, складені олігоклазом, як і самі біотитові амфіболіти.

Незалежно від складу для плагіоклазів метабазитів та апобазитових метасоматитів Чемерпільської структури характерні вузькі клиноподібні висячі полісинтетичні двійники, що певно є ознакою метаморфічного перетворення мінералу за умов амфіболітової фації метаморфізму.

Амфібол є головним породоутворювальним мінералом високотитанистих амфіболітів, біотитових, гранатових та кварц-гранатових амфіболітів. Майже всі породоутворювальні амфіболи з метабазитів Чемерпільської структури, згідно з [6], належать до групи кальцієвих амфіболів та в переважній більшості цих порід представлені роговою обманкою: натрієво-залізистою, магнезіальною, феримагнезіальною, натрієво-феримагнезіальною чи натро-феричермакітовою.

Біотитовим амфіболітам притаманний залізистий різновид амфіболу – залізиста рогова обманка (рис. 1). По розрізу св. 10 простежується ледь помітне збільшення її залізистості глибиною. Вміст TiO<sub>2</sub> у більшості зерен мінералу з біотитових амфіболітів (згідно з результатами мікрозондового дослідження та загального хімічного аналізу монофракцій) не перевищує 1,0-1,5 %, в окремих зернах фіксують значення до 1,8 %.

У високотитанистих амфіболітах св. 35 зафіксовано магнезіальну рогову обманку, яка на діаграмі займає положення майже на межі з залізистою, деякі зерна відповідають

залізистому, чермакітовому та ферочермакітовому різновидам. Більш магнезіальна рогова обманка характерна для кварц-гранатових амфіболітів. Ще більш магнезіальна вона в гранатових амфіболітах (проби 10-287,5 та 48-116,1).



Рис. 1. Положення амфіболів із високотитанистих метабазитів та апобазитових метасоматитів на діаграмі Si–[Mg/(Mg+Fe<sup>2+</sup>)]: 1 – біотитові амфіболіти; 2 – амфіболіти, кварцові та кварц-гранатові амфіболіти (св. 35); 3–6 –

I – оютитові амфіооліти, 2 – амфіооліти, кварцові та кварц-гранатові амфіооліти (св. 35); 3-6 – гранатові амфіболіти, проби: 3 – 10-287,5; 4 – 13-115,7; 5 – 48-116,1; 6 – 48-127,0.

Рогова обманка з проби 13-115,7 має досить мінливий склад. Більшість точкових замірів хімічного складу відповідають магнезіальному різновиду. Крім того, у досліджуваній пробі зафіксовано залізисту, чермакітову та ферочермакітову рогову обманку. Рогова обманка проби 48-127,0 має чермакітовий склад. Вміст ТіО<sub>2</sub> в роговій обманці з високотитанистих амфіболітів, кварцових, кварц-гранатових та гранатових амфіболітів нижче чутливості приладу (табл. 2).

Таблиця 2

| Порода                               | Howen    | TiO <sub>2</sub>   |        | Mai              |      |      |    |
|--------------------------------------|----------|--------------------|--------|------------------|------|------|----|
|                                      | взірця   | рогової<br>обманки | породи | $[(Mg+Fe^{2+})]$ | f    | ti   | п  |
|                                      | 10-69,7  | 0,97               | 3,06   | 0,47             | 0,72 | 4,67 | 8  |
| Біотитовий                           | 10-82,3  | 1,16               | 3,35   | 0,47             | 0,72 | 5,39 | 6  |
| амфіболіт                            | 10-156,8 | 0,45               | 4,08   | 0,47             | 0,73 | 2,08 | 7  |
|                                      | 10-216,3 | 1,62               | 4,35   | 0,38             | 0,75 | 7,58 | 7  |
| Кварц-грана-<br>товий амфібо-<br>літ | 35-41,4  | 0                  | 3,75   | 0,68             | 0,64 | 0    | 14 |
|                                      | 35-45,0  | 0                  | 3,90   | 0,67             | 0,68 | 0    | 8  |
| Кварцовий<br>амфіболіт               | 35-48,8  | 0                  | 3,35   | 0,52             | 0,74 | 0    | 9  |
| Гранатовий<br>амфіболіт              | 10-287,5 | 0                  | 3,86   | 0,80             | 0,59 | 0    | 7  |
|                                      | 13-115,7 | 0                  | 2,62   | 0,61             | 0,66 | 0    | 8  |
|                                      | 48-116,1 | 0                  | 4,04   | 0,87             | 0,54 | 0    | 3  |
|                                      | 48-127,0 | 0                  | 4,44   | 0,72             | 0,63 | 0    | 3  |

Особливості хімічного складу рогової обманки та порід, %

Примітки: f = FeO/(FeO+MgO);  $ti = 100TiO_2/FeO$ .

Загалом простежується кореляція між основністю плагіоклазу та магнезіальністю рогової обманки, що проілюстровано на рис. 2: найбільш кислому плагіоклазу – альбітолігоклазу (An<sub>0-29</sub>), який є характерним для біотитових амфіболітів, відповідає залізиста рогова обманка (f = 0,72-0,75), в амфіболітах св. 35 олігоклаз-андезин (An<sub>27-35</sub>) співіснує з феримагнезіальною на межі з залізистою роговою обманкою, чермакітом та ферочермакітом (f = 0,70-0,76), для кварц-гранатових амфіболітів характерний андезин (An<sub>35-40</sub>) та феримагнезіальна рогова обманка (f = 0,64-0,72), а в гранатових амфіболітах основному плагіоклазу бітовніт-анортитового складу (An<sub>67-100</sub>) відповідає магнезіальна та феримагнезіальна рогова обманка (у середньому f = 0,56-0,65).





1 – біотитові амфіболіти; 2 – амфіболіти, кварцові та кварц-гранатові амфіболіти (св. 35); 3 – гранатові амфіболіти. Кружечки – фігуративні точки плагіоклазу, квадрати – рогової обманки.

Середній вміст ТіО<sub>2</sub> в породі не залежить від вмісту цього оксиду в складі породоутворювальної рогової обманки. Це відображає табл. 2.

Біотит – головний породоутворювальний мінерал у біотитових кристалосланцях та один з головних породоутворювальних мінералів у біотитових амфіболітах. В інших високотитанистих метабазитах він є другорядним мінералом, у гранатових амфіболітах св. 10 (проба 10-287,5) біотиту нема взагалі. За хімічним складом біотит із біотитових амфіболітів відповідає аніту (за класифікацією [5]). У кварц-гранатових амфіболітах біотит є другорядним мінералом мінливого складу, слюда ж головно представлена анітом з невеликою домішкою флогопіту. У гранатових амфіболітах проби 13-115,7 трапляється тільки флогопіт, хоча досить залізистий.

Розподіл елементів групи Fe в біотиті точно повторює їхній розподіл у породі. З усіх породоутворювальних мінералів у біотиті визначено найвищий вміст TiO<sub>2</sub>. Винятком є біотит з гранатових амфіболітів проби 13-115,7, де вміст TiO<sub>2</sub> нижчий, ніж чутливість приладу. У біотиті апобазитових метасоматитів він нижчий, ніж у породі (рис. 3). Це свідчить про вторинну природу слюди. Для біотитових і кварц-гранатових амфіболітів співвідношення TiO<sub>2</sub> в середньому близьке до 1.



Рис. 3. Співвідношення вмісту ТіО<sub>2</sub> в біотиті й породі:

1 – біотитові амфіболіти; 2 – амфіболіти, кварцові та кварц-гранатові амфіболіти (св. 35); 3, 4 – гранатові амфіболіти, проби: 3 – 13-115,7, 4 – 48-116,1 та 48-127,0; 5 – біотитові кристалосланці.

Оскільки вміст біотиту в високотитанистих метабазитах різного складу не перевищує 15 % і вміст  $TiO_2$  в слюді не набагато вищий, ніж у породі (максимально на 0,5 %), то біотит не є концентратором  $TiO_2$  у високотитанистих метабазитах.

Гранат є породоутворювальним мінералом гранатових і кварц-гранатових амфіболітів. Мінерал наявний у породах у вигляді порфіробластів різного розміру. Найбільші зерна притаманні кварц-гранатовим амфіболітам. За мінальним складом гранат відповідає альмандину з внеском піропового міналу 10–15 %, гросулярового – 12–19 % (табл. 3). Частка спесартинового міналу становить до 5,3 %. Андрадитового міналу в гранаті з досліджуваних порід нема взагалі.

Найбільш магнезіальний гранат з умістом піропового міналу до 15 % простежено в гранатових амфіболітах проби 48-127,0. Ці амфіболіти за мінеральним парагенезисом, температурою і тиском перетворення, що обчислені за допомогою мінеральних геотермобарометрів, відповідає найбільш високобаричним умовам (8,5–12,1 кбар) [10–13].

Таблиця 3

| Порода                         | Номер<br>взірця | Піроп | Альмандин | Спесартин | Гросуляр | п  |
|--------------------------------|-----------------|-------|-----------|-----------|----------|----|
| Кварц-                         | 35-41,4         | 11,19 | 69,61     | 3,84      | 15,36    | 10 |
| гранатовии<br>амфіболіт        | 35-45,0         | 11,08 | 70,88     | 2,85      | 15,20    | 5  |
| Гранато-<br>вий амфі-<br>боліт | 10-287,5        | 12,49 | 69,82     | 0,00      | 17,69    | 4  |
|                                | 13-115,7        | 10,44 | 71,08     | 3,02      | 15,47    | 9  |
|                                | 48-116,1        | 11,96 | 63,79     | 5,30      | 18,94    | 6  |
|                                | 48-127,0        | 14,76 | 71,70     | 1,36      | 12,17    | 6  |

Середній мінальний склад альмандинового гранату, %

Найбільші значення гросулярового та спесартинового міналу притаманні гранату з гранатових амфіболітів проби 48-116,1 – до 19,0 та 5,3 %, відповідно. Ненабагато менший внесок гросулярового міналу в гранатових амфіболітах проби 10-287,5 (до 18 %), однак MnO тут нижче чутливості приладу. Вміст ТіO<sub>2</sub> в гранаті нижче чутливості приладу.

Ільменіт – єдиний Fe-Ti оксидно-рудний мінерал високотитанистих метабазитів та апобазитових метасоматитів Чемерпільської структури. Ільменіт з біотитових амфіболітів є більш ідіоморфним стосовно інших мінералів, тоді як у кварц-гранатових та гранатових амфіболітах він переважно розташований в інтерстиціях між більшими зернами силікатів. Мінерал гомогенний, у відбитому світлі іноді фіксують двійники. Ільменіт з апобазитових метасоматитів має ідіоморфну пластинчасту форму, по краях зерен простежується збільшення вмісту TiO<sub>2</sub>; ільменіт змінюється до рутилоподібного мінералу.

За хімічним складом ільменіт високотитанистих метабазитів та апобазитових метасоматитів майже відповідає стехіометричному (рис. 4), вміст гематитового міналу дуже незначний. У досить невеликій кількості фіксують  $V_2O_3$  – від 0,16 до 0,30 % (табл. 4).



Рис. 4. Середній мінальний склад ільменіту з метабазитів та апобазитових метасоматитів (1) і гранатових амфіболітів, проба 10-287,5 (2).

Середній мінальний склад ільменіту, %

Таблиця 4

| Порода               | Номер<br>взірця | FeTiO <sub>3</sub> | MgTiO <sub>3</sub> | MnTiO <sub>3</sub> | $V_2O_3$ | Fe <sub>2</sub> O <sub>3</sub> | п |
|----------------------|-----------------|--------------------|--------------------|--------------------|----------|--------------------------------|---|
| Г:                   | 10-69,7         | 96,32              | 0,11               | 3,26               | 0,29     | 0                              | 3 |
| ыотитовии            | 10-82,3         | 96,01              | 0,08               | 3,01               | 0,23     | 0,67                           | 3 |
| амфтоолтт            | 10-156,8        | 96,40              | 0,07               | 3,14               | 0,24     | 0,14                           | 2 |
| Кварц-гра-           | 35-41,4         | 98,32              | 0,40               | 1,02               | 0,24     | 0,03                           | 3 |
| натовии<br>амфіболіт | 35-45,0         | 98,31              | 0,29               | 1,13               | 0,28     | 0                              | 3 |
| Гранато-             | 10-287,5        | 95,67              | 2,41               | 0,74               | 0,25     | 0,88                           | 3 |
| вии амф1-<br>боліт   | 13-115,7        | 97,69              | 0,16               | 1,58               | 0,16     | 0,40                           | 4 |

Вміст МпО в ільменіті з високотитанистих метабазитів не перевищує 1,51 %: найбільший – у біотитових амфіболітах (1,41–1,51 %), у кварц-гранатових амфіболітах – 0,47–0,64, гранатових амфіболітах: 0,35 – проба 10-287,5 та 0,74 % – проба 13-115,7 (рис. 5).



1 – біотитові амфіболіти; 2 – амфіболіти, кварцові та кварц-гранатові амфіболіти (св. 35); 3–5 – гранатові амфіболіти, проби: 3 – 10-287,5, 4 – 13-115,7, 5 – 48-116,1 та 48-127,0; 6 – біотитові кристалосланці.

Тільки в ільменіті, виділеному з гранатового амфіболіту проби 10-287,5, простежено помітний вміст MgO (0,64 %), в ільменіті з інших проб вміст MgO не перевищує 0,11 %.

Отже, у високотитанистих метабазитах та апобазитових метасоматитах Чемерпільської структури породоутворювальні мінерали представлені плагіоклазом від альбіту в біотитових амфіболітах до анортиту в гранатових. Амфібол представлений роговою обманкою змінної залізистості, біотит – анітом та флогопітом. У гранатовмісних різновидах фіксують альмандин досить постійного складу, у якому є від 10 до 15 % піропового міналу. Концентратором титану є ільменіт, який має майже стехіометричний склад.

У біотитових амфіболітах, де слюда наявна в породоутворювальних кількостях, проте її не більше 15 %, вміст ТіО<sub>2</sub> у біотиті майже такий, як його вміст у породі. "Біотитовий" внесок ТіО<sub>2</sub> в породі – до 0,75 %, внесок інших мінералів несуттєвий.

У породоутворювальних плагіоклазі та роговій обманці простежується зворотна кореляція між основністю плагіоклазу та залізистістю амфіболу.

#### Список використаної літератури

- Гаценко В. О. Високотитанисті метабазити та апобазитові метасоматити Чемерпільської структури: петрографічні та хімічні особливості в порівнянні з метабазитами Середнього Побужжя / В. О. Гаценко // Геохімія та рудоутворення. – 2011. – Вип. 29. – С. 54–64.
- Гаценко В. О. Ільменіт-біотитові амфіболіти Чемерпільської структури Середнього Побужжя / В. О. Гаценко, Ю. О. Литвиненко // Мінерал. журн. – 2010. – Т. 32, № 4. – С. 86–99.

- Гаценко В. О. Петрогенетичні аспекти спектроскопічних особливостей циркону із амфіболітів Чемерпільської структури Середнього Побужжя / В. О. Гаценко, Т. М. Лупашко, К. О. Ільченко // Мінерал. журн. – 2011. – Т. 33, № 2. – С. 49–65.
- Державна геологічна карта України. Масштаб 1 : 200 000. Центральноукраїнська серія. Аркуш М-36-XXXI (Первомайськ) / [В. М. Клочков, Я. П. Білинська, Ю. М. Веклич та ін.]. – К. : Геоінформ, 2002. – 162 с.
- 5. Дир У. А. Породообразующие минералы. Т. 3. / У. А. Дир, Р. А. Хауи, Дж. Зусман. М. : Мир, 1966. 316 с.
- 6. Номенклатура амфиболов: доклад подкомитета по амфиболам Комиссии по новым минералам и названиям минералов Международной минералогической ассоциации (КНМНМ ММА) // Зап. Всерос. минерал. об-ва. 1997. № 6. С. 82–102.
- Самородна платина в породах Чемерпільської структури (Середнє Побужжя) / О. В. Павлюк, В. М. Квасниця, В. В. Кислюк, В. М. Павлюк // Мінерал. журн. – 2010. – Т. 32, № 1. – С. 50–56.
- 8. Ярощук М. А. Железорудные формации Белоцерковско-Одесской металлогенической зоны / М. А. Ярощук. Киев : Наук. думка, 1983. 224 с.
- 9. Ярощук М. А. Савранское золоторудное поле Голованевской гнейсо-гранулитовой зоны Украинского щита / М. А. Ярощук, А. В. Вайло. Киев, 1998. 65 с.
- Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons / L. S. Hollister, G. C. Grissom, E. K. Peters [et al.] // Amer. Mineralogist. – 1987. – Vol. 72. – P. 231–239.
- 11. Hammarstrom J. M. Aluminium in hornblende: An empirical igneous geobarometer / J. M. Hammarstrom & E. Zen // Amer. Mineralogist. 1986. Vol. 71. P. 1297–1313.
- Johnson M. C. Experimental calibration of an aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks / M. C. Johnson, M. J. Rutherford // Geol. – 1989. – Vol. 17. – P. 837–841.
- Schmidt M. W. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer / M. W. Schmidt // Contrib. Mineral. Petrol. – 1992. – Vol. 110. – P. 304–310.

Стаття: надійшла до редакції 07.05.2012 прийнята до друку 29.05.2012

# COMPOSITION SINGULARITIES OF HIGH-TITANIFEROUS METABASITES ROCK-FORMING MINERALS OF CHEMERPIL STRUCTURE (MIDDLE BUH REGION)

## V. Gatsenko

Institute of Geochemistry, Mineralogy and Ore Formation of NASU, 34, Acad. Palladin Av., 03142 Kyiv, Ukraine E-mail: igmr@igmof.gov.ua

The results of high-Ti metabasites rock-forming minerals research are presented (Chemerpil structure, Middle Buh area). They are unique for both the region and Ukrainian Shield. All noted

basites rocks in age of 2 Ga and older are characterized by low or medium content of Ti. High-Ti metabasites and apobasitous metasomatites consist of plagioclase, ferro- and magnesiohornblende, annite-phlogopite, almandine and ilmenite which is almost stoichiometric. Ilmenite is the concentrator for Ti. Mica is presented in rock-forming quantity and TiO<sub>2</sub> content in biotite almost amounts to one in the rock. Inverse correlation between plagioclase basicity and ferrous of amphibole is observed in rock-forming plagioclase and hornblende.

*Key words:* plagioclase, hornblende, biotite, almandine, titan, amphibolite, apobasitous metasomatite, Chemerpil structure, Middle Buh area.

# ОСОБЕННОСТИ СОСТАВА ПОРОДООБРАЗУЮЩИХ МИНЕРАЛОВ ВЫСОКОТИТАНИСТЫХ МЕТАБАЗИТОВ ЧЕМЕРПОЛЬСКОЙ СТРУКТУРЫ (СРЕДНЕЕ ПОБУЖЬЕ)

#### В. Гаценко

#### Институт геохимии, минералогии и рудообразования им. Н. П. Семененко НАНУ, просп. акад. Палладина, 34, 03142 Киев, Украина E-mail: igmr@igmof.gov.ua

Приведено результаты исследования породообразующих минералов высокотитанистых метабазитов Чемерпольской структуры Среднего Побужья. Эти породы уникальны и для региона, и для всего щита, потому что известные ныне породы основного состава возрастом 2 млрд лет и более имеют низкое или умеренное содержание Ті. Высокотитанистые метабазиты и апобазитовые метасоматиты состоят из плагиоклаза, железистой и магнезиальной роговой обманки, аннита-флогопита, альмандина и почти стехиометрического ильменита. Концентратором Ті является ильменит. В биотите биотитовых амфиболитов, где слюда есть в породообразующих количествах, содержание TiO<sub>2</sub> почти равняется его содержанию в породе. В плагиоклаза и железистостью амфибола.

*Ключевые слова:* плагиоклаз, роговая обманка, биотит, альмандин, титан, амфиболит, апобазитовый метасоматит, Чемерпольская структура, Среднее Побужье.