- 5. Вернигора В. Д. Мойка шлама абразивной обработки металлов – один из этапов технологического процесса его утилизации / В. Д. Вернигора, Л. Н. Божуха // Современные ресурсосберегающие технологии: Сборник докладов. Ш-я Международная научнопрактическая конференция «Современные ресурсосберегающие технологии, проблемы и перспективы» 9 ноября – 13 ноября 2015 г. – Одесса: ОНУ имени И. И. Мечникова, 2015 г. – С. 49–54.
- 6. Спиридонов А. А. Планирование эксперимента при исследовании технологических процессов / А. А. Спиридонов // М.: Машиностроение, 1981. 184 с.
- Блохин В. Г. Современный эксперимент: подготовка, проведение, анализ результатов / В. Г. Блохин, О. П. Глудкин, А. И. Гуров, М. Л. Ханин; Под ред. О. П. Глудкина// – М.: Радио и связь, 1997. – 232 с.

пост. 29.04.2016

А.Ф. РЫЖОВ, к.т.н., доцент **Н.С. МИЛАШЕНКО,** аспирантка Днепродзержинский государственный технический университет, г. Каменское

Математическая модель процесса обжига слоя кускового известняка

Представлена аналитическая методика расчета процесса обжига куска известняка, основанная на решении задачи нестационарной теплопроводности с движущейся границей фазового превращения.

Введение

Известь потребляется различными отраслями промышленности, и поэтому к её качеству предъявляются разнообразные требования. Получение продукта с заданными свойствами требует разработки соответствующих технологических режимов и конструкции печей.

Для выбора рационального режима тепловой обработки слоя кускового известняка, продуваемого газами, в обжиговых печах желательно иметь обобщенные аналитические выражения, определяющие температурное поле и динамику разложения известняка в зависимости от условий внешнего теплообмена.

Из анализа экспериментальных данных [1] следует, что процесс обжига куска известняка в обжиговых печах можно условно разбить на два этапа:

- в первом этапе происходит нагрев куска известняка от начальной температуры до температуры поверхности, соответствующей началу диссоциации ($t_{\text{пов}} = t_{\text{p}}$);

 во втором этапе, проходящем при возрастающей скорости диссоциации, происходит полное разложение известняка с образованием извести.

Для анализа теплового состояния материала в первом этапе нагрева может быть использовано аналитическое решение задачи нестационарной теплопроводности при граничных условиях третьего рода [2] с коэффициентом теплообмена, отнесенным к единице поверхности куска в слое.

Исследованию процесса нагрева куска известняка во втором этапе нагрева, проходящим с углублением поверхности диссоциации вглубь материала, посвящена настоящая работа.

Постановка задачи

Рассматривается процесс симметричного нагрева куска известняка плоской формы толщиной 2*R* при постоянной температуре греющей среды. Теплопередача от горячего теплоносителя к поверхности нагреваемого куска известняка осуществляется по закону Ньютона при постоянном значении суммарного коэффициента теплообмена. В начальный момент времени распределение температуры по толщине пластины параболическое

$$t(x,0) = t_0 + \Delta t_0 \left(\frac{x}{R}\right)^2, \qquad (1)$$

где t_0 — температура на оси пластины; Δt_0 — перепад температур по толщине пластины; x — координата.

Температура нагреваемой поверхности в начальный момент равна температуре диссоциации известняка

$$t(R,0) = t_{\rm p} \,. \tag{2}$$

При математической постановке задачи приняты следующие допущения:

- рассматривается две зоны по толщине плоского куска: зона известняка ($0 < x \le z$ (τ)) и зона образующейся извести ($z(\tau) < x \le R$), (рис. 1);

Рис. 1. К математической постановке задачи

- на границе раздела зон происходит диссоциация известняка при постоянной температуре $t_{\rm p}$;

- теплофизические свойства *CaCO*₃ и *CaO* в обеих зонах постоянны.

С учетом принятых допущений система дифференциальных уравнений теплопереноса в обобщенных переменных имеет следующий вид:

- дифференциальные уравнения теплопроводности для двух рассматриваемых зон

$$\frac{\partial V_1}{\partial \text{Fo}} = f_a \frac{\partial^2 V_1}{\partial X_2}, \ 0 \le X \le Z(\text{Fo});$$
(3)

$$\frac{\partial V_2}{\partial Fo} = \frac{\partial^2 V_2}{\partial X^2}, \ Z(Fo) < X \le 1;$$
(4)

- граничные условия

$$\left(\frac{\partial V_2}{\partial X}\right)_{X=1} = \operatorname{Bi}[V_c - V_2(1, \operatorname{Fo})];$$
(5)

$$V_1(Z, Fo) = V_2(Z, Fo) = 1;$$
(6)
$$(\partial V_1) \qquad d$$

$$\left(\frac{\partial V_2}{\partial X}\right)_{X=Z(\text{Fo})} - f_{\lambda} \left(\frac{\partial V_1}{\partial X}\right)_{X=Z(\text{Fo})} = \text{Ko}\frac{a}{d\text{Fo}}Z(\text{Fo}); \quad (7)$$

- начальные условия

(av

$$V_1(X,0) = V_0 + \Delta V_0 X^2; V_2(X,0) = 1; Z(0) = 1,$$
 (8)

где
$$V(X, \operatorname{Fo}) = \frac{t(x, \tau)}{t_{p}};$$
 $X = \frac{x}{R};$ $\operatorname{Fo} = \frac{a_{2}\tau}{R^{2}};$ $\operatorname{Bi} = \frac{\alpha R}{\lambda_{2}};$
 $V_{c} = \frac{t_{c}}{t};$ $V_{0} = \frac{t_{0}}{t};$ $\Delta V_{0} = \frac{\Delta t_{0}}{t};$ $Z(\operatorname{Fo}) = \frac{z(\tau)}{R};$

 $\operatorname{Ko} = \frac{q_{\mathrm{p}}}{C_2 \cdot t_p}; \quad f_{\lambda} = \frac{\lambda_1}{\lambda_2}; \quad f_a = \frac{a_1}{a_2}.$

Сформулированная таким образом задача теплопроводности является нелинейной ввиду разрыва на границе фазового превращения. Это обстоятельство делает невозможным применение классических методов решения линейных задач теплопроводности и заставляет обращаться к специальным способам решения нелинейных задач. В качестве подобного способа здесь предлагается метод редукции и параметрического возмущения (РПВ) [3].

Решение задачи

В соответствии с процедурой метода РПВ на первом этапе исходная система уравнений подвергается редукции, что означает её превращение в систему обыкновенных нелинейных дифференциальных уравнений.

С этой целью будем искать общее решение дифференциальных уравнений в виде следующих рядов:

$$V_1(X, \operatorname{Fo}) = \sum_{n=0}^{\infty} \frac{X^{2n}}{(2n)! f_a^n} \cdot \frac{d^n}{d\operatorname{Fo}^n} \psi(\operatorname{Fo}), \tag{9}$$

$$V_{2}(X, Fo) = \sum_{n=0}^{\infty} \frac{(1-X)^{2n}}{(2n)!} \cdot \frac{d^{n}}{dFo^{n}} \varphi(Fo) + \sum_{n=0}^{\infty} \frac{(1-X)^{2n+1}}{(2n+1)!} \frac{d^{n}}{dFo^{n}} \delta(Fo),$$
(10)

где ψ (Fo) — температурная функция центра пластины; φ (Fo) — температурная функция поверхности пластины; ны; δ (Fo) — тепловой поток, проходящий через поверхность пластины. Решение (9), (10) удовлетворяют начальным условиям задачи, когда $\psi(0) = V_0; \quad \frac{d}{dFo}\psi(0) = 2f_a\Delta V_0;$

$$\frac{d^n}{d\mathrm{Fo}^n} \psi(0)_{n\geq 2} = 0; \quad \varphi(0) = 1;$$
$$\frac{d^n}{d\mathrm{Fo}^n} \varphi(0) = 0; \quad \frac{d^n}{d\mathrm{Fo}^n} \delta(0) = 0; \quad (11)$$

Удовлетворяя (9), (10) граничным условиям (5)—(7), получим следующую систему нелинейных уравнений

$$\delta(Fo) = -\mathrm{Bi}[V_c - \varphi(Fo)], \qquad (12)$$

$$\sum_{n=0}^{\infty} \frac{(1-Z)^{2n}}{(2n)!} \cdot \frac{d^{n}}{dFo^{n}} \varphi(Fo) + \\ + \sum_{n=0}^{\infty} \frac{(1-Z)^{2n+1}}{(2n+1)!} \frac{d^{n}}{dFo^{n}} \delta(Fo) = 1;$$
(13)

$$\sum_{n=0}^{\infty} \frac{Z^{2n+1}}{(2n)! f_a^n} \frac{d^n}{dFo^n} \psi(Fo) = 1;$$
(14)

$$\begin{cases} \sum_{n=1}^{\infty} \frac{(1-Z)^{2n-1}}{(2n-1)!} \cdot \frac{d^n}{d\mathrm{Fo}^n} \varphi(\mathrm{Fo}) + \sum_{n=0}^{\infty} \frac{(1-Z)^{2n}}{(2n)!} \frac{d^n}{d\mathrm{Fo}^n} \delta(\mathrm{Fo}) \end{cases} - \\ - f_{\lambda} \sum_{n=1}^{\infty} \frac{Z^{2n-1}}{(2n-1)! f_a^n} \frac{d^n}{d\mathrm{Fo}^n} \psi(\mathrm{Fo}) = \mathrm{Ko} \frac{d}{d\mathrm{Fo}} Z(\mathrm{Fo}), \quad (15) \end{cases}$$

На этом заканчивается процесс редукции исходной задачи теплопроводности. На втором этапе необходимо определить функции $\varphi(Fo)$, $\psi(Fo)$, $\delta(Fo)$ и Z(Fo), что даст полную информацию о распределении температуры по толщине пластины и о законе движения границы фазового превращения. С этой целью привлекается метод параметрического возмущения, согласно процедуре которого искомые функции представим в виде следующих разложений в ряд по степеням условного (малого) параметра ξ :

$$\psi(Fo) = \psi_{0}(Fo) + \xi\psi_{1}(Fo) + \xi^{2}\psi_{2}(Fo) +;$$

$$\phi(Fo) = \phi_{0}(Fo) + \xi\phi_{1}(Fo) + \xi^{2}\phi_{2}(Fo) +;$$

$$\delta(Fo) = \delta_{0}(Fo) + \xi\delta_{1}(Fo) + \xi^{2}\delta_{2}(Fo) +;$$

$$Z(Fo) = Z_{0}(Fo) + \xiZ_{1}(Fo) + \xi^{2}Z_{2}(Fo) +;$$

$$\ell(Fo) = 1 - Z(Fo) = \ell_{0}(Fo) + \xi\ell_{1}(Fo) + \xi^{2}\ell_{2}(Fo) +;$$

(16)

где $\psi_1(Fo)$, $\psi_2(Fo)$; $\varphi_1(Fo)$, $\varphi_2(Fo)$ — последовательности добавок к порождающим решениям $\psi_0(Fo)$, $\varphi_0(Fo)$ функций $\psi(Fo)$ и $\varphi(Fo)$.

Подставляя в систему уравнений (12)—(15) разложения (16) и сравнивая коэффициенты при одинаковых степенях параметра ξ , находим последовательность линейных дифференциальных уравнений, определяющих функций ψ (Fo), φ (Fo), δ (Fo) и Z(Fo).

Нулевое приближение (порождающая система дифференциальных уравнений)

$$\delta_0(\mathrm{Fo}) = -\mathrm{Bi}[V_c - \varphi_0(\mathrm{Fo})]; \qquad (17)$$

$$\sum_{n=0}^{\infty} \frac{1}{(2n)!} \cdot \frac{d^n}{dFo^n} \varphi_0(Fo) + \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} \frac{d^n}{dFo^n} \delta_0(Fo) = 1; (18)$$

$$\sum_{n=0}^{\infty} \frac{1}{(2n)! f_a^n} \frac{d^n}{d \mathrm{Fo}^n} \psi_0(\mathrm{Fo}) = 1;$$
(19)

$$\delta_{0}(\mathrm{Fo}) - f_{\lambda} \sum_{n=1}^{\infty} \frac{1}{(2n-1)! f_{a}^{n}} \frac{d^{n}}{d\mathrm{Fo}^{n}} \psi_{0}(\mathrm{Fo}) =$$
$$= \mathrm{Ko} \frac{d}{d\mathrm{Fo}} Z_{0}(\mathrm{Fo}); \qquad (20)$$

с начальными условиями

$$\varphi_{0}(0) = 1; \quad \frac{d^{n}}{dFo^{n}} \varphi_{0}(0)_{n \ge 1} = 0; \quad \frac{d^{n}}{dFo^{n}} \delta_{0}(0) = 0;$$

$$\ell_{0}(0) = 0; \quad Z_{0}(0) = 1;$$

$$\psi_{0}(0) = V_{0}; \quad \frac{d}{dFo} \psi_{0}(0) = 2f_{a}\Delta V_{0};$$

$$\frac{d^{n}}{dFo^{n}} \psi_{0}(0)_{n \ge 2} = 0. \quad (21)$$

Первая добавка к функциям нулевого приближения

 δ_1

$$(Fo) = Bi\varphi_1(Fo); \qquad (22)$$

$$\sum_{n=0}^{\infty} \frac{1}{(2n)!} \cdot \frac{d^{n}}{dFo^{n}} \varphi_{1}(Fo) + \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} \frac{d^{n}}{dFo^{n}} \delta_{1}(Fo) - \\ -Z_{0}(Fo) \Biggl\{ \sum_{n=1}^{\infty} \frac{1}{(2n-1)!} \cdot \frac{d^{n}}{dFo^{n}} \varphi_{0}(Fo) + \\ + \sum_{n=0}^{\infty} \frac{1}{(2n)!} \frac{d^{n}}{dFo^{n}} \delta_{0}(Fo) \Biggr\} = 0 ; \qquad (23)$$
$$\sum_{n=0}^{\infty} \frac{1}{(2n)!} f_{a}^{n} \cdot \frac{d^{n}}{dFo^{n}} \psi_{1}(Fo) -$$

$$-\ell_0(\mathrm{Fo})\sum_{n=1}^{\infty} \frac{1}{(2n+1)!f_a^n} \frac{d^n}{d\mathrm{Fo}^n} \psi_0(\mathrm{Fo}) = 0; \qquad (24)$$

$$\delta_{1}(\mathrm{Fo}) - f_{\lambda} \sum_{n=1}^{\infty} \frac{1}{(2n-1)!} f_{a}^{n} \frac{d^{n}}{d\mathrm{Fo}^{n}} \psi_{1}(\mathrm{Fo}) =$$
$$= \mathrm{Ko} \frac{d}{d\mathrm{Fo}} \ell_{1}(\mathrm{Fo}); \qquad (25)$$

с начальными условиями

$$\frac{d^{n}}{dFo^{n}}\varphi_{1}(0) = 0; \quad \frac{d^{n}}{dFo^{n}}\psi_{1}(0) = 0;$$
$$\frac{d^{n}}{dFo^{n}}\delta_{1}(0) = 0; \quad \ell_{1}(0) = 0. \quad (26)$$

Аналогично образуются последующие добавки к порождающему решению.

Вследствие применения метода РПВ исходная нелинейная задача теплопроводности трансформируется в последовательность обыкновенных линейных дифференциальных уравнений, решение которых возможно с помощью известных методов математической физики.

Применяя к системе уравнений (17)—(21) метод интегральных преобразований Лапласа, получим искомые функции в нулевом приближении:

температурная функция поверхности пластины

$$\varphi_0$$
 (Fo) = 1 + (V_c - 1)· ϕ_2 (Fo); (27)

температурная функция оси пластины
$$\psi_0(Fo) = V_0 + 2f_a \Delta V_0[Fo - G_1(Fo)];$$
 (28)

- функция поверхностного теплового потока

$$\delta_0(Fo) = -Bi(V_c - 1) \cdot \phi_1(Fo);$$
 (29)

- функция толщины образовавшегося слоя извести

$$\ell_0(\mathrm{Fo}) = \frac{1}{\mathrm{Ko}} \{ \mathrm{Bi}(V_c - 1) \cdot \phi_3(\mathrm{Fo}) - f_\lambda 2\Delta V_0[\mathrm{Fo} - G_3(\mathrm{Fo})] \},$$
(30)

где
$$\phi_1(Fo) = \frac{1}{1+Bi} + \sum_{n=1}^{\infty} A_n \exp(-\mu_n^2 Fo);$$

 $\phi_2(Fo) = 1 - \phi_1(Fo);$
 $\phi_3(Fo) = \frac{1}{1+Bi}Fo + \sum_{n=1}^{\infty} \frac{A_n}{\mu_n^2} [1 - \exp(-\mu_n^2 Fo)];$
 $A_n = \frac{2Bi}{\mu_n^2 + Bi + Bi^2}; \ \mu_n$ — корни уравнения:
 $tq\mu = -\mu'_{Bi};$
 $G_1(Fo) = Fo - \sum_{k=1}^{\infty} (-1)^{k+1} \frac{2}{f_a^2 \mu_k^3} [1 - \exp(-f_a \mu_k^2 Fo)];$
 $G_3(Fo) = Fo - \sum_{k=1}^{\infty} \frac{2}{f_a \mu_k^4} [1 - \exp(-f_a \mu_k^2 Fo)];$
 $\mu_k = (2k-1)\pi/2.$

Применяя к системе уравнений (22)—(26) метод интегрального преобразования Лапласа, получим первую добавку к функциям, найденным в нулевом приближении:

добавка к температурной функции поверхности пластины

$$\varphi_{1}(\mathrm{Fo}) = \int_{0}^{\mathrm{Fo}} \varphi_{4}(\mathrm{Fo} - \omega) M_{1}(\omega) d\omega, \qquad (31)$$

где
$$\phi_4(Fo) = \sum_{n=1}^{\infty} \frac{A_n \cdot \mu_n^2}{\cos\mu_n} \exp\left(-\mu_n^2 Fo\right),$$

 $M_1(Fo) = -Z_0(Fo)Bi(V_c - 1)\phi_5(Fo);$
 $\phi_5(Fo) = \frac{1}{1 + Bi} - \sum_{n=1}^{\infty} \frac{A_n}{\cos\mu_n} \exp\left(-\mu_n^2 Fo\right),$

- добавка к температурной функции оси пласти-

$$\psi_1(\mathrm{Fo}) = \int_{0}^{F_o} G_4(\mathrm{Fo} - \omega) M_2(\omega) d\omega, \qquad (32)$$

где
$$G_4(\text{Fo}) = \sum_{k=1}^{\infty} (-1)^{k+1} 2\mu_k \cdot \exp\left(-f_a \mu_k^2 \text{Fo}\right),$$

 $M_2(\text{Fo}) = \ell_0(\text{Fo}) 2\Delta V_0 [1 - G_2(\text{Fo})],$
 $G_2(\text{Fo}) = 1 - \sum_{k=1}^{\infty} \frac{2}{\mu_k^2} \exp\left(-f_a \mu_k^2 \text{Fo}\right),$
- добавка к функции толщины слоя извести

$$\ell_{1}(\mathrm{Fo}) = -\frac{1}{\mathrm{Ko}} \left\{ \mathrm{Bi} \int_{0}^{\mathrm{Fo}} \varphi_{1}(\omega) d\omega + f_{\lambda} \int_{0}^{\mathrm{Fo}} G_{5}(\mathrm{Fo} - \omega) M_{2}(\omega) d\omega \right\},$$
(33)

где
$$G_5(Fo) = \sum_{k=1}^{\infty} 2\exp\left(-f_a \mu_k^2 Fo\right)$$

ны

Расчеты показывают, что удовлетворительную для практики точность обеспечивает первое приближение.

Используя данную методику, получена обобщенная зависимость длительности полного обжига куска известняка плоской формы от различных условий внешнего теплообмена, рис. 2.

 $V_c = t_c / t_p$; t_p — температура диссоциации;

t_c — температура греющей среды.

Рис. 2. Обобщенная зависимость продолжительности обжига плоского куска известняка от условий теплообмена Для определения длительности обжига известняка неплоской формы необходимо полученное из рис. 2 значение Fo разделить на коэффициент геометрической формы тела K_1 ($K_1 = 1 - для$ пластины, $K_1 = 2 - для$ цилиндра, $K_1 = 3 - для$ шара).

Выволи

Найденные аналитические зависимости, определяющие характер продвижения границы раздела фаз и распределения температуры по сечению нагреваемого куска материала представлены в критериальном виде и достаточно просто реализуются при численных расчетах. Они получены в явной форме, что облегчает проведение анализа теплового состояния обжигаемого куска известняка в печи.

Представленную аналитическую методику можно использовать для выбора рационального режима обжига кускового известняка в печах.

ЛИТЕРАТУРА

- 1. Монастырев А. В. Производство извести / Монастырев А. В М.: Высшая школа, 1975. 224 с.
- Лыков А. В. Теория теплопроводности / Лыков А. В – М.: Энергия, 1968. – 472 с.
- Любов Б. Я., Яловой Н. И. Математический анализ плавления тел / Б. Я. Любов, Н. И. Яловой // Изв. АН СССР. Металлы. – 1970. № 2. – С. 152–162.

пост. 18.05.2016

Л.П. ТЕЛПІКО, к.т.н., доцент
Л.М. МАМАЄВ, к.т.н., професор
А.М. КАБАКОВ, к.т.н., доцент
О.Д. РОМАНЮК, к.т.н., доцент
Дніпродзержинський державний технічний університет, Каи'янське

Урахування дисипації енергії при напружено-деформованому стані складених вісесиметричних циліндричних тіл при гармонійному навантаженні

В роботі розглядається визначення напружено-деформованого стану складеного циліндричного тіла в обоймі, що знаходиться в умовах осьової симетрії при гармонійному навантаженні з урахуванням дисипації енергії по гіпотезі Е.С.Сорокіна. Рішення рівнянь Ляме, якими описуються динамічна рівновага складеного циліндра і обойми проводити дискретним методом Л.П. Вінокурова, що дає рішення по радіальній перемінній *r* в кінцево-різністній формі. При врахуванні дисипації енергії по гіпотезі Е.С.Сорокіна виникає необхідність утворення комплексної збуджувальної сили по заданій дійсній силі. Методом розділення перемінних по Фурьє система диференціальних рівнянь в частинних похідних зведена до системи диференціальних рівнянь в звичайних похідних, яка за допомогою підстановок Ейлера зведена до системи алгебраїчних рівнянь. Визначник цієї системи має комплексний частотний параметр, з якого треба виділити дійсну складову частотного параметра. Після визначення корнів характеристичного рівняння і сталих інтегрування з граничних умов, отримаємо рішення диференціальних рівнянь, якими описуються динамічна рівновага складеного циліндра і обойми, в комплексній формі. Оскільки розглядуваний складений циліндр завантажений дійсною гармонійною силою, то рішення диференціальних рівнянь в дійсній формі представиться речовинною частиною комплексного рішення. Отримані вирази показують, що урахуванням дисипації енергії по гіпотезі Е.С.Сорокіна приводить до зсуву фаз між збуджувальним навантаженням та деформаціями складеного циліндра.

Постановка проблеми

При динамічних розрахунках напруженодеформованого стану вузлів багатогабарітного обладнання урахування незворотніх втрат енергії коливань, обумовлених наявністю внутрішнього непружнього опору, має важливе значення, особливо при дослідженні резонансних явищ. У більшості випадків урахування дисипації енергії проводиться по гіпотезі в'язкого тертя Фойгта, відповідно якої сили непружнього опору є лінійною функцією швидкості деформацій. Гіпотеза Фойгта у якості фізичної константи використовує коефіцієнт затухання. Вона зручна в математичному відношенні, але протиречить експериментальним даним. Так по гіпотезі в'язкого тертя коефіцієнт затухання і декремент