INTERNATIONAL NEUROLOGICAL JOURNAL

МЕЖДУНАРОДНЫЙ НЕВРОЛОГИЧЕСКИЙ ЖУРНАЛ

КОНТРАВЕРСІЙНА НЕВРОЛОГІЯ

/CONTROVERSION NEUROLOGY/

Данная работа публикуется в рубрике «Контраверсионная неврология», так как среди детских неврологов трактовка вегетативной дисфункции вызовет определенную дискуссию, поскольку синдром вегетативной дисфункции вызывается разными причинами: пре-, интра- и постнатальными, включая нарушение кровообращения, метаболические и другие расстройства. Мнение авторов о том, что помимо нервных расстройств у данной категории детей имеются и иммунологические нарушения, без сомнения, правильное, но об этом имеются данные литературы и это не относится к возникновению нейрогенного иммунодефицита. Хотелось бы выслушать мнение не только иммунологов, но и неонатологов, детских неврологов.

Редакция «Международного неврологического журнала»

УДК 616.83-053.34:616.839-092:612.017-085

ПОПОВ Н.Н. 1 , ОЛЕНИЧ В.Б. 2 , САВВО А.Н. 1

- 1 Харьковский национальный университет им. В.Н. Каразина
- 2 Областная детская клиническая больница № 1, г. Харьков

НОВЫЕ ПОДХОДЫ К НЕЙРОПРОТЕКТОРНОЙ ТЕРАПИИ СИНДРОМА ВЕГЕТАТИВНОЙ ДИСФУНКЦИИ У ДЕТЕЙ С ПЕРИНАТАЛЬНЫМ ПОРАЖЕНИЕМ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Резюме. Изучен иммунный статус детей 12—14-летнего возраста с синдромом вегетативной дисфункции, родившихся недоношенными, с перинатальным поражением центральной нервной системы, которые получали комплекс полипептидных фракций (Кортексин) в комбинации с поливитаминно-аминокислотноминеральным комплексом.

Полученные в ходе исследований данные свидетельствуют о том, что включение в комплексное лечение детей с синдромом вегетативной дисфункции, у которых неврологические расстройства сопровождаются иммунными нарушениями, ноотропного препарата и препарата с иммуномодулирующими свойствами позволяет в короткие сроки достичь стабильного эффекта в восстановлении иммунореактивности.

Ключевые слова: синдром вегетативной дисфункции, перинатальное поражение центральной нервной системы, дети, комплекс полипептидных фракций (Кортексин), поливитаминно-аминокислотноминеральный комплекс.

Проблема реабилитации детей, родившихся недоношенными, с перинатальным гипоксически-ишемическим поражением центральной нервной системы (п.п.ЦНС), весьма актуальна. Повреждение головного мозга, связанное с церебральной ишемией, встречается у 48 % новорожденных [1], а среди недоношенных детей — у 60-70% [2].

Одним из распространенных неврологических синдромов у недоношенных детей, перенесших п.п.ЦНС, является синдром вегетативных дисфункций (СВД). В настоящее время отсутствует единая патогенетически ориентированная система реабили-

тации этой категории детей. Полученные нами данные свидетельствуют о том, что у детей с СВД также манифестируют иммунные расстройства, затрагивающие преимущественно процессы иммунорегуляции и антителообразования [3, 4].

Адрес для переписки с авторами:

Попов Н.Н.

61077, г. Харьков, пл. Свободы, 4

Харьковский национальный университет им. В.Н. Каразина

- © Попов Н.Н., Оленич В.Б., Савво А.Н., 2015
- © «Международный неврологический журнал», 2015
- © Заславский А.Ю.. 2015

Учитывая вышеизложенное, мы поставили перед собой цель изучить эффективность применения комплекса полипептидных фракций (Кортексина) в комбинации с поливитаминно-аминокислотно-минеральным комплексом для коррекции иммунного статуса этих детей.

Кортексин — нейропептидный препарат, представляющий собой комплекс низкомолекулярных пептидов, выделенных из коры головного мозга крупного рогатого скота и свиней, не достигших 12-месячного возраста. Обладает выраженной метаболической активностью, влияя на нормализацию обмена нейромедиаторов, регуляцию баланса тормозных/активирующих аминокислот и уровня серотонина и дофамина, оказывает ГАМКергическое действие, антиоксидантный эффект, участвует в нормализации биоэлектрической активности мозга.

Поливитаминно-аминокислотно-минеральный комплекс применялся в виде сиропа, в 1 мл которого содержится 20 мг L-лизина гидрохлорида, 204 мг 50% раствора кальция глицерофосфата (соответствует 8,67 мг кальция, 13,33 мг фосфата), 0,2 мг тиамина, 0,23 мг рибофлавина, 0,4 мг пиридоксина, 1 мкг (40 МЕ) холекальциферола, 1 мг D, L-токоферола ацетата, 1,33 мг никотинамида, 0,67 мг D-пантенола. Набор компонентов обеспечивает нейротропный, цитопротекторный, иммуномодулирующий, мембраностабилизирующий и антиоксидантный эффект.

Материалы и методы

Эффективность применения комплекса полипептидных фракций (Кортексина) в комбинации с поливитаминно-аминокислотно-минеральным комплексом для лечения детей с СВД, родившихся недоношенными, с п.п.ЦНС, была изучена у 45 пациентов 12—14-летнего возраста (основная группа), которые находились на лечении в областной детской клинической больнице № 1 и областной детской консультативной поликлинике г. Харькова.

Диагноз «синдром вегетативной дисфункции» выставлялся в соответствии с МКБ-10 (G 90.9 Расстройство вегетативной нервной системы, неуточненное, Мартынюк, 2001), верифицирован с учетом патогномоничных клинических проявлений заболевания, данных лабораторных и инструментальных исследований. Дети основной группы также получали курс базисной терапии, включающий пантокальцин и тенотен детский.

Комплекс полипептидных фракций (Кортексин) был назначен в виде лечебного эндоназального электрофореза. Преимущества способа связаны с тем, что инъекционное введение препарата имеет травматический характер и несет риск развития постинъекционных осложнений; за счет изменения места введения препарата достигается усиление его проникновения через гематоэнцефалический барьер, а также снижение психотравмирующей и фармакологической нагрузки на пациента.

Курс лечения составлял 10-12 процедур. Три первые процедуры выполнялись 10-15 минут каждая, с ис-

пользованием силы тока 1 мA, а последующие — 15-20 минут каждая, с силой тока 3 мA [5].

Поливитаминно-аминокислотно-минеральный комплекс назначался перорально в дозе 4 мл в сутки [6].

Дети группы сравнения (35 детей 12—14 лет) получали курс базисной терапии, не содержащей комплекса полипептидных фракций (Кортексина) и поливитаминно-аминокислотно-минерального комплекса. Контрольную группу составили здоровые дети (30 человек) того же возраста.

Программа иммунологических исследований включала изучение содержания в ротовом секрете sIgA, IgA, IgG и лизоцима, в сыворотке крови — основных классов иммуноглобулинов, IgE, циркулирующих иммунных комплексов (ЦИК), комплемента, аффинности IgG-антител к общей антигенной детерминанте (ОАД) микробов, основных классов иммунорегуляторных цитокинов, популяционного и субпопуляционного состава лимфоцитов периферической крови, уровня пролиферативной активности Т-лимфоцитов на митоген фитогемагглютинина (ФГА). Содержание лизоцима в ротовом секрете определяли рано утром натощак методом диффузии в агаре [7]. Концентрацию в ротовом секрете и сыворотке крови иммуноглобулинов различных классов определяли спектрофотометрически [8], концентрацию IgE — методом иммуноферментного анализа (ИФА), в соответствии с прилагаемой инструкцией. Уровень циркулирующих иммунных комплексов (ЦИК) в сыворотке крови оценивали методом селективной преципитации с полиэтиленгликолем-6000 [9]. Об активности комплемента судили по 50% гемолизу тест-системы.

Аффинность антител (IgG) оценивали по методике R. Luxton и E. Tompson (1990) [10]. Содержание IgG-антител к ОАД бактерий определяли с помощью ИФА на аппарате Stat Fax 303 Plus (США). Аффинность антител выражали в относительных единицах.

Популяционный состав лимфоцитов периферической крови определяли методом проточной лазерной цитометрии с использованием моноклональных антител разной специфичности на аппарате FACSC Calibun (США). О содержании Th_1 - и Th_2 -клеток судили по уровню в цитоплазме лимфоцитов ИЛ-4 и ИНФ- γ [11, 12].

Пролиферативную активность лимфоцитов оценивали в реакции бласттрансформации лимфоцитов с ФГА [13]. Интенсивность реакции оценивали морфологически в процентах образованных бластных форм.

Статистическую обработку данных проводили с помощью Microsoft Ecxel 2007 и программы Med Stat (серийный № MS000055) ДИВП ООО «Альфа», г. Донецк, в соответствии с рекомендациями по статистической обработке медико-биологических данных [14, 15]. Проводили проверку выборок на нормальность распределений (критерий χ^2), вычисляли среднее арифметическое (М) и среднюю ошибку средней величины (m), определяли достоверность различий по критерию t Стьюдента. Критический уровень значимости считали равным 0.05 [16—18].

Результаты и обсуждение

В предварительных исследованиях было установлено, что добавление к традиционной терапии полипептидных фракций (Кортексина) не приводит к полной и продолжительной нормализации иммунного статуса больных с СВД. С учетом полученных результатов в комплексное лечение детей был добавлен поливитаминноаминокислотно-минеральный комплекс, обладающий иммунорегуляторным действием. Было установлено, что у детей, получивших в комплексном лечении полипептиды (Кортексин) в комбинации с поливитаминноаминокислотно-минеральным комплексом, уже к концу первого месяца после окончания лечения происходит полное восстановление как гуморального, так и цитокинового статуса. У детей, получавших комбинацию нейротропного препарата и препарата, регулирующего метаболические процессы, уже в первый день после окончания терапии в ротовом секрете достоверно повышалось содержание sIgA, mIgA, IgG и лизоцима, которое в этот срок достигало значений нормы и через месяц оставалось таким же (табл. 1). У детей группы сравнения, получавших традиционное лечение, столь заметных изменений в показателях местного иммунитета не происходило, ни в один из сроков изученные показатели не достигали значений нормы (табл. 1).

У детей основной группы в сыворотке крови после окончания лечения достоверно повышалось содержание IgA и снижалось изначально повышенное содержание IgE. Полная нормализация концентрации IgA наблюдалась в первый день после окончания терапии, IgE — к концу первого месяца после окончания терапии (табл. 2).

При этом существенных изменений в содержании в сыворотке крови IgM, IgG, ЦИК и комплемента не происходило. Следует заметить, что значения этих показателей до начала лечения соответствовали норме.

Также динамично возрастала аффинность IgGантител к ОАД микробов под влиянием проводимой терапии. В первый день после окончания лечения наблюдалось достоверное ее повышение, а через месяц аффинность антител соответствовала значениям нормы (табл. 3).

У детей группы сравнения, получавших традиционное лечение, существенных изменений в содержании в

Таблица 1. Содержание в ротовом секрете иммуноглобулинов и лизоцима у детей с СВД до и после окончания лечения

Показатели	До лечения	После лечения		
		1-й день	1-й месяц	Норма
slgA, г/л	$\frac{0.13 \pm 0.01^*}{0.13 \pm 0.01^*}$	0,22 ± 0,02**' *** 0,17 ± 0,02**' *	0,26 ± 0,02**' *** 0,18 ± 0,02 **' *	0,26 ± 0,02
mlgA, г/л	0,12 ± 0,01* 0,12 ± 0,01*	0,16 ± 0,02**' *** 0,13 ± 0,01*	0,17 ± 0,02**' *** 0,13 ± 0,01*	0,17 ± 0,02
lgG, г/л	0,053 ± 0,007* 0,053 ± 0,007*	0,070 ± 0,008** 0,056 ± 0,007*	0,071 ± 0,009** 0,055 ± 0,007*	0,071 ± 0,009
Лизоцим, мг/л	18,7 ± 1,9* 18,7 ± 1,9*	25,6 ± 1,9**' *** 19,9 ± 1,9*	26,3 ± 1,9**' *** 19,7 ± 1,9*	26,4 ± 1,8

Примечания (здесь и в табл. 2–5): над чертой — показатели детей основной группы, под чертой — детей группы сравнения; * — р < 0,05 по сравнению с нормой (показатели детей контрольной группы); ** — р < 0,05 по сравнению с показателями до лечения; *** — р < 0,05 между показателями основной группы и группы сравнения.

Таблица 2. Содержание в сыворотке крови основных классов иммуноглобулинов, ЦИК, комплемента у детей с СВД до и после лечения

B		После лечения		Норма
Показатели	До лечения	1-й день	1-й месяц	
IgA, г/л	1,08 ± 0,11* 1,09 ± 0,11*	1,38 ± 0,15*' *** 1,11 ± 0,11*	1,37 ± 0,15**' *** 1,11 ± 0,11*	1,38 ± 0,15
IgM, г/л	1,19 ± 0,11 1,20 ± 0,11	1,30 ± 0,12 1,23 ± 0,11	1,28 ± 0,11 1,24 ± 0,11	1,29 ± 0,11
lgG, г/л	$\frac{10,84 \pm 0,54}{10,83 \pm 0,54}$	1,36 ± 0,56 11,03 ± 0,56	11,48 ± 0,55 11,10 ± 0,55	11,54 ± 0,54
IgE, г/л	85,7 ± 9,6* 85,5 ± 9,6*	76,6 ± 6,9* 81,3 ± 8,7*	$\frac{61.0 \pm 6.5^{**}}{77.3 \pm 7.3^{*}}$	61,7 ± 6,5
ЦИК, г/л	1,32 ± 0,12 1,31 ± 0,12	1,34 ± 0,12 1,33 ± 0,12	1,33 ± 0,12 1,33 ± 0,12	1,36 ± 0,12
Комплемент СН50	61,50 ± 4,50 61,47 ± 4,50	61,58 ± 4,50 61,51 ± 4,50	61,49 ± 4,50 61,50 ± 4,50	61,46 ± 4,50

сыворотке крови основных классов иммуноглобулинов, IgE, ЦИК, комплемента и аффинности IgG-антител не происходило (табл. 2, 3).

Исследование цитокинового статуса показало, что у детей, получавших полипептиды (Кортексин) в комбинации с поливитаминно-аминокислотно-минеральным комплексом, уже в первый день после окончания терапии происходило снижение до уровня нормы повышенных значений ИЛ-1β, ИЛ-4, ИЛ-10 (табл. 4). У данных детей в этот срок также отмечалась нормализация соотношения провоспалительных и противовоспалительных цитокинов ИЛ- 1β /ИЛ-10, ИЛ-6/ИЛ-10, ФНО- α /ИЛ-10, а также цитокинов ИЛ-4/ИНФ-ү, регулирующих тип развития иммунной реакции. У детей в первый день после окончания лечения индексы соотношения ИЛ-1 β /ИЛ-10 составляли 0,24 \pm 0,02, до лечения — 0.28 ± 0.03 (p < 0.05) (норма — 0.24 \pm 0.02), ИЛ-6 — $1,39 \pm 0,14$, до лечения — $1,15 \pm 0,12$ (p < 0,05) (норма — $1,45 \pm 0,15$), ФНО- α /ИЛ- $10 - 0,073 \pm 0,007$, до лечения — 0.058 ± 0.006 (p < 0.05) (норма — 0.0750 ± 0.0070), ИЛ-4/ИН Φ - γ — 1,28 \pm 0,13, до лечения — 2,03 \pm 0,21 (p < 0.05) (норма — 1.03 ± 0.11). Через один месяц после окончания лечения происходила дальнейшая нормализация содержания всех изученных цитокинов.

В группе сравнения достоверных изменений в содержании цитокинов и их соотношении за весь период наблюдения выявлено не было (табл. 4).

У детей основной группы под влиянием предложенной терапии в первый день после ее окончания в периферической крови достоверно повышалось содержание

общих Т-лимфоцитов (CD3+-клеток), CD4+-клеток, их бласттрансформирующая активность, нормализовалось содержание Th_2 -клеток (ИЛ-4) и баланс Th_1/Th_2 -клеток и $Th_2/Treg$ -клеток (табл. 5). В этот срок и через один месяц после окончания терапии популяционный и субпопуляционный состав лимфоцитов крови этих детей соответствовал показателям здоровых детей (контрольной группы).

Традиционная терапия, не содержащая полипептиды (Кортексин) в комбинации с поливитаминно-аминокислотно-минеральным комплексом, подобным эффектом не обладала. У детей группы сравнения нормализация измененных показателей не происходила (табл. 5). Через один год у детей определялись нарушения в иммунном статусе, подобные тем, которые были выявлены до лечения.

Обследование детей основной группы через один год после курса терапии не выявило каких-либо нарушений в их иммунном статусе. Иммунный статус детей характеризовался нормальным содержанием в периферической крови лимфоцитов, их популяционным и субпопуляционным составом, высокой способностью клеток к пролиферации под влиянием митогенного стимула, нормальным содержанием в сыворотке крови основных классов иммуноглобулинов и IgE, нормальным уровнем провоспалительных и противовоспалительных цитокинов и их балансом.

Результаты проведенных исследований позволяют заключить, что включение в комплексное лечение детей с СВД, у которых неврологические расстройства со-

Таблица 3. Аффинность IgG-антител (отн.ед.) к ОАД микробов у детей с СВД до и после лечения

По тошения	После л	Hamisa	
До лечения	1-й день	1-й месяц	Норма
519,8 ± 71,3* 520,1 ± 71,3*	801,3 ± 83,6*' **' *** 560,3 ± 71,8*	> 1000**' *** 624,4 ± 71,7*	> 1000

Таблица 4. Содержание цитокинов в сыворотке крови у детей с СВД до и после лечения

Показатели,	До лечения	После лечения		
нг/мл		1-й день	1-й месяц	Норма
ил-1β	$\frac{2.9 \pm 0.3^*}{2.9 \pm 0.3^*}$	2,0 ± 0,2**' *** 2,60 ± 0,28*	$\frac{1.9 \pm 0.2^{**' ***}}{2.7 \pm 0.3^*}$	1,9 ± 0,2
ил-2	$\frac{1,8 \pm 0,2}{1,8 \pm 0,2}$	$\frac{2.0 \pm 0.2}{1.9 \pm 0.2}$	$\frac{1,9 \pm 0,2}{1,8 \pm 0,2}$	1,9 ± 0,2
ил-4	18,10 ± 1,23* 18,20 ± 1,22*	12,30 ± 1,18**' *** 15,9 ± 1,2*	10,40 ± 1,12 *' *** 16,10 ± 1,21*	10,10 ± 1,11
ил-6	11,90 ± 1,15 11,90 ± 1,15	11,40 ± 1,15 11,70 ± 1,15	11,60 ± 1,15 11,60 ± 1,15	11,50 ± 1,14
ил-10	10,30 ± 1,01* 10,40 ± 1,01*	8,20 ± 0,83** 10,00 ± 1,01*	8,00 ± 0,81**' *** 9,9 ± 1,0*	7,9 ± 0,8
ФНО-α	$\frac{0.60 \pm 0.06}{0.60 \pm 0.06}$	$\frac{0.60 \pm 0.06}{0.60 \pm 0.06}$	$\frac{0.60 \pm 0.06}{0.60 \pm 0.06}$	0,60 ± 0,06
ИНФ-ү	$\frac{8,90 \pm 0,83}{8,90 \pm 0,83}$	9,6 ± 1,1 9,10 ± 1,01	9,80 ± 1,12 9,20 ± 1,02	9,80 ± 1,12

Таблица 5. Популяционный и субпопуляционный состав лимфоцитов периферической крови у детей с СВД до и после лечения

	До лечения	После лечения		
Показатели		1-й день	1-й месяц	Норма
Лимфоциты, %	29,7 ± 1,5 29,7 ± 1,5	32,20 ± 1,69 30,90 ± 1,69	32,1 ± 1,7 30,70 ± 1,71	32,10 ± 1,72
Абсолютное число	$\frac{2,03 \pm 0,10}{2,04 \pm 0,10}$	2,21 ± 0,11 2,06 ± 0,12	2,23 ± 0,11 2,05 ± 0,12	2,23 ± 0,11
СD3+ кл., %	58,80 ± 3,44* 58,90 ± 3,45*	66,70 ± 3,44**' *** 59,00 ± 3,45	65,90 ± 3,43**' *** 58,90 ± 3,44	65,70 ± 3,42
СD4+ кл., %	$\frac{36,30 \pm 1,93}{36,30 \pm 1,94}$	41,90 ± 1,97**' *** 36,80 ± 1,93	40,70 ± 1,96**' *** 36,40 ± 1,93	39,10 ± 2,01
СD8+ кл., %	23,50 ± 1,61 23,60 ± 1,61	24,80 ± 1,62 23,70 ± 1,61	24,80 ± 1,62 23,60 ± 1,61	24,90 ± 1,52
СD19+ кл., %	$\frac{23,90 \pm 1,32}{23,80 \pm 1,33}$	24,10 ± 1,33 2,40 ± 1,33	21,80 ± 1,24 22,60 ± 1,26	21,30 ± 1,09
СD16+ кл., %	11,90 ± 1,13 11,80 ± 1,14	12,10 ± 1,16 12,00 ± 1,16	12,10 ± 1,13 12,00 ± 1,16	12,00 ± 1,13
БТЛ с ФГА, %	43,40 ± 6,32* 43,50 ± 6,32*	62,70 ± 8,12**' *** 44,50 ± 6,12*	60,90 ± 8,07**' *** 44,10 ± 6,13*	59,70 ± 8,04
БТЛ спонт., %	$\frac{8,90 \pm 0,89}{9,0 \pm 0,9}$	9,40 ± 0,91 9,00 ± 0,91	8,50 ± 0,86 9,00 ± 0,91	11,10 ± 1,17
Th ₁ -кл., %	$\frac{9,20 \pm 0,94}{9,20 \pm 0,93}$	10,90 ± 1,11 9,60 ± 0,92	11,00 ± 1,12 9,30 ± 0,91	11,10 ± 1,17
Th ₂ -кл., %	16,40 ± 1,68* 16,40 ± 1,68*	12,50 ± 1,36**' *** 16,00 ± 1,61*	12,40 ± 1,33**' *** 16,30 ± 1,62*	12,10 ± 1,33
Treg-кл., %	$\frac{9,20 \pm 0,93}{9,10 \pm 0,92}$	10,80 ± 1,03 9,40 ± 0,95	10,90 ± 1,03 9,30 ± 0,95	10,90 ± 1,04
Th ₁ /Th ₂	0,56 ± 0,06* 0,56 ± 0,06*	0,87 ± 0,04**' *** 0,60 ± 0,06*	0,88 ± 0,09**', *** 0,57 ± 0,06*	0,91 ± 0,09
Th₁/Treg	1.0 ± 0.1 11.0 ± 0.1	1,0 ± 0,1 1,02 ± 0,11	$\frac{1,0 \pm 0,1}{1,0 \pm 0,1}$	1,01 ± 0,11
Th ₂ /Treg	1,78 ± 0,18* 1,78 ± 0,18*	1,15 ± 0,16**' *** 1,70 ± 0,18*	1,13 ± 0,12**' *** 1,75 ± 0,18	1,11 ± 0,12

провождаются иммунными нарушениями, комплекса полипептидных фракций (Кортексина) — ноотропного препарата и поливитаминно-аминокислотно-минерального комплекса — препарата с иммуномодулирующими свойствами позволяет в короткие сроки достичь стабильного эффекта в восстановлении иммунореактивности детей.

Параллельно нами было установлено, что применение этих препаратов в комбинации оказывает выраженный положительный эффект и на неврологический статус детей. Представляется, что одновременное применение препаратов с адресным действием на ЦНС и иммунную систему позволяет более эффективно восстановить работу этих тесно взаимосвязанных систем организма и получить потенцирующее действие одной системы на другую.

Выводы

Полученные данные позволяют рекомендовать комплекс полипептидных фракций (Кортексин) в комбинации с поливитаминно-аминокислотно-мине-

ральным комплексом для реабилитации детей с СВД, ассоциированным с иммунными расстройствами.

Применение Кортексина в виде эндоназального электрофореза в комбинации с поливитаминно-аминокислотно-минеральным комплексом позволяет эффективно восстанавливать иммунный статус детей с СВД, родившихся недоношенными, с перинатальным поражением ЦНС, а способ применения Кортексина является комфортным, экономичным, не вызывающим побочных реакций.

Список литературы

- 1. Баранов А.А. Итоги, задачи и перспективы изучения качества жизни в современной педиатрии / А.А. Баранов, В.Ю. Альбицкий, И.В. Винярская и др. // Вопросы современной педиатрии. 2007. N2. С. 6-8.
- 2. Барашнев Ю.И. Ключевые проблемы перинатальной неврологии / Ю.И. Барашнев // Акушерство и гинекология. $2007. N \odot 5. C. 51-54.$
- 3. Popov N.N. Immunoreactivity of children of different ages with the cerebro-asthenic syndrome, who were prematurely born with perinatal defeat of central nervous system / N.N. Popov,

- V.B. Olenych, A.N. Savvo // The Journal of V.N. Karazin Kharkiv National University. Series «Medicine». 2014. $N \ge 27$ (in print).
- 4. Попов Н.Н., Оленич В.Б., Савво А.Н. Состояние гуморального иммунитета у детей с синдромом вегетативной дисфункции, родившихся недоношенными, с перинатальным поражением центральной нервной системы (ЦНС) / Н.Н. Попов, В.Б. Оленич, А.Н. Савво // Імунологія та алергологія: наука і практика. — 2013. — № 4. — С. 80-84.
- 5. Попов Н.Н., Оленич В.Б., Савво А.Н. Спосіб лікування синдрому дефіциту уваги та гіперактивності в дітей, що перенесли перинатальне ураження ЦНС/ Н.Н. Попов, В.Б. Оленич, А.Н. Савво. Патент на корисну модель № 85642
- 6. Овчаренко Л.С., Вертегел А.А., Андриенко Т.Г. Конституциональная иммунная и нейроэндокринная дисрегуляция у детей как эквивалент метаболического синдрома детского возраста / Л.С. Овчаренко, А.А. Вертегел, Т.Г. Андриенко // Клиническая иммунология. Аллергология. Инфектология. 2008. N 2. C. 14-17.
- 7. Чернушенко Е.Ф., Когосова А.С. Иммунологические исследования в клинике / Е.Ф. Чернушенко, А.С. Когосова. К.: $3\partial opo 6$ 'я, 1978. С. 28-29.
- 8. Чиркин В.В. Спектрофотометрический метод определения концентрации сывороточных иммуноглобулинов трех классов / В.В. Чиркин // Иммунология. 1990. N_2 3. С. 75-77.
- 9. Фролов В.М., Пинский Л.А., Пересадин Н.А. Аутоим-мунная и иммунокомплексная патология у больных инсулинзависимым сахарным диабетом / В.М. Фролов, Л.А. Пинский, Н.А. Пересадин // Проблемы эндокринологии. 1991. N_2 5. C. 22.-24.

- 10. Luxton R.W., Tompson E.J. Affinity distributions of antigen-specific IgG in patients with multiple sclerosis and in patients with viral encephalitis // J. Immunov. Med 1990. V. 131. P. 277-282.
- 11. Евтушенко С.К. О формировании нейрогенного иммунодефицита у детей, перенесших перинатальную патологию мозга // Педиатрия. 1989. N2 7 С. 70-75.
- 12. Дамбаева С.В. Оценки основных параметров иммунной системы с помощью проточной лазерной цитометрии / С.В. Дамбаева, Д.В. Мазуров, С.В. Климова [и др.] // Аллергология и иммунология. 2002. Т. 3, № 3. С. 371-379.
- 13. Шютт X. Реакция бласттрансформации лимфоцитов // Иммунологические методы / Под ред. Г. Фримеля. М.: Медицина, 1987. С. 294-302.
- 14. Лакин Г.Ф. Биометрия: Учеб. пособие для биол. спец. вузов / Г.Ф. Лакин. 4-е изд., перераб. и доп. М.: Высшая школа, 1990. 352 c.
- 15. Boulgouris N.V., Plataniotis K.N. Biometrics: Theory, Methods, and Applications / N.V. Boulgouris, K.N. Plataniotis, E. Micheli-Tzanakou (eds.). Wiley, 2009. 763 p.
- 16. Гланц С. Медико-биологическая статистика / С. Гланц. — М.: Практика, 1999. — 459 с.
- 17. Meloun M., Militky J. Statistical Data Analysis: A Practical Guide / M. Meloun, J. Militky. Woodhead Publishing, 2011. 800 p.
- 18. Li S.Z., Jain A.K. Encyclopedia of Biometrics / S.Z. Li, A.K. Jain (eds.). Springer, 2009. 1445 p.

Получено 25.11.14 🔳

Попов М.М.1, Оленич В.Б.2, Савво О.М.1

Харківський національний університет ім. В.Н. Каразіна
 Обласна дитяча клінічна лікарня № 1, м. Харків

НОВІ ПІДХОДИ ДО НЕЙРОПРОТЕКТОРНОЙ ТЕРАПІЇ СИНДРОМУ ВЕГЕТАТИВНОЇ ДИСФУНКЦІЇ У ДІТЕЙ ІЗ ПЕРИНАТАЛЬНИМ УРАЖЕННЯМ ЦЕНТРАЛЬНОЇ НЕРВОВОЇ СИСТЕМИ

Резюме. Вивчено імунний статус дітей 12—14-річного віку з синдромом вегетативної дисфункції, які народилися недоношеними, з перинатальним ураженням центральної нервової системи і отримували комплекс поліпептидних фракцій (Кортексин) у комбінації з полівітамінно-амінокислотно-мінеральним комплексом. Отримані протягом дослідження дані свідчать про те, що включення в комплексне лікування дітей із синдромом вегетативної дисфункції, у яких неврологічні розлади супроводжуються імунними порушеннями, ноотропного препарату та препарату з імуномодулюючими властивостями дозволяє в короткі терміни досягти стабільного ефекту у відновленні імунореактивності.

Ключові слова: синдром вегетативної дисфункції, перинатальне ураження центральної нервової системи, діти, комплекс поліпептидних фракцій (Кортексин), полівітамінно-амінокислотно-мінеральний комплекс.

Popov N.N.1, Olenich V.B.2, Savvo A.N.1

¹ Kharkiv National University named after V.N. Karazin

² Regional Children's Clinical Hospital № 1, Kharkiv, Ukraine

NEW APPROACHES TO NEUROPROTECTIVE THERAPY OF AUTONOMIC DYSFUNCTION SYNDROME IN CHILDREN WITH PERINATAL DAMAGE OF THE CENTRAL NERVOUS SYSTEM

Summary. The immune status has been studied in 12–14-year-old children with autonomic dysfunction syndrome, who were born prematurely, with perinatal damage of the central nervous system, and who received a complex of polypeptide fractions (Cortexin) in combination with multivitamin amino-acid mineral complex.

Data obtained during studies indicate that the inclusion of nootropic agent and a drug with immunomodulating properties in comprehensive treatment of children with autonomic dysfunction syndrome, in whom neurological disorders are associated with immune disorders, allows us to achieve a stable effect in restoring immunoreactivity within a short time.

Key words: autonomic dysfunction syndrome, perinatal damage of the central nervous system, children, complex of polypeptide fractions (Cortexin), multivitamin amino-acid mineral complex.