АНЕСТЕЗІОЛОГІЯ ТА ІНТЕНСИВНА ТЕРАПІЯ

УДК 616.379-008.64:577.175.72]-089.5-085.225.2

А.А. Хижняк, Н.Д. Лантухова, Н.В. Лизогуб, Н.Д. Битчук Харьковский национальный медицинский университет

ПРИМЕНЕНИЕ КЛОФЕЛИНА ВО ВРЕМЯ АНЕСТЕЗИИ У БОЛЬНЫХ С ИНСУЛИНОРЕЗИСТЕНТНОСТЬЮ НА ФОНЕ САХАРНОГО ДИАБЕТА 2-го ТИПА

Изучено влияние клофелина в составе премедикации (2,5 мкг/кг) на управляемость гликемией у 38 больных с сахарным диабетом 2-го типа с явлениями инсулинорезистентности, подвергшихся ургентным лапароскопическим холецистэктомиям под многокомпонентной внутривенной анестезией с искусственной вентиляцией легких. Обнаружено, что клофелин снижает потребность в инсулине. Средняя скорость введения — (0.058 ± 0.010) ЕД/кг/ч в контрольной группе и (0.047 ± 0.013) ЕД/кг/ч в основной группе. Клофелин также предупреждает увеличение уровня кортизола, развитие тахикардии (но не артериальной гипертензии) в ответ на интубацию трахеи. Достоверно снижает потребность в фентаниле — (5.74 ± 1.73) мкг/кг/ч в контрольной группе и (4.49 ± 1.28) мкг/кг/ч — в основной. Полученные результаты позволяют рекомендовать использовать клофелин (2.5 мкг/кг) в составе премедикации у больных с инсулинорезистентностью.

Ключевые слова: гликозилированный гемоглобин, иммунореактивный инсулин, инсулинорезистентность, индекс НОМА, клофелин.

Проблемы хирургического лечения больных сахарным диабетом (СД) полностью не решены, тем более что половина больных с данной патологией нуждается в хирургическом лечении хотя бы раз в жизни [1, 2]. Одной из таких проблем является ургентное оперативное вмешательство у больных, страдающих СД 2-го типа в стадии декомпенсации на фоне инсулинорезистентности, являющейся следствием общего дефекта в системе узнавания глюкозы βклетками или периферическими тканями, в результате чего наблюдается снижение глюкозостимулированного ответа β-клеток [2]. Инсулинорезистентность не в последнюю очередь связана и с активизацией при развитии хирургического стресс-ответа контринсулярных гормонов — адреналина, кортизола, гормона роста, которые активируют гликогенолиз, глюконеогенез, протеолиз и липолиз, в результате чего могут развиться тяжелая гипергликемия и кетоацидоз [3]. Инсулинорезистентность и развивающаяся вследствие нее компенсаторная гиперинсулинемия приводят к комплексу метаболических, гормональных и клинических нарушений, называемому метаболическим синдромом [4], для которого, в частности, характерно повышение индекса массы тела (ИМТ = масса/рост², кг/м²) [5].

Одекомпенсации углеводного обмена при СД свидетельствует повышение уровня гликозилированного гемоглобина (HbA1c) — гемоглобина, в котором β-концевой валин конденсирован с молекулой глюкозы. Гликозилирование — процесс неферментативный и длительный, поэтому содержание HbA1c является интегральным показателем степени компенсации углеводного обмена за длительный период — последние 60–90 суток. У здоровых этот показатель находится в пределах 4–6 %, у больных СД он может повышаться в 2–3 раза [6]. Соответствие между средней гликемией за последние 2–

[©] А.А. Хижняк, Н.Д. Лантухова, Н.В. Лизогуб, Н.Д. Битчук, 2011

3 месяца и уровнем HbA1с, по разным данным [7, 8], выглядит следующим образом:

HbA1c, $%$	Γ лик e мия, ммоль $/$ л
5	4,5
6	6-7
7	8,0-8,6
8	10,0-10,2
9	11,8-12,0
10	13,4-14,0
11	14,9-17,0
12	16.5 - 19.0

Степень инсулинорезистентности может быть оценена по индексу HOMA [9]:

$$HOMA = \frac{\text{гликемия}[\text{ммоль/л}] \times \text{ИРИ}[\text{мкМЕ/мл}]}{22,5}$$

где ИРИ — уровень иммунореактивного инсулина (в норме 2–25 мкМЕ/мл). Индекс НОМА более 2,5 свидетельствует о наличии инсулинорезистентности.

Определенный интерес представляет применение во время анестезии адренергических препаратов как анальгетиков, что связано с тесным взаимодействием эндогенной антиноцицептивной системы с вегетативной нервной системой. Главное место среди адреномиметиков, используемых для потенцирования анальгезии, занимает центральный α₂-адреномиметик клофелин. Анальгетический эффект клофелина не связан с активацией опиатных рецепторов, при этом он обладает вегетонормализующими свойствами [10]. Действие клофелина выражается в некотором уменьшении адренергического ответа и подавлении секреции кортизола и β-эндорфинов [11], особенно в травматичные моменты операции, при этом практически не наблюдается влияния на углеводный обмен [12]. Клофелин в значительной мере отвечает предъявляемым к анальгетикам требованиям [13], потенцирует действие анестетических агентов, снижает потребность в опиатных анальгетиках [14].

Целью нашего исследования явилось изучение возможности улучшения управляемости гликемии во время многокомпонентной анестезии у больных с инсулинорезистентностью с помощью центрального α_{\circ} -адреномиметика клофелина.

Материал и методы. В данное исследование включено 38 пациентов в возрасте от 50 до 77 лет, в среднем — $(67,7\pm6,8)$ года, страдающих СД 2-го типа в стадии декомпенсации [уровень HbA1c — от 8,1 до 11,8%, в среднем — $(9,46\pm1,08)$ %] на фоне инсулинорезистентности (индекс HOMA более 2,5), которым в ургентном порядке выполняли лапароскопические холецистэктомии.

В день операции больные пропускали обычный прием сахароснижающих препаратов. Анестезиологическое пособие проводили с использованием многокомпонентной внутривенной анестезии с ИВЛ, в качестве базового анестетика использовали тиопентал натрия. Длительность оперативного вмешательства составляла (49,8±6,9) мин, длительность анестезии — (110,2±9,3) мин.

Пациенты были разделены на две группы. Пациентам контрольной группы (n=20) после выполнения премедикации: атропин $(7,7\pm1,9)$ мкг/кг, фентанил $(1,3\pm0,2)$ мкг/кг, димедрол $(0,23\pm0,07)$ мкг/кг — проводили индукцию тиопенталом натрия в дозе 2,5-3 мг/кг внутривенно болюсно. Интубацию трахеи выполняли после введения 2 мг/кг сукцинилхолина. Анестезию поддерживали тиопенталом натрия в дозе 2-3 мг/кг и фракционным введением фентанила в общей дозе $(4,79\pm1,40)$ мг/кг. Интраоперационную миоплегию осуществляли внутривенным введением ардуана в дозе (0,06± 0,03) мг/кг. Для коррекции гликемии готовили раствор инсулина 25 ЕД на 250 мл 0,9 % раствора NaCl; 50 мл этого раствора промывали систему для инфузии [15]. Скорость инфузии инсулина регулировали в зависимости от уровня гликемии, определяемого с помощью экспресс-теста, по следующей схеме [16, 17]:

Γ ликемия,	Скорость введения	
ммоль/л	инсулина, ЕД/ч	
< 4	0-1	
5-10	2-4	
10-15	5-8	
15 - 20	6-12	

При появлении тенденции к росту гликемии или отсутствии ожидаемого ее снижения скорость введения инсулина увеличивали. Одновременно проводили инфузию 5 % раствора глюкозы с постоянной скоростью 2-3 мл/кг/ч. Кристаллоидные растворы вводили со скоростью $(0,12\pm0,05)$ мл/кг/мин.

Методика проведения анестезии у пациентов основной группы (n=18) отличалась только введением в состав премедикации клофелина в дозе 2,5 мкг/кг. Доза фентанила у пациентов этой группы составила $(3,62\pm1,05)$ мкг/кг.

В течение анестезии контролировали среднее артериальное давление (САД), частоту сердечных сокращений (ЧСС), гликемию, уровень кортизола и ИРИ, дозы инсулина и опиатных анальгетиков на следующих этапах: перед анестезией; в начале опе-

рации; в травматичный момент операции; в конце операции; через час после операции.

Результаты и их обсуждение. Исходные данные больных обеих групп достоверно не различались между собой (табл. 1).

Таблица 1. Исследованные показатели больных с СД 2-го типа на фоне инсулинорезистентности перед оперативным вмешательством

	Группа		
Показатель	контроль- ная	основная	
ИМТ, $\kappa \Gamma / M^2$	$29,4{\pm}1,5$	$29,5{\pm}1,9$	
Γ ликемия, ммоль $/$ л	$9,6{\pm}1,4$	$9,9{\pm}1,2$	
Индекс НОМА	$12,6 \pm 5,7$	$14,3 \pm 6,7$	
Кортизол, нмоль/л	579 ± 129	$609 {\pm} 97$	
САД, мм рт. ст.	$108,6\pm10,7$	$107,3 \pm 9,1$	
$^{-1}$	$83,7 \pm 9,0$	$81,3\pm7,7$	

Как видно из данных табл. 1, у больных отмечалась избыточная масса тела (ИМТ>25 кг/м 2), гипергликемия, значительное повышение индекса НОМА, тенденция к повышению уровня кортизола, артериальной гипертензии и тахикардии.

В течение анестезии исследованные показатели изменялись следующим образом.

Уровень гликемии и требуемая скорость введения инсулина перед операцией существенно не различались у пациентов обеих групп (рис. 1, 2). После интубации трахеи гликемия у пациентов контрольной группы немного повысилась — $c(9.6\pm1.4)$ до $(10,3\pm1,2)$ ммоль/л (p>0,05), а в основной — практически не изменилась — снижение с $(9,9\pm1,3)$ до $(9,8\pm1,0)$ ммоль/л (р>0,05). В тех же направлениях и также несущественно изменились и дозы инсулина: в контрольной группе доза повысилась с $(0,050\pm0,019)$ до $(0,059\pm0,017)$ ЕД/кг/ч (p>0.05), а в основной — снизилась с $(0.054\pm$ (0,020) до $(0,053\pm0,014)$ ЕД/кг/ч (p>0,05). В наиболее травматичный момент операции эффективность инсулинотерапии оказалась достоверно различной в группах больных. Несмотря на то что в контрольной группе доза инсулина повысилась до (0,078± 0,012) ЕД/кг/ч (p<0,05 по сравнению с дозой на предыдущем этапе), а в основной только до (0.056 ± 0.016) ЕД/кг/ч (p>0.05 по сравнению с дозой на предыдущем этапе), гликемия в основной группе достоверно не изменилась и составила $(10,1\pm0,9)$ ммоль/л, в то время как в контрольной группе она повысилась до $(11,1\pm0,9)$ ммоль/л.

Далее в обеих группах происходило снижение скорости инфузии инсулина и

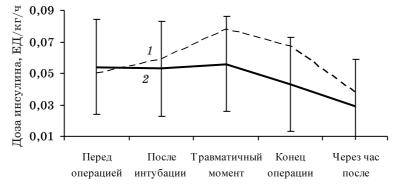


Рис. 1. Доза инсулина на этапах исследования у больных контрольной (1) и основной (2) группы

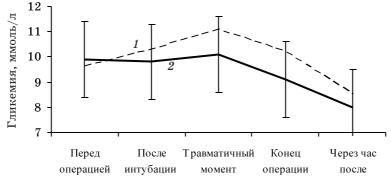


Рис. 2. Гликемия на этапах исследования у больных контрольной (1) и основной (2) группы

уровня гликемии, но и через час после операции сохранялись достоверные, хотя и менее выраженные, различия этих показателей: скорость введения инсулина составила в контрольной группе $(0,037\pm0,010)$ ЕД/кг/ч, а в основной — $(0,029\pm0,011)$ ЕД/кг/ч, гликемия — соответственно $(8,5\pm0,7)$ и $(8,0\pm0,6)$ ммоль/л (p<0,05 для всех показателей).

Общая доза инсулина у больных контрольной группы в среднем составила (8,81 \pm 1,49) ЕД, основной — (6,97 \pm 1,48) ЕД (p<0,05), а средняя скорость его введения равнялась в контрольной группе (0,058 \pm 0,010) ЕД/кг/ч, в основной — (0,047 \pm 0,013) ЕД/кг/ч (p<0,05).

Уровень кортизола имел также различную динамику в исследованных группах (рис. 3). В контрольной группе этот показатель достоверно увеличился с (579±129) до (658±92) нмоль/л уже после интубации трахеи, а после проведения наиболее травматичного этапа операции достиг (803±84) нмоль/л. Далее уровень кортизола у пациентов контрольной группы снижался и через час после операции уже достоверно не

отличался от исходного уровня — (658 ± 119) нмоль/л. У больных основной группы в течение всего оперативного вмешательства достоверных колебаний уровня кортизола не обнаружено, а с наиболее травматичного момента операции он оставался достоверно ниже, чем у пациентов контрольной группы. Через час же после операции этот показатель достоверно снизился относительно исходного уровня и составил (460 ± 50) нмоль/л против (644 ± 84) нмоль/л в травматичный момент и (609 ± 97) нмоль/л перед операцией.

Введение в состав премедикации клофелина сказалось и на гемодинамических показателях (табл. 2). Исходные САД и ЧСС, как и другие исходные показатели, в группах не имели достоверных различий. Прессорная реакция на интубацию трахеи клофелином не была подавлена: в контрольной группе САД повысилось со $(108,6\pm10,7)$ до $(117,3\pm6,5)$ мм рт. ст., а в основной — со $(107,3\pm9,1)$ до $(113,1\pm7,3)$ мм рт. ст. (p>0,05) между группами). Что же касается ЧСС, то

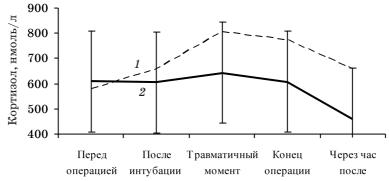


Рис. 3. Уровень кортизола на этапах исследования у больных контрольной (1) и основной (2) группы

Таблица 2. Гемодинамические показатели на этапах исследования у больных СД 2-го типа на фоне инсулинорезистентности

П	2	Группа	
Показатель	Этап исследования	контрольная	основная
САД, мм рт. ст.	Перед операцией	$108,6 \pm 10,7$	$107,3 \pm 9,1$
	После интубации	$117,3\pm 6,5$	$113,1{\pm}7,3$
	Травматичный момент	$107,8 \pm 5,9$	$101,5{\pm}6,8$
	Конец операции	$105,9 \pm 5,7$	$95,7{\pm}8,4$
	Через час после операции	$100,3\pm 8,6$	$94,4{\pm}7,3$
ЧСС, мин ⁻¹	Перед операцией	$83,7 \pm 9,0$	$81,3 \pm 7,7$
	После интубации	$88,9 \pm 7,8$	$79,2 {\pm}5,5$
	Травматичный момент	$93,1 \pm 8,7$	$74,7{\pm}6,5$
	Конец операции	$86,7 \pm 8,3$	$69,9 {\pm}6,7$
	Через час после операции	$78,7 \pm 7,9$	$69,6{\pm}6,2$

клофелин эффективно предупреждал развитие тахикардии в ответ на интубацию трахеи: в контрольной группе ЧСС повысилась с $(83,7\pm9,0)$ до $(88,9\pm7,8)$ мин⁻¹ (p<0,05), а в основной группе она даже незначительно снизилась с $(81,3\pm7,7)$ до $(79,2\pm5,5)$ мин⁻¹ (р>0,05). Такое влияние клофелина на гемодинамические показатели во время интубации трахеи описано и в [18]. К наиболее травматичному моменту операции САД в контрольной группе вернулось к исходному повышенному уровню — $(107,8\pm5,9)$ мм рт. ст., а ЧСС продолжала увеличиваться и достигла $(93,1\pm8,7)$ мин⁻¹. В этот же момент в основной группе эти показатели составили соответственно $(101,5\pm6,8)$ мм рт. ст. и $(74,7\pm6,5)$ мин⁻¹ (p<0,05). Такое соотношение между гемодинамическими показателями сохранялось до конца исследования: через час после операции в контрольной группе САД снизилось до уровня ниже исходного и составило $(100,3\pm8,6)$ мм рт. ст. (p<0,05), но это оказалось достоверно выше, чем в основной группе — $(94,4\pm7,3)$ мм рт. ст. На этом же этапе исследования ЧСС в контрольной группе перестала достоверно отличаться от исходной — $(78,7\pm7,9)$ мин⁻¹, а в основной — стала достоверно ниже исходной — $(69,6\pm6,2)$ мин⁻¹.

Применение клофелина у исследованных больных не вызвало эпизодов артериальной гипотензии и брадикардии, как и не наблюдалось артериальной гипертензии и тахикардии, в то время как у некоторых пациентов контрольной группы в травматичный момент операции отмечались артериальная гипертензия и тахикардия, что вынуждало повышать дозы опиатов. Скорость введения фентанила у пациентов контрольной группы составила $(5,74\pm1,73)$ мкг/кг/ч, а у пациентов основной группы — $(4,49\pm1,28)$ мкг/кг/ч (p<0,05).

Таким образом, дополнительное торможение активности симпатоадреналовой системы с помощью центрального α_2 -адреномиметика клофелина во время лапароскопиче-

ских холецистэктомий, проводимых под внутривенной анестезией на основе тиопентала натрия, у рассматриваемой категории больных делает гликемию более управляемой, позволяет уменьшить количество инсулина, используемого во время анестезии и снизить дозу наркотических анальгетиков, т. е. снизить степень инвазивности анестезии.

Выводы

- 1. Декомпенсация углеводного обмена при сахарном диабете 2-го типа сопровождается повышением уровня гликозилированного гемоглобина более 8 %, поэтому перед оперативным вмешательством у этой категории больных целесообразно контролировать данный показатель.
- 2. Одной из причин декомпенсации углеводного обмена при сахарном диабете 2-го типа является развитие инсулинорезистентности, в частности, вследствие повышения на фоне хирургического стресс-ответа уровня контринсулярных гормонов, являющихся в то же время гормонами стресса.
- 3. Снижение активности симпатоадреналовой системы с помощью центрального α_2 -адреномиметика клофелина во время лапароскопических холецистэктомий, проводимых под внутривенной анестезией на основе тиопентала натрия, у больных сахарным диабетом 2-го типа с явлениями инсулинорезистентности улучшает управляемость гликемией, а также снижает потребность в наркотических анальгетиках без дополнительного угнетения ЦНС и внешнего дыхания.
- 4. Целесообразны дальнейшие поиски безопасных методов снижения напряженности стрессорных реакций во время оперативных вмешательств у больных с инсулинорезистентностью. Одним из направлений этих поисков может быть изучение влияния современных общих анестетиков, а также методов регионарной анестезии на углеводный обмен и уровень контринсулярных гормомер.

Список литературы

- 1. Дедов И. И. Диабетическая нефропатия / И. И. Дедов, М. В. Шестакова. М. : Универсум Паблишинг, 2000. 240 с.
- 2. *Неймарк М. И.* Периоперационный период в эндокринной хирургии / М. И. Неймарк, А. П. Калинин. М.: Медицина, 2003. 336 с.
- 3. Schricker T. Type 2 diabetes mellitus and the catabolic; sponse to surgery / T. Schricker, R. Gougeon, L. Eberhart // Anesthesiology. 2005. Feb. V. 102 (2). P. 320–326.
- 4. Чиркин A. A. Пути оптимизации выявления и наблюдения больных с признаками метаболического синдрома / А. А. Чиркин, С. А. Голубев // Медицинские новости. 2002. № 10. С. 23–29.

- 5. Mейлах Б. Л. Лапароскопическое регулируемое бандажирование желудка в лечении больных морбидным ожирением: автореф. дис. на соискание уч. степени д-ра мед. наук: спец. 14.00.27 «Хирургия» / Б. Л. Мейлах. М., 2009. 50 с.
- 6. Шлапак І. П. Цукровий діабет: погляд з позиції лікаря-анестезіолога / І. П. Шлапак, О. А. Галушко. К. : Книга плюс, $2010.-160\,\mathrm{c}$.
- 7. Рекомендации Американской диабетической ассоциации по оказанию медицинской помощи больным сахарным диабетом 2010 года // Здоров'я України. 2010. № 4. С. 27–28.
- 8. Эндокринология / [Боднар П. Н., Михальчишин Г. П., Комиссаренко Ю. И., Приступюк А. М.]. Винница : Нова книга, 2007. 344 с.
- 9. Metabolic precursors of hypertension / S. M. Haffner, H. Miettinin, S. P. Gaskill [et al.] // Arch. Intern. Med. 1996. V. 156. P. 1994–2000.
- 10. Береснєв О. В. Клінічна фармакологія наркотичних анальгетиків / О. В. Береснєв, К. Г. Михневич // Клінічна фармакологія. Харків, 1995. Т. 2. С. 240-262.
- 11. Kehlet H. Effect of pain relief on the surgical stress response / H. Kehlet // Reg. Anesth. 1996. V. 21 (6S). P. 35-37.
- 12. *Мулер В. П.* Анестезия у больных с сопутствующим сахарным диабетом / В. П. Мулер, Ю. В. Тупикин // Вестник новых медицинских технологий. 1996. Т. 3, \mathbb{N} 1. С. 47–49.
- 13. Игнатов Ю. Д. Средства и методы неопиатной аналгезии с позиций концепции об адренергической регуляции болевой чувствительности / Ю. Д. Игнатов, А. А. Зайцев // Анестезиология и реаниматология. 1991. № 3. С. 65–68.
- 14. Γ еодакян О. С. Клиническое использование клонидина (Клофелина) в анестезиологии / О. С. Геодакян, Л. Е. Цыпин // Вестник интенсивной терапии. 2000. № 4. С. 76–81.
- 15. Противодиабетическая терапия при хирургических вмешательствах / Ю. Антоненко, В. Кузьменко, В. Антоненко [и др.] // Новая медицина тысячелетия. $2008. \mathbb{N} 1. \mathbb{C}. 24-29.$
- 16. Сахарный диабет, хроническая почечная недостаточность, гемодиализ стратегия и тактика анестезиолога / А. П. Николаев, В. А. Светлов, С. П. Козлов [и др.] // Анестезиология и реаниматология. 2002. № 5. С. 77-80.
- 17. Уоткинс
 П. Дж. Сахарный диабет / П. Дж. Уоткинс ; [пер. с англ.]. М. : Изд-во Бином, 2006. 134 с.
- 18. Preanaesthetic medication with clonidine // P. M. C. Wright, U. A. Carabine, S. McClune [et al.] // Br. J. Anaesth. 1990. V. 65. P. 628–632.

A.A. Хижняк, H.Д. Лантухова, M.B. Лизогуб, M.Д. Бітчук ЗАСТОСУВАННЯ КЛОФЕЛІНУ ПІД ЧАС АНЕСТЕЗІЇ У ХВОРИХ З ІНСУЛІНОРЕЗИСТЕНТНІСТЮ НА ТЛІ ЦУКРОВОГО ДІАБЕТУ 2-ГО ТИПУ

Вивчено вплив клофеліну у складі премедикації (2,5 мкг/кг) на керованість глікемією у 38 хворих із цукровим діабетом 2-го типу з явищами інсулінорезистентності, яким були виконані ургентно лапароскопічні холецистектомії під багатокомпонентною внутрішньовенною анестезією зі штучною вентиляцією легень. Виявлено, що клофелін знижує потреби в інсуліні. Середня швидкість уведення — $(0.058\pm0.010)\,\mathrm{O}\mathrm{J/kr/ro}$ у контрольній групі та $(0.047\pm0.013)\,\mathrm{O}\mathrm{J/kr/ro}$ в основній групі. Клофелін також попереджає збільшення рівня кортизолу, розвиток тахікардії (але не артеріальної гіпертензії) у відповідь на інтубацію трахеї. Вірогідно знижує потребу у фентанілі — $(5.74\pm1.73)\,\mathrm{mkr/kr/ro}$ у контрольній групі та $(4.49\pm1.28)\,\mathrm{mkr/kr/ro}$ — в основній. Отримані результати дозволяють рекомендувати використовувати клофелін $(2.5\,\mathrm{mkr/kr})\,\mathrm{y}$ складі премедикації у хворих з інсулінорезистентністю.

Ключові слова: глікозильований гемоглобін, імунореактивний інсулін, інсулінорезистентність, індекс НОМА, клофелін.

$A.A.\ Khyzhnjak, N.D.\ Lantuhova, N.V.\ Lizogub, N.D.\ Bitchuk$ CLOPHELIN ADMINISTRATION DURING SURGICAL ANESTHESIA IN PATIENTS WITH INSULIN RESISTANCE ON THE BASE OF TYPE 2 DIABETES MELLITUS

The influence of premedication with clophelin $(2,5~\mu g/kg)$ on the glycaemia control is studied in 38 patients with type 2 diabetes mellitus with insulin resistance during laparoscopic cholecystectomia under intravenous anesthesia with mechanical ventilation. It was founded, that clophelin decreases the requirements for insulin. The speed of insulin infusion was $(0,058\pm0,010)~U/kg/h$ in patients of the group of control and $(0,047\pm0,013)~U/kg/h$ in patients of the main group. Clophelin also prevents increasing of cortisol level and tachycardia (but not arterial hypertension) during and after intubation. It also decreases requirements for phentanil: $(5,74\pm1,73)~\mu g/kg/h$ in patients of the control group and $(4,49\pm1,28)~\mu g/kg/h$ in patients of the main group. The obtained data allows us to recommend premedication with clophelin $(2,5~\mu g/kg)$ for patients with insulin resistance.

Key words: glycosylated hemoglobin, immunoreactive insulin, insulin resistance, index HOMA, clophelin. ${}_{\textstyle\Pi\text{ocmynuaa}\ 02.12.10}$