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ONE-BODY STATES IN THE SCHRÖDINGER MODEL WITH 
HYPERBOLIC DOUBLE-WELL POTENTIALS  

 
Wave one-body states in the model system describing by the one-

dimensional Schrödinger equation with a hyperbolic double-well confining 
potential is considered. With the help of the transformation to confluent Heun 
equation we have obtained polynomial solutions, representing the wavefunctions 
of bound states. The requirements on the potential parameters providing existent 
of the coupled quantum states is analized. 

 
1. Introduction 

A small number of exact solutions to the Schrödinger equation were obtained 
historically in the genesis of quantum mechanics.1–5. More recently, other exactly-
soluble systems have been found by both traditional means 6,7 and via the 
factorization techniques of supersymmetric quantum mechanics (SUSY).8,9. 
Conventionally, analytical solutions to the Schrödinger equation were found via a 
reduction to a hypergeometric equation,10 an equation with three regular singular 
points, however recently a new solution via Heun’s differential equation11–14 has 
been reported.15. 

Heun’s equation, a Fuchsian equation with four regular singular points, was 
initially studied by the German mathematician Karl Heun in the late 19th 
century.16 It has several special or limiting cases of great importance in 
mathematical physics, namely the Lam´e, Mathieu and spheroidal differential 
equations.17 However, it is only recently that its use in physics has become 
increasingly widespread,18 with its solutions being used in works ranging from 
quantum rings19 to black holes.20 In this work, we report a class of confining 
potentials that can be transformed to the confluent Heun equation from the one-
dimensional Schrödinger equation. One case, of a hyperbolic double-well, allows 
one to reduce the solution to simple polynomials for special values of the system 
parameters. The double-well problem has been studied extensively 21–23 and is of 
continued interest due to its importance as a toy model, from heterostructure 
physics24 to the trapping of Bose-Einstein condensates.25.  

Please consider the following class of potentials, defined by two physical 
parameters V0 and d, shaping the potential depth and width respectively, and with 
two class parameters, with q = 2, 0, 2, 4, 6 defining the ’family’ and p =0. 

Most notable is the case (q, p) = (2, 0), which describes the well-known 
P¨oschl-Teller potential.4 In fact, all constituent potentials of the families q = 2, 
0, 2 lead to Schr¨odinger equations of no more than three singular points after a 
transformation of independent variable to _ = 1/ cosh2(x/d) or _ = tanh(x/d), and so 
can be reduced to equations of the hypergeometric type. Termination of the 
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resultant hypergeometric functions leads to analytic expressions for the 
eigenvalues of the problem. However, when q = 4, 6 the same transformation 
variables lead to equations of the confluent Heun type. Now, two termination 
conditions must be satisfied in order to get a polynomial solution to the 
Schr¨odinger equation. The (4, p) family cannot be terminated due to the first 
condition, which imposes a simple relation on the physical parameters arising in 
the problem. The (6, p) family fulfill the first condition but not the second, more 
involved condition, which also must hold to abort the Taylor series solution. 
However, remarkably the special case of (6, 4) is an exception and does admit 
polynomial solutions for certain values of the physical parameters, which will be 
the main focus of this work. The rest of this work is as follows. We give a full 
derivation of our solution in terms of confluent Heun functions in Sec. II, along 
with details of the power series solution. In Sec. III we provide the eigenvalues of 
our hyperbolic double-well problem, along with examples of the wavefunctions 
found for the first few states. We provide numerical support to our analytic results 
in Sec. IV and finally, we draw some conclusions in Sec. V. 

The atomic and electron structure of carbon nanotubes can be represented as, 
a two-dimensional carbon hexagonal structure rolling along a given direction and 
reconnecting the carbon bonds. Systems of carbon atoms can exist in several 
modifications: laminated graphite with a hexagonal structure, nite carbon, crystal 
diamond, the fullerenes C60, C70, C78, C8, and carbon nanotubes—two-dimensional 
extended structures rolled up in a single- or multiwall tube [1,2]. Carbon nanotubes 
were synthesized simultaneously with fullerenes and are more interesting 
structures because they model a one-dimensional system. Soliton states are known 
to be formed in such systems.  

The property of nanotubes to absorb liquid metal, hydrogen, oxygen, 
methane, and other gases opens a prospect for constructing strong thin conducting 
lines of fuel elements and creating new types of fuel. The discovery of 
superconductivity in metal-doped C60 [3] feeds the hope to find the same 
phenomenon in nanotubes filled with metal or to modify the superconductivity of 
known superconductors by injecting them in a nanotube. 

Electron spectrum of such structure is characterized by quantum numbers 
including the number of radial ( )n , azimuthal ( m ) and longitudinal ( k ) modes 
[4,5]. Its physical properties are considerably related to collective electron-phonon 
excitations and oscillations of electron density (plasmons or plasma oscillations). 

The equations, describing such excitations, can be obtained on the basis the 
functional integral method with help of the variational derivatives of the expression 
for the effective action integral. We assume that a such approach allows most 
precisely to calculate polarizing function of the carbon nanotube in view of all 
features of its atomic  structure. 
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2. The effective action function of the system 

The researched system consists of ions with charge Ze  and degenerate 
electrons. Then the functional integral of the system in terms of spatial coordinates 
( , ,x y z ) and imaginary time ( ) can be represented as [4,5] 

        exp [ ]Z D D S ,                                     (1) 

where the action [ ]S  is determined by the expression 
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Here s  is an electron spin, ( , )s x r  is the two-component wave function of 
the nanotube lattice ( ,a b ) 
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where /r r ,  / (2 )a m  is the kinetic energy for the a th sublattice, a  a 
chemical potential of the a th sublattice.  

The charge density ( , )x r  is composed of ion ( ( , )q x r ) and electron 
( ( , )e x r ) parts and equals ( , ) ( , ) ( , )q ex r x r x r , where 

,
, ,

( , ) ( , ) , ( , ) ( , )q q e ex r x r x r x r . 

The summation on  and  is carried out over all lattice sites  a  and b .   
In the representation of the functional integral (1) can be rewritten as 

        [ , ] exp [ , ]Z D D D S ,                               (3) 

where the action function [ , ]S , which contains an electron influence, the field 
 and its interaction, has the form   
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Integrating in (3) on Fermi fields [4] and using the known Liouville formulae, 
lg det ' Sp (ln ) 'A A , where A  is matrix, a prime denotes a first derivative, we 

can transform (3) to the form exp [ ]effZ D S . Here the effective action 
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allows to describe the system in collective variables.   
The matrix Green function, ,|| ||G G  of the system is determined by the 

equation  
   '( , ) ( , ; , ) ( ) ( )x y x yK x G x y x y                      (5) 

At presence only the effective field, effV , of single-electron model potential of 
carbon nanotube (see [Ah]) the Green function, 0 0,|| ||G G , is determined by the 
equation 

'
0 0( , ) ( , ; , ) ( ) ( )x y x yK x G x y x y , 

where  0 ( , ) '( , ) |
effx x iVK x K x .   

Using the representation 0 1'( , ) ( , ) ( , )x x xK x K x K x , where  the function 

0 ( , ) ( ( , ) ( )) || c ||, c 1, ( , 1,2)x x eff ik ikK x ie x eV x i k  (5) can be rewritten in 
the form 
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The obtained expressions for the effective action function together with the 
equation (6) for the Green function permit build the equations determining the field 

( , )xx .   
 

3. The equations for field functions 
The equations describing states of the system are obtained by equating to zero 

the variational derivation of the effective action function (4) with respect to 
generalized coordinates ( , )xx , lq , lp that give the system 
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From the first equation of the system (7) follows that the field function 
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means the electrical field of the electrical potential of ions and electrons. This 
quantity completely determines the interaction in the system and its collective 
excitations. Taking into account that ( ) 4 ( )V x y x y , the equation (8) 
can be transformed to the form 
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that together with the equation (6) consists the closed system.  For solving this 
system we introduce the new notations the 1 2G G G  and 0 01 02G G G . Then 
taking into account that for statical ions  
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which describes plasma oscillations.  
The second and third equations of the system (7) determine motion of carbon 

ions. The obtained self-consistent close system of equations describes the electron 
and vibrational subsystems via collective variations.   

For calculation the electron density fluctuation induced by plasma vibration 
relative to the stationary ion lattice we will enter into (8) the polarization operator 

1 1( , ; , )P x z  which is determined by equality 
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Then the field function can represent in terms of the effective potential effV  

and polarization operator P  in the form 
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The Green function obeys the matrix equation 
2

0 0 08G G e G P V G G   , 

whence applying the relation  0V G PG  we can obtain the equation     
                            2

08P V e V G P ,                                              (10) 
determining in the linear approximation the polarization P . The poles of the 
Fourier transform of the polarization function P  determine plasma oscillations of 
the density relative to a ground stationary state.      

Applying the Fourier transform to (10) we can obtain in the approximation of 
the second order in V  the expression  
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where q  and  are coordinate and frequency components of the Fourier 
transform; Energy levels of stationary states of the electron subsystem are denoted 
as nmkE  (see [1]). The spectrum and intensity of the collective excitations are 
described  by the diagonal part of ( , ; ', ')P q q . 
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The problem solution of software choice that are designed for use in the 

educational process when implementing of distance learning using the method of 
analytic networks was proposed. 

Distance learning, software, task selection, problem solution. 
 

       
 ( )    ( )   

     ,    
  ( ).   ,    

:    ( ),    
( )   -  ( ).     


