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A generalization of the classical Leray�Schauder �xed point theo-
rem, based on the in�nite-dimensional Borsuk�Ulam type antipode
construction, is proposed. Two completely di�erent proofs based on
the projection operator approach and on a weak version of the well
known Krein�Milman theorem are presented.

1. INTRODUCTION

The classical Leray-Schauder �xed point theorem and its diverse versions
[1,2,5,8,11,13,15,18] in in�nite-dimensional both Banach and Frechet spaces,
being nontrivial generalizations of the well known �nite-dimensional Brouwer
�xed point theorem, have many very important applications [2, 5, 8, 10�12]
in modern applied analysis. In particular, there exist many problems in
theories of di�erential and operator equations [2, 10, 12, 15, 17, 18], which
can be uniformly formulated as

â x = f(x), (1)

where â : E1 → E2 is some closed surjective linear operator from Banach
space E1 into Banach space E2, de�ned on a domain D(â) ⊂ E1, and f :
E1 → E2 is some, in general, nonlinear continuous mapping, whose domain
D(f) ⊆ D(â) ∩ Sr(0), with Sr(0) ⊂ E1 being the sphere of radius r ∈ R+
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centered at zero. Concerning the mapping f : E1 → E2 we will assume that
it is â-compact. This means that the induced mapping fgr : Dgr(â) → E2,
where Dgr(â) ⊂ E1 ⊕ E2 is the extended graph domain endowed with the
graph-norm, Lipschitz-projected onto the space E1 via j : Dgr(â) → E1, and
the following equality fgr(x̄) = f(j(x̄)) holds for any x̄ ∈ Dgr(â). It is easy
to observe also [9] that the mapping f : E1 → E2 is â-compact if and only if
it is continuous and for any bounded set A2 ⊂ E2 and arbitrary bounded set
A1 ⊂ D(f) the set f(A1 ∩ â−1(A2)) is relatively compact in E2. The empty
set ∅, by de�nition, is considered to be compact too.

2. PRELIMINARY CONSTRUCTIONS

Assume that a continuous mapping f : E1 → E2 satis�es the following con-
ditions:

1) the domain D(f) = D(â) ∩ Sr(0);
2) the mapping f : D(f) → E2 is â-compact;
3) there holds a bounded constant kf > 0, such that

sup
y∈Sr(0)

‖f(y)‖2

r
= k−1

f ,

where a linear operator â : E1 → E2 is taken closed and surjective with the
domain D(â) ⊂ E1. The domain D(â), in general, can not be dense in E1.

Let now Ẽ1 := E1/Ker â and p1 : E1 → Ẽ1 be the corresponding
projection. The induced mapping ã : Ẽ1 → E2 with the domain D(ã) :=
p1(D(â)) is de�ned as usual, that is for any x̃ ∈ D(ã), â(x̃) := a(p1(x̃)). It
is a well know fact [1,13,18] that the mapping ã : Ẽ1 → E2 is invertible and
its norm is calculated as

‖ã−1‖ := sup
‖y‖2=1

‖ã−1(y)‖ = sup
‖y‖2=1

inf
x∈D(â)

{‖x‖1 : a(x) = y} , (2)

where we denoted by ‖ · ‖1 and ‖ · ‖2 the corresponding norms in spaces E1

and E2. The following standard lemma [13,18] holds.
Lemma 2.1. The mapping ã : Ẽ1 → E2 is invertible and the norm

‖ã−1‖ := k(â) < ∞.

Proof. We have, by de�nition (2), that the norm ‖ã−1‖ equals

k(â) = ‖ã−1‖ := sup
y∈E2

‖ã−1(y)‖Ẽ1

‖y‖2
= sup

y∈E2

1
‖y‖2

inf
x∈D(â)

{‖x‖1 : â(x) = y} . (3)
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Since the linear mapping â : E1 → E2 is surjective, the mapping â−1 : E2 →
Ẽ1 is de�ned on the whole space E2. Moreover, as the mapping â : E1 → E2

is a closed operator, the induced inverse operator ã−1 : E2 → Ẽ1 is closed
[13, 17, 18] too. Thereby, making use of the classical closed graph theorem
[1,12, 13], we conclude that the inverse operator ã−1 : E2 → Ẽ1 is bounded,
that is norm

‖ã−1‖ := k(â) < ∞, (4)
�nishing the proof.

The next lemma characterizes the multi-valued mapping â−1 : E2 → E1

by means of the constant k(â) < ∞, de�ned by (4).
Lemma 2.2. The multi-valued inverse mapping â : E2 → E1 is Lipschi-

tzian with the Lipschitz constant k(â) < ∞, that is

ρχ(â−1(y1), â−1(y2)) ≤ k(â)‖y1 − y2‖2 (5)

for any y1, y2 ∈ E2, where ρχ : Ẽ1 × Ẽ1 → R+ is the standard Hausdorf
metrics [1, 13, 18] in the space E1.

Proof. The statement is a simple corollary from formula (3) and the
Hausdorf metrics de�nition.

To describe the solution set of equation (1) we need to know a more
deeper structure of the mapping â : E1 → E2 and its multi-valued inverse
â−1 : E2 → E1. Namely, we are interested in �nding a suitable, in general,
nonlinear continuous selection s : E2 → E1 [1, 12, 14, 15] of the multi-valued
mapping â−1 : E2 → E1, satisfying some additional properties.

The following theorem is crucial for proving the main result obtained
below.

Lemma 2.3. For any constant ks > k(â) there exists a continuous odd
mapping s : E2 → E1, satisfying the following conditions: i) â(s(y)) = y for
any y ∈ E2; ii) ‖s(y)‖1 ≤ ks‖y‖2, y ∈ E2.

Proof. Since the multi-valued mapping â−1 : E2 → E1 is de�ned on the
whole Banach space E2, one can write down that

â−1 y = x̄y ⊕Ker â (6)

for any y ∈ E2 and some speci�ed elements x̄y ∈ E1\Ker â, labelled by
elements y ∈ E2. If the composition (6) is already speci�ed, we can de�ne a
selection s : E2 → E1 as follows:

s(y) :=
1
2
(x̄y − x̄−y)⊕ 1

2
(c̄y − c̄−y), (7)
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where the elements c̄y ∈ Ker â, y ∈ E2, are chosen arbitrary, but �xed. It is
now easy to check that

s(−y) = −s(y) (8)
and

â s(y) = â (1
2(x̄y − x̄−y)⊕ 1

2(c̄y − c̄−y)) =

= 1
2 â x̄y − 1

2 â x̄−y = 1
2y − 1

2(−y) = y
(9)

for all y ∈ E2, thereby the mapping (7) satis�es the main conditions i) and
ii) above. To state the continuity of the mapping (7), we will consider below
expression (3) for the norm ‖ã−1‖ = k(â) of the linear mapping ã−1 : E2 →
Ẽ1. We can easily write down the following inequality

‖s(y)‖1 =
∥∥∥∥
1
2
(x̄y − x̄−y)⊕ 1

2
(c̄y − c̄−y)

∥∥∥∥
1

=
1
2
‖(x̄y ⊕ c̄y)−

−(x̄−y ⊕ c̄−y)‖1 ≤ 1
2
(‖(x̄y ⊕ c̄y)‖1 + ‖(x̄−y ⊕ c̄−y)‖1) ≤

≤ 1
2
ks‖y‖2 +

1
2
ks‖y‖2 = ks‖y‖2,

(10)

giving rise to the continuity of mapping (7), where we have assumed that
there exists such a constant ks > 0, that

‖(x̄y ⊕ c̄y)‖1 ≤ ks‖y‖2, (11)

for all y ∈ E2. This constant ks > k(â) strongly depends on the choice of
elements c̄y ∈ Ker â, y ∈ E2, what one can observe from de�nition (3).
Really, owing to the de�nition of in�mum, for any ε > 0 and all y ∈ E2 there
exist elements x̄

(ε)
y ⊕ c̄

(ε)
y ∈ E1, such that

k(â) ≤ ‖x̄(ε)
y ⊕ c̄

(ε)
y ‖1

‖y‖2
< k(â) + ε := ks. (12)

Now making now use of formula (7), we can construct a selection sε :
E2 → E1 as follows:

sε(y) :=
1
2
(x̄(ε)

y − x̄
(ε)
−y)⊕

1
2
(c̄(ε)

y − c̄
(ε)
−y), (13)

satisfying, owing to inequalities (12), the searched for conditions i) and ii):

â sε(y) = y, ‖sε(y)‖1 ≤ ks‖y‖2 (14)

for all y ∈ E2 and ks := k(â)+ε , ε > 0. Moreover, the mapping sε : E2 → E1

is, by construction, continuous [6, 9, 14] and odd that �nishes the proof.
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3. AN INFINITE-DIMENSIONAL BORSUK-ULAM TYPE
GENERALIZATION OF THE LERAY-SCHAUDER
FIXED POINT THEOREM

Consider now the equation (1), where mappings â : E1 → E2 and f : E1 →
E2 satisfy the conditions described above. Moreover, we will assume that
the selection s : E2 → E1, constructed above, and the mapping f : D(f) ⊂
E1 → E2 satisfy additionally the following inequalities:

k(â) < ks < kf , (15)

where, by de�nition,

sup
x∈Sr(0)

‖f(x)‖
r

:= k−1
f < ∞. (16)

Then the following main theorem holds.
Theorem 3.1. Assume that the dimension dimKer â ≥ 1, then equation

(1) possesses on the sphere Sr(0) ⊂ E1 the nonempty solution set N (â, f) ⊂
E1, whose topological dimension dimN (â, f) ≥ dimKer â− 1.

Proof. Suppose that dimKer â ≥ 1 and state �rst that the set N (â, f)
is nonempty. Consider a reduced mapping fr : D(â) ⊂ E1 → E2, where

fr(x) :=





‖x‖1

r
f

(
rx

‖x‖1

)
, if x 6= 0,

0, if x = 0
(17)

and observe that this mapping is â-compact too, if the mapping f : D(f) ⊂
E1 → E2 was taken â-compact. Really, for any bounded sets A2 ⊂ E2 and
A1 ⊂ BR(0) ∩D(â) the set fr(A1 ∩ â−1(A2)) ⊂

⊂ {
ty ∈ E2 : t ∈ [0, R/r] , y ∈ f(Sr(0)) ∩ â−1(A2)

}
:= Fr (18)

is relatively compact owing to the â-compactness of the mapping f : D(f) ⊂
E1 → E2, where BR(0) is a ball of radius R > 0. Thereby, the closed set
F̄r ⊂ E2 is compact, or the mapping (17) is â-compact.

Assume now that a mapping s : E2 → E1 satis�es all of the conditions
formulated in Theorem 2.3. Take a nonzero element c̄ ∈ Ker â, de�ne the
Banach space E

(+)
2 := E2 ⊕R and consider a set of mappings ϕ

(ε)
r : E

(+)
2 →

E2, where
ϕ(ε)

r (y, t) :=
t

t2 + ε2
fr(ts(y) + t2c̄) (19)
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for all (y, t) ∈ E
(+)
2 , small enough ε ∈ R\ {0} and some �xed nontrivial

element c̄ ∈ Ker â. It is also evident that

ϕ(ε)
r (y, 0) := 0, (20)

being well de�nite for all ε ∈ R\ {0} and y ∈ E2, owing to condition 3)
imposed above on the mapping f : D(f) ⊂ E1 → E2. The set of mappings
(19) is, evidently, odd, that is

−ϕ(ε)
r (y, t) = ϕ(ε)

r (−y,−t) (21)

for all (y, t) ∈ E
(+)
2 , ε ∈ R\ {0} and moreover, it is compact. Really, for any

bounded set A
(+)
2 := A2 ⊕∆ ⊂ E

(+)
2 , where ∆ ⊂ R is an arbitrary bounded

interval, the set B2 := ∪
t∈∆

B
(t)
2 , B

(t)
2 := {s(y) + tc̄ ∈ E2} , is bounded too,

and B2 ⊂ â−1(A2). Owing to the â−compactness of mapping (17), one gets
that the set

ϕ(ε)
r (A(+)

2 ) =
⋃

t∈∆

t

t2 + ε2
fr(tB

(t)
2 ) (22)

is relatively compact, since all of the sets fr(tB
(t)
2 ) ⊂ E2 are relatively

compact for any t ∈ ∆ and, owing to the condition 3) mentioned above,
the set ϕ

(ε)
r (A(+)

2 ) is bounded for any ε ∈ R\ {0} . Thereby, the closed set
ϕ

(ε)
r (A(+)

2 ) ⊂ E2 for any ε ∈ R\ {0} , meaning that the mapping (19) is
compact.

Take now the unit sphere S
(+)
1 (0) ⊂ E

(+)
2 and consider the equation

ϕ(ε)
r (y, t) = y (23)

for (y, t) ∈ S
(+)
1 (0) and ε ∈ R\ {0} that is

‖y‖2
2 + t2 = 1. (24)

We assert that equation (23) possesses for any ε ∈ R\ {0} a solution (yε, tε) ∈
S

(+)
1 (0), such that tε 6= 0 and

tε
t2ε + ε2

fr(tεs(yε) + t2ε c̄) = yε, (25)

where the vector tεs(yε)+ t2ε c̄ ∈ E2 is nontrivial (i.e. it is not equal to zero!).
This is guaranteed by conditions imposed on the mapping f : Sr(0) ⊂ E1 →
E2 and the following Borsuk�Ulam type theorem, generalizing the well known
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Borsuk-Ulam [1, 8, 15, 18] antipode theorem, proved in [9] and formulated
below in a convenient for us form.

Theorem 3.2. Let E
(+)
2 and E2 be Banach spaces, b̂ : E

(+)
2 → E2 be a

linear continuous surjective operator, S
(+)
r (0) ⊂ E

(+)
2 be a sphere of radius

r > 0 centered at zero of E
(+)
2 and ϕ : S

(+)
r (0) → E2 be a compact, in general

nonlinear, odd mapping. Then if dimKer b̂ ≥ 1, the equation

b̂z = ϕ(z), (26)

z ∈ S
(+)
r (0), possesses the nonempty solution set N (b̂, ϕ) ⊂ E

(+)
2 , whose

topological dimension dimN (b̂, ϕ) ≥ dimKer b̂− 1.

Proof. To state that our equation (23) is solvable, it is enough to de�ne
a suitable linear, bounded and surjective operator b̂ : E

(+)
2 → E2 and apply

Theorem 3.2. Put, by de�nition,

b̂z := y, (27)

where z := (y, t) ∈ E
(+)
2 , y ∈ E2, t ∈ R. The operator (27) is evidently linear

bounded with the norm ‖b̂‖ = 1 and surjective with Range b̂ = E2. Take
now the mapping ϕ := ϕ

(ε)
r : E

(+)
2 → E2 for ε ∈ R\{0} and apply Theorem

3.1. Since dimKer b̂ = 1, we get that equation (23), written in the form

ϕ(z) := ϕ(ε)
r (z) = b̂z (28)

for all z ∈ E
(+)
2 , possesses a nonempty solution set N (b̂, ϕ(ε)

r ) ⊂ E
(+)
2 , whose

topological dimension dimN (b̂, ϕ(ε)
r ) ≥ 0 for all ε ∈ R\ {0} . Assume now,

for a moment, that the value tε 6= 0. Then, based on expression (25), one
can easily get that the well-de�ned vector

xε :=
rtε(s(yε) + tεc̄)

|tε| · ‖s(yε) + tεc̄‖1
(29)

satis�es the following equation:

f(xε) = t−2
ε (t2ε + ε2)â xε. (30)

Really, from (25) we obtain that

tε
t2ε + ε2

fr(tεs(yε) + t2ε c̄) =
tε|tε| · ‖s(yε) + tεc̄‖1

r(t2ε + ε2)
×

×f

(
rtε(s(yε) + tεc̄)
|tε|‖s(yε) + tεc̄‖1

)
=

tε|tε| · ‖s(yε) + tεc̄‖1

r(t2ε + ε2)
f(xε) = yε.

(31)
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Whence, recalling the identity â(s(yε)) = yε for any yε ∈ E2, we �nd that

f(xε) =
(t2ε + ε2)r â (s(yε))

tε‖s(yε) + tεc̄‖1
=

(t2ε + ε2)
t2ε

â

(
rs(yε)tε

|tε| · ‖s(yε) + tεc̄‖1

)
=

=
(t2ε + ε2)

t2ε
â

(
tεr(s(yε) + tεc̄)
|tε| · ‖s(yε) + tεc̄‖1

)
=

(t2ε + ε2)
t2ε

â xε, (32)

where we took into account the linearity of the operator â : E1 → E2 and
the fact that the vector c̄ ∈ Ker â. Thereby, the constructed vector xε ∈ E1

satis�es for ε ∈ R\ {0} the equation (30). The considerations above hold
since we assumed that tε 6= 0 for all ε ∈ R\ {0} . To show this is the case,
assume the inverse that is tε = 0 for some ε ∈ R\{0}. We then get from (25)
and condition 2) imposed before on the mapping f : D(f) ⊂ E1 → E2 right
away that simultaneously there should be ful�lled the equality ‖yε‖2 = 0,
contradicting to the condition (24). Thus, for all ε ∈ R\ {0} the value tε 6= 0.
If to state more accurate estimations, mainly, that the following inequalities

1 > lim
ε→0

‖tε‖2 ≥ 1− α2
0 > 0 (33)

hold for some positive value α0 > 0, then one can try to calculate the limit:

lim
n→∞f(xεn) = f(x0) = lim

n→∞
(
t−2
εn

(t2εn
+ ε2

n) â xεn

)
= â x0 (34)

for some subsequence εn → 0 as n → ∞. Here we have assumed that there
exists lim

n→∞xεn = x0, that is

lim
n→∞

tεnr(s(yεn) + tεn c̄)
‖tεn‖‖s(yεn) + tεn c̄‖1

= x0 (35)

depending on the chosen before nontrivial vector c̄ ∈ Ker â.

Owing to the â-compactness of the mapping f : D(f) ⊂ E1 → E2 and
the continuity of the operators ã−1 : E2 → Ẽ1 and s : E2 → E1, for the
limit (35) to exist it is enough only to state that there holds inequality (33).
Really, since owing to relationship (24) for all ε > 0 the following condition

‖tε‖2 + ‖yε‖2
2 = 1 (36)

holds, the limit (35) will exist, if to state equivalently that

lim
n→∞‖yεn‖2 ≤ α0 < 1. (37)
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To show inequality (37), consider expression (25) and make the following
estimations:

lim
n→∞‖yεn‖2 = lim

n→∞

( ‖tεn‖
t2εn

+ ε2
n

‖fr(tεns(yεn) + t2εn
c̄)‖2

)
≤

≤ lim
n→∞

( ‖tεn‖2

(t2εn
+ ε2

n)
‖s(yεn) + tεn c̄‖1

r
f

(
rtεn(s(yεn) + tεn c̄)
‖tεn‖‖s(yεn) + tεn c̄‖1

))
≤

≤ lim
n→∞‖s(yεn) + tεn c̄‖1k

−1
f ≤

k−1
f ( lim

n→∞‖s(yεn)‖1 + (1− lim
n→∞‖yεn‖2

2)
1/2‖c̄‖1) ≤

≤ k−1
f (ks lim

n→∞‖yεn‖2 + [1− lim
n→∞‖yεn‖2

2]
1/2‖c̄‖1).

(38)

Thus, we obtain from (38) that the value α0 := lim
n→∞‖yεn‖2 ∈ R+ satis�es

the following inequalities:

0 ≤ α0 ≤ k−1
f (ksα0 + (1− α2

0)
1/2‖c̄‖1) ≤ 1 (39)

where, in general, α0 ∈ [0, 1]. For inequalities (39) to hold true, we need to
consider two possibilities:

a)ksk
−1
f ≥ 1; b)ksk

−1
f < 1. (40)

For the case a) of (40) we can easily state that

1 ≤ min
{

ks

kf
, 1

}
≤ α0 ≤ k−1

f

√
k2

s + ‖c̄‖2
1. (41)

For the case b) of (41) one gets similarly that

0 ≤ α0 ≤ ‖c̄‖1√
‖c̄‖2

1 + (ks − kf )2
. (42)

Since we are interested in any value of α0 < 1, the only inequality (42) �ts
to the searched for exact inequality

0 ≤ α0 ≤ ‖c̄‖1√
‖c̄‖2

1 + (ks − kf )2
< 1, (43)

guaranteeing the existence of a nontrivial (not zero!) solution to equation
(34). Thereby, the nontrivial vector x0 ∈ D(f) constructed above satis�es,
following from (34), the equality

f(x0) = â x0. (44)



Generalization of the Leray�Schauder theorem ... 369

Moreover, since the vector x0 ∈ D(f), owing to representation (35), depends
nontrivially on the chosen vector c̄ ∈ Ker â, we deduce that the correspon-
ding to (44) solution set N (â, f) ⊂ E1 is nonempty, if dimKer â ≥ 1, and
the topological dimension dimN (â, f) ≥ dimKer â − 1. The latter �nishes
the proof of the theorem.

4. COROLLARIES

The classical Leray-Schauder �xed point theorem, as is well known [1, 2, 13,
15,18], reads as follows.

Theorem 4.1. Let a compact mapping f̄ : B → B in a Banach space B
is such that there exists a closed convex and bounded set M ⊂ B, for which
f̄(M) ⊆ M. Then there exists a �xed point x̄ ∈ M, such that

f̄(x̄) = x̄. (45)

Proof. One can present two completely di�erent approaches to the proof
of this classical Leray-Schauder theorem, using the main Theorem 3.1. The
�rst one is based on simple geometrical considerations, and the second one,
requires some topological backgrounds.

Proof. Approach 1. Put, by de�nition, that E1 := B⊕R, E2 := B and
Mf := Conv f̄(M) ⊆ M is the convex and compact convex hull of the image
f̄(M) ⊆ M. For any point x ∈ B one can de�ne the set-valued projection
mapping

B 3 x → PMf
(x) ⊂ Mf ⊂ B, (46)

where
inf

y∈Mf

‖x− y‖ := ‖x− PMf
(x)‖. (47)

The set-valued mapping (46) is well de�ned and upper semi-continuous [3,4]
owing to the closedness, boundedness and convexity of the set Mf ⊂ B.
Now take the unit sphere S1(0) ⊂ E1 and construct a mapping f : S1(0)
⊂ E1 → E2, where, by de�nition, for any (x, τ) ∈ S1(0)

f(x, τ) := f̄(P̄Mf
(x))− P̄Mf

(x) + b̂ x, (48)

P̄Mf
: B → Mf ⊂ B is a suitable continuous selection [14] for the mapping

(46) and b̂ : B → B is an arbitrary compact and surjective mapping. Con-
cerning the corresponding mapping â : E1 → E2, we put, by de�nition,

â (x, τ) := b̂ x (49)
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for all (x, τ) ∈ E1 = B ⊕ R. It is now easy to observe that the following
lemma holds.

Lemma 4.1. The mapping f : S1(0) ⊂ E1 → E2, de�ned by (48), is
continuous and â−compact.

Proof. Really, for any x ∈ B the element P̄Mf
(x) ∈ Mf and f̄(P̄Mf

(x)) ∈
Mf , owing to the invariance f̄(M) ⊆ M. From the compactness of the
mappings f̄ : M → M and b̂ : B → B one easily gets the â-compactness of
the constructed mapping f : E1 → E2 that proves the lemma.

Now taking into account Lemma 4.1 and the fact that operator â : E1 →
E2, de�ned by (49), is closed and surjective, owing to the assumptions done
above, we can apply to the equation

â (x, τ) = f(x, τ), (50)

where (x, τ) ∈ S1(0) ⊂ E1, the main Theorem 3.1 and, thereby, state that the
corresponding solution set N (â, f) ⊂ E1 is nonempty, since dimKer â ≥ 1.
In particular, from (50) one gets that

f̄(P̄Mf
(xτ )) = P̄Mf

(xτ ) (51)

for the vector P̄Mf
(xτ ) ∈ Mf , where a point xτ ∈ B1(0) satis�es the

condition ‖xτ‖2 + ||τ ||2 = 1 for some value |τ | ≤ 1.

Thereby, we have stated that the �xed point problem (45) is solvable and
its solution can, in particular, be obtained as the projection x̄ := P̄Mf

(xτ )
of some point xτ ∈ B1(0) upon the compact, convex and invariant set Mf ⊆
M ⊂ B.

Approach 2. We shall start from the following result [7, 16] about the
general structure of compact and convex sets in metrizible locally convex
topological vector spaces, being a weak version of the well known Krein�
Milman theorem.

Lemma 4.2. Let E be a metrizible locally convex topological vector space
over the �eld R, F ⊂ E be its dense vector subspace and M ⊂ E be any
convex and closed compact subset. Then there exists a countable linearly
independent sequence {en ∈ F : n ∈ Z+}, such that lim

n→∞ en = 0, a countable
sequence {λn(x) ∈ R : n ∈ Z+}, such that

∑

n∈Z+

|λn(x)| ≤ 1, (52)
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and every element x ∈ M allows the representation

x =
∑

n∈Z+

λn(x)en. (53)

Proof. A proof of this lemma can be found, for instance, in [7,16], so we
will not present it here.

As any Banach space B is a metrizible locally convex topological vector
space, representation (53) naturally generates a well-de�ned surjective and
continuous compact mapping ξ : l1(Z+;R) → Mf ⊂ B with the domain
D(ξ) = B̄1(0), where the set B̄1(0) ⊂ l1(Z+;R) is the unit ball centered
at zero in the Banach space l1(Z+;R) and Mf := Conv f̄(M) ⊆ M is, as
before, the convex and compact convex hull of the image f̄(M) ⊆ M. The
next lemma follows from Lemma 4.2 and [7, 16] and some related results
about the continuous selections from [2,8, 12,18].

Lemma 4.3. There exists such a continuous selection ξ−1
s : B ⊃ Mf →

B̄1(0) ⊂ l1(Z+;R), ξ · ξ−1
s = id : Mf → Mf , that for any vector x ∈

Mf the value ξ−1
s (x) ∈ B̄1(0) determines uniquely this vector by means of

representation (53) as
x =

∑

n∈Z+

(ξ−1
s (x))nen. (54)

Moreover, this selection can be chosen in such a way, that an induced
mapping F̄s : l1(Z+;R) ⊃ B̄1(0) → B̄1(0) ⊂ l1(Z+;R), de�ned as

F̄s(λ) := ξ−1
s · f̄(ξ(λ)) (55)

for any λ ∈ B̄1(0) ⊂ l1(Z+;R), is continuous and also compact.
Proof. Modulo the existence [3, 14] of a selection ξ−1

s : B ⊃ Mf →
B̄1(0) ⊂ l1(Z+;R), a proof is based both on representations (54) and (55)
and on the compactness of the mapping ξ : l1(Z+;R) ⊃ B̄1(0) → Mf ⊂ B
and the set Mf , as well as on the standard fact [13,18] that the continuous
image of a compact set is compact too.

Pose now the �xed point problem for the compact mapping

F̄s : l1(Z+;R) ⊃ B̄1(0) → B̄1(0) ⊂ l1(Z+;R)

constructed above as follows:

F̄s( λ̄) := λ̄ (56)
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for some point λ̄ ∈ B̄1(0). The solution of the �xed point equation (56)
is, evidently, completely equivalent to proving Theorem 4.1, since the cor-
responding vector x̄ := ξ(λ̄) ∈ Mf , owing to de�nition (55), satis�es the
following relationships:

f̄(x̄) = f̄(ξ(λ̄)) = ξ(F̄s(λ)) ⇒ ξ(λ̄) = x̄. (57)

Thereby, the vector x̄ := ξ(λ̄) ∈ Mf solves �xed the point problem (45) for
the compact mapping f̄ : B → B.

To prove the existence of a solution to equation (56), we will construct
the suitable Banach spaces E1 := l1(Z+;R) ⊕ R and E2 := l1(Z+;R) and
take the unit sphere S1(0) ⊂ E1, consisting of points (λ, τ) ∈ E1, for which
‖λ‖+ |τ | = 1. The mapping F̄s : B̄1(0) → B̄1(0), constructed above, one can
extend upon the sphere S1(0) ⊂ E1, de�ning a mapping f : E1 ⊃ S1(0) →
S̄1(0) ⊂ E2 as

f(λ, τ) := F̄s(λ) (58)
for any (λ, τ) ∈ S1(0) ⊂ E1. A suitable linear, closed and surjective operator
â : E1 → E2 one can de�ne as

â (λ, τ) := λ (59)

for all (λ, τ) ∈ E1. The resulting equation

â (λ, τ) = f(λ, τ) (60)

for (λ, τ) ∈ S1(0) ⊂ E1 exactly �ts into the conditions formulated in Theo-
rem 3.1, being simultaneously equivalent to �xed point problem (56) for
the mapping F̄s : B̄1(0) → B̄1(0). Since dimKer â = 1, there exists the
nonempty solution set N (â, f) ⊂ E1 of equation (60). If a point (λτ , τ) ∈
N (â, f) ⊂ S1(0), where ‖λτ‖+ |τ | = 1 for some value |τ | ≤ 1, then the �xed
point equality

F̄s( λτ ) := λτ (61)
holds for the value λτ ∈ B̄1(0) ⊂ l1(Z+;R). Having denoted now λτ := λ̄ ∈
B̄1(0), we get, owing to relationships (57), the corresponding solution to the
�xed point problem for the compact mapping f̄ : B → B, thereby �nishing
the proof of the Leray�Schauder theorem 45.

There exist, evidently, many other interesting applications of the main
Theorem in particular, proving the existence theorem for diverse types of
di�erential equations in Banach spaces with both �xed boundary conditions
and inclusions [1,2,8,10,11,15]. These and related research problems we plan
to study in move detail in another paper.
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ÓÇÀÃÀËÜÍÅÍÍß ÒÈÏÓ ÁÎÐÑÓÊÀ�ÓËÀÌÀ ÒÅÎÐÅÌÈ
ËÅÐÅ�ØÀÓÄÅÐÀ ÏÐÎ ÍÅÐÓÕÎÌÓ ÒÎ×ÊÓ

Àíàòîëié ÏÐÈÊÀÐÏÀÒÑÜÊÈÉ 1,2,3

1 Iíñòèòóò ïðèêëàäíèõ ïðîáëåì ìåõàíiêè òà ìàòåìàòèêè
iì. ß.Ñ. Ïiäñòðèãà÷à ÍÀÍ Óêðà¨íè,

âóë. Íàóêîâà, 3-á, Ëüâiâ 79060, Óêðà¨íà
2 Àêàäåìiÿ Ãiðíèöòâà òà Ìåòàëóðãi¨, Êðàêiâ, 31059, Ïîëüùà

3 Ìiæíàðîäíèé Öåíòð Òåîðåòè÷íî¨ Ôiçèêè iì. Àáäóñà Ñàëàìà,
Òði¹ñò, Iòàëiÿ

Çàïðîïîíîâàíî óçàãàëüíåííÿ êëàñè÷íî¨ òåîðåìè Ëåðå�Øàóäåðà ïðî
íåðóõîìó òî÷êó, ùî ãðóíòó¹òüñÿ íà íåñêií÷åííî-âèìiðíié êîíñòðóêöi¨
Áîðñóêà�Óëàìà ïðî àíòèïîäè íåëiíiéíèõ âiäîáðàæåíü. ßê íàñëiäîê íà-
âåäåíî äâà öiëêîì âiäìiííi äîâåäåííÿ, ùî ãðóíòóþòüñÿ íà îïåðàòîðíî-
ïðî¹êöiéíîìó ïiäõîäi òà íà ñëàáêié âåðñi¨ âiäîìîãî òâåðäæåííÿ Êðåéíà�
Ìiëüìàíà ïðî çîáðàæåííÿ êðàéíiõ òî÷îê âèïóêëèõ êîìïàêòiâ.




