EXISTENCE RESULTS FOR THE DARBOUX PROBLEM FOR HYPERBOLIC DIFFERENTIAL INCLUSIONS IN BANACH SPACES

©2008 p. Amaria ARARA and Mouffak BENCHOHRA*
${ }^{1}$ Laboratoire de Mathématiques, Université de Sidi Bel Abbès
BP 89, 22000 Sidi Bel Abbès, Algérie
e-mail: benchohra@univ-sba.dz

In this paper we investigate the existence of solutions to the Darboux problem for a third order hyperbolic differential and functional differential inclusion with nonconvex-valued right-hand side. We shall rely on a fixed point theorem for contraction multivalued maps due to Covitz and Nadler and on Schaefer's fixed point theorem combined with a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued operators with nonempty closed and decomposable values.

1 Introduction

This paper deals with the existence of solutions to the Darboux problem for third order hyperbolic differential and functional differential inclusions in Banach spaces. In Section 3 we consider the Darboux problem for the hyperbolic differential inclusion:

$$
\begin{equation*}
\frac{\partial^{3} u(x, y, z)}{\partial x \partial y \partial z} \in F(x, y, z, u),(x, y, z) \in \mathcal{D}=J_{a} \times J_{b} \times J_{c}=[0, a] \times[0, b] \times[0, c] \tag{1}
\end{equation*}
$$

[^0]\[

$$
\begin{cases}u(x, y, 0)=f(x, y), & (x, y) \in D_{1}=[0, a] \times[0, b] \tag{2}\\ u(0, y, z)=g(y, z), & (y, z) \in D_{2}=[0, b] \times[0, c] \\ u(x, 0, z)=h(x, z), & (x, z) \in D_{3}=[0, a] \times[0, c]\end{cases}
$$
\]

where $F: \mathcal{D} \times E \longrightarrow \mathcal{P}(E)$ is a given multivalued map, $f: D_{1} \rightarrow E, g$: $D_{2} \rightarrow E, h: D_{3} \rightarrow E, a>0, b>0, c>0$ and $(E,|\cdot|)$ a real separable Banach space, which satisfy the conditions

$$
\begin{cases}f(x, 0)=h(x, 0)=v^{1}(x), & x \in[0, a] \\ f(0, y)=g(y, 0)=v^{2}(y), & y \in[0, b] \\ g(0, z)=h(0, z)=v^{3}(z), & z \in[0, c] \\ v^{1}(0)=v^{2}(0)=v^{3}(0)=v^{0} & \end{cases}
$$

This study was motivated by several papers which deal with the Darboux problem for third order hyperbolic equations $[4,5,8,9,10,11,12,19,20$, $21,25,26]$. Other results on the Darboux problem for hyperbolic differential equations can be found in the book by Kamont [17] and the references therein. Very recently the problem (1)-(2) was studied by Teodoru ([24, 27, 28]) in the case of a convex multivalued right hand side. In this paper, we drop the convex condition and we shall give existence results for the problem (1)-(2) with a nonconvex-valued right-hand side. We shall present two results. In the first one we rely on a fixed point theorem for contraction multivalued maps, due to Covitz and Nadler [6] and for the second one on Schaefer's fixed point theorem [22] combined with a selection theorem due to Bressan and Colombo [1] for lower semicontinuous multivalued operators with nonempty closed and decomposable values.

Section 4 is devoted to the existence of solutions to the following Darboux problem for hyperbolic functional differential inclusions

$$
\begin{gather*}
\frac{\partial^{3} u(x, y, z)}{\partial x \partial y \partial z} \in F\left(x, y, z, u_{(x, y, z)}\right), \quad(x, y, z) \in \mathcal{D} \tag{3}\\
u(x, y, z)=\phi(x, y, z), \\
(x, y, z) \in\left[-r_{1}, a\right] \times\left[-r_{2}, b\right] \times\left[-r_{3}, c\right] \backslash((0, a] \times(0, b] \times(0, c]) \tag{4}
\end{gather*}
$$

where $F: \mathcal{D} \times C\left(\left[-r_{1}, 0\right] \times\left[-r_{2}, 0\right] \times\left[-r_{3}, 0\right], E\right) \longrightarrow \mathcal{P}(E)$ is a multivalued $\operatorname{map}, \phi \in C\left(\left[-r_{1}, a\right] \times\left[-r_{2}, b\right] \times\left[-r_{3}, c\right] \backslash((0, a] \times(0, b] \times(0, c]), E\right), r_{1}>$ $0, r_{2}>0, r_{3}>0$.

For each $u \in C\left(\left[-r_{1}, a\right] \times\left[-r_{2}, b\right] \times\left[-r_{3}, c\right], E\right)$ and each $(x, y, z) \in \mathcal{D}$ the function $u_{(x, y, z)}:\left[-r_{1}, 0\right] \times\left[-r_{2}, 0\right] \times\left[-r_{3}, 0\right] \rightarrow E$ is defined by

$$
u_{(x, y, z)}(s, t, w)=u(x+s, y+t, z+w)
$$

for each

$$
(s, t, w) \in\left[-r_{1}, 0\right] \times\left[-r_{2}, 0\right] \times\left[-r_{3}, 0\right] .
$$

Finally in Section 5 we indicate some possible generalizations of IVP (1)(2) to nonlocal hyperbolic problems

$$
\begin{gather*}
\frac{\partial^{3} u(x, y, z)}{\partial x \partial y \partial z} \in F(x, y, z, u(x, y, z)), \quad(x, y, z) \in \mathcal{D} \tag{5}\\
u(x, y, 0)+\sum_{k=1}^{r} \gamma_{k}(x, y) u\left(x, y, c_{k}\right)=f(x, y), \quad(x, y) \in J_{a} \times J_{b} \tag{6}\\
u(0, y, z)+\sum_{i=1}^{p} v_{i}(y, z) u\left(a_{i}, y, z\right)=g(y, z), \quad(y, z) \in J_{b} \times J_{c} \tag{7}\\
u(x, 0, z)+\sum_{j=1}^{\ell} \vartheta_{j}(x, z) u\left(x, b_{j}, z\right)=h(x, z), \quad(x, z) \in J_{a} \times J_{c} \tag{8}
\end{gather*}
$$

where F, f, g, h are as in the problem (1)-(2), $\gamma_{k}: J_{a} \times J_{b} \rightarrow E, v_{i}: J_{b} \times$ $J_{c} \rightarrow E, \vartheta_{j}: J_{a} \times J_{c} \rightarrow E$ are given functions and $a_{i}(i=1, \cdots, p), b_{j}(j=$ $1, \cdots, \ell)$ and $c_{k}(k=1, \cdots, r)$ are given numbers such that $0<a_{1}<\cdots<$ $a_{p} \leq a, \quad 0<b_{1}<\cdots<b_{\ell} \leq b$ and $0<c_{1}<\cdots<c_{r} \leq c$.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multivalued analysis, which are used throughout this paper.
$C(\mathcal{D}, E)$ denotes the Banach space of all continuous functions from \mathcal{D} into E with the norm

$$
\|u\|_{\infty}=\sup \{|u(x, y, z)|:(x, y, z) \in \mathcal{D}\}
$$

$L^{1}(\mathcal{D}, E)$ denotes the Banach space of functions $u: \mathcal{D} \longrightarrow E$ which are Bochner integrable normed by

$$
\|u\|_{L^{1}}=\int_{0}^{a} \int_{0}^{b} \int_{0}^{c}|u(x, y, z)| d z d y d x
$$

Let (X, d) be a metric space. We use the notations:
$P(X)=\{Y \in \mathcal{P}(X): Y \neq \emptyset\}, \quad P_{c l}(X)=\{Y \in P(X): Y$ closed $\}$, $P_{b}(X)=\{Y \in P(X): Y$ bounded $\}$, and $P_{c p}(X)=\{Y \in P(X): Y$ compact\}.

Consider $H_{d}: P(X) \times P(X) \longrightarrow \mathbb{R}_{+} \cup\{\infty\}$, given by

$$
H_{d}(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\}
$$

where $d(A, b)=\inf _{a \in A} d(a, b), d(a, B)=\inf _{b \in B} d(a, b)$.
Then $\left(P_{b, c l}(X), H_{d}\right)$ is a metric space and $\left(P_{c l}(X), H_{d}\right)$ is a generalized (complete) metric space ([18]).

A multivalued map $F: \mathcal{D} \times E \longrightarrow P_{c l}(E)$ is said to be measurable if for each $w \in E$ the function $Y: \mathcal{D} \longrightarrow \mathbb{R}$ defined by

$$
Y(x, y, z)=d(w, F(x, y, z, u))=\inf \{d(w, v): v \in F(x, y, z, u)\}
$$

is measurable, where d is the metric introduced from the Banach space $C(\mathcal{D}, E)$.

Definition 2.1. A multivalued operator $N: X \rightarrow P_{c l}(X)$ is called
a) γ-Lipschitz if and only if there exists $\gamma>0$ such that

$$
H_{d}(N(x), N(y)) \leq \gamma d(x, y), \quad \text { for each } x, y \in X,
$$

b) contraction if and only if it is γ-Lipschitz with $\gamma<1$.
N has a fixed point if there is $x \in X$ such that $x \in N(x)$. The fixed point set of the multivalued operator N will be denoted by Fix N.

The proof of our first result is based on the following fixed point theorem for contraction multivalued operators given by Covitz and Nadler in 1970 [6] (see also Deimling, [7] Theorem 11.1).

Lemma 2.2. Let (X, d) be a complete metric space. If $N: X \rightarrow P_{c l}(X)$ is a contraction, then Fix $N \neq \emptyset$.

Denote by \mathcal{L} the σ-algebra of the Lebesque measurable subsets of \mathcal{D} and by $\mathcal{B}(E)$ the family of all Borel subsets of E. Recall that $F: \mathcal{D} \times E \rightarrow \mathcal{P}(E)$ is called $\mathcal{L} \otimes \mathcal{B}$ measurable if for any closed subset C of E we have that $\{(x, y, z, u) \in \mathcal{D} \times E: F(x, y, z, u) \cap C \neq \emptyset\} \in \mathcal{L} \otimes \mathcal{B}$.

A subset K of $L^{1}(\mathcal{D}, E)$ is decomposable, if for all $u, v \in K$ and $A \in \mathcal{L}$ we have $u \chi_{A}+v \chi_{\mathcal{D}-A} \in K$, where χ_{A} stands for the characteristic function of the set A.

Let E be a Banach space, X a nonempty closed subset of E and $G: X \rightarrow$ $\mathcal{P}(E)$ a multivalued operator with nonempty closed values. G is lower semicontinuous (l.s.c.) if the set $\{x \in X: G(x) \cap B \neq \emptyset\}$ is open for any open set B in E. For more details on multivalued maps we refer to the books of Deimling [7], Gorniewicz [14], Hu and Papageorgiou [16] and Tolstonogov [29].

Definition 2.3. Let Y be a separable metric space and let $N: Y \rightarrow$ $\mathcal{P}\left(L^{1}(\mathcal{D}, E)\right)$ be a multivalued operator. We say N has property (BC) if

1) N is lower semi-continuous (l.s.c.);
2) N has nonempty closed and decomposable values.

Let $F: \mathcal{D} \times E \rightarrow \mathcal{P}(E)$ be a multivalued map with nonempty compact values. Assign to F the multivalued operator

$$
\mathcal{F}: C(\mathcal{D}, E) \rightarrow \mathcal{P}(\mathcal{D}, E))
$$

by letting

$$
\begin{gathered}
\mathcal{F}(u)=\left\{w \in L^{1}(\mathcal{D}, E): w(x, y, z) \in F(x, y, z, u(x, y, z))\right. \\
\text { for a.e. }(x, y, z) \in \mathcal{D}\}
\end{gathered}
$$

The operator \mathcal{F} is called the Niemytzki operator associated with F.
Definition 2.4. Let $F: \mathcal{D} \times E \rightarrow \mathcal{P}(E)$ be a multivalued function with nonempty compact values. We say F is of lower semi-continuous type (l.s.c. type) if its associated Niemytzki operator \mathcal{F} is lower semicontinuous and has nonempty closed and decomposable values.

Next we state a selection theorem due to Bressan and Colombo.
Theorem 2.5. [1]. Let Y be a separable metric space and let $N: Y \rightarrow$ $\mathcal{P}\left(L^{1}(\mathcal{D}, E)\right.$) be a multivalued operator which has property (BC). Then N has a continuous selection; i.e., there exists a continuous function (singlevalued) $g: Y \rightarrow L^{1}(\mathcal{D}, E)$ such that $g(y) \in N(y)$ for every $y \in Y$.

3 The Darboux Problem for Hyperbolic Differential Inclusions

In this section we state and prove our first theorem for the IVP (1)-(2). First however we give the definition of a solution of the IVP (1)-(2).

Definition 3.1. By a solution of (1)-(2) we mean a function $u(\cdot, \cdot, \cdot) \in$ $C(\mathcal{D}, E)$ such that there exists $v \in L^{1}(\mathcal{D}, E)$ for which we have

$$
u(x, y, z)=Q(x, y, z)+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} v(t, s, w) d w d s d t \quad \text { for each }(x, y, z) \in \mathcal{D}
$$

with $v(t, s, w) \in F(t, s, w, u(t, s, w))$ a.e. on \mathcal{D}; here $Q(x, y, z)=f(x, y)+$ $g(y, z)+h(x, z)-v^{1}(x)-v^{2}(y)-v^{3}(z)+v^{0}$.

Theorem 3.2. Assume that:
(H1) $F: \mathcal{D} \times E \longrightarrow P_{c p}(E)$ has the property that $F(\cdot, \cdot, \cdot, u): \mathcal{D} \rightarrow P_{c p}(E)$ is measurable for each $u \in E$;
(H2) $H_{d}(F(t, s, w, u), F(t, s, w, \bar{u})) \leq L|u-\bar{u}|$, for each $(t, s, w) \in \mathcal{D}$ and $u, \bar{u} \in E$, where L is a positive constant, and

$$
H_{d}(0, F(t, s, w, 0)) \leq M(t, s, w) \quad \text { for a. e. } \quad(t, s, w) \in \mathcal{D}
$$

with

$$
M(\cdot, \cdot, \cdot) \in L^{1}\left(\mathcal{D}, \mathbb{R}^{+}\right)
$$

Then the IVP (1)-(2) has at least one solution on \mathcal{D}.
Proof. Let m be a positive constant (to be chosen later) and on the space $C(\mathcal{D}, E)$ take the norm $\|\cdot\|_{C}$ given by

$$
\|u\|_{C}=\sup _{(x, y, z) \in \mathcal{D}} e^{-m(x+y+z)}|u(x, y, z)|
$$

We first transform the problem (1)-(2) into a fixed point problem. Consider the multivalued operator, $N: C(\mathcal{D}, E) \rightarrow \mathcal{P}(\mathcal{D}, E))$ defined by:

$$
\begin{aligned}
& N(u)=\{h \in C(\mathcal{D}, E): h(x, y, z)=Q(x, y, z)+ \\
& \left.\quad+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} v(t, s, w) d w d s d t, v \in S_{F, u}\right\}
\end{aligned}
$$

where

$$
\begin{gathered}
S_{F, u}=\left\{v \in L^{1}(\mathcal{D}, E): v(t, s, w) \in F(t, s, w, u(t, s, w))\right. \\
\text { for a.e. }(t, s, w) \in \mathcal{D}\}
\end{gathered}
$$

Remark 3.3. (i) It is clear that the fixed points of N are solutions to (1)(2).
(ii) For each $u \in C(\mathcal{D}, E)$ the set $S_{F, u}$ is nonempty, since by (H1) F has a measurable selection (see [3], Theorem III.6).

We shall show that N satisfies the assumptions of Lemma 2.2. The proof will be given in two steps.

Step 1: $N(u) \in P_{c l}(C(\mathcal{D}, E))$ for each $u \in C(\mathcal{D}, E)$.
Indeed, let $\left(h_{n}\right)_{n \geq 0} \in N(u)$ such that $h_{n} \longrightarrow \tilde{h}$ in $C(\mathcal{D}, E)$. Then $\tilde{h} \in$ $C(\mathcal{D}, E)$ and there exists $g_{n} \in S_{F, u}$ such that for each $(x, y, z) \in \mathcal{D}$

$$
h_{n}(x, y, z)=Q(x, y, z)+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} g_{n}(t, s, w) d w d s d t
$$

Using the fact that F has compact values and from (H2) we may pass to a subsequence if necessary to get that g_{n} converges to g in $L^{1}(\mathcal{D}, E)$ and hence $g \in S_{F, u}$. Then for each $(x, y, z) \in \mathcal{D}$

$$
h_{n}(x, y, z) \longrightarrow \tilde{h}(x, y, z)=Q(x, y, z)+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} g(t, s, w) d w d s d t
$$

so $\tilde{u} \in N(u)$.
Step 2: $H_{d}\left(N\left(u_{1}\right), N\left(u_{2}\right)\right) \leq \gamma\left\|u_{1}-u_{2}\right\|_{C}$ for each $u_{1}, u_{2} \in C(\mathcal{D}, E)$ (where $\gamma<1$).

Let $u_{1}, u_{2} \in C(\mathcal{D}, E)$ and $h_{1} \in N\left(u_{1}\right)$. Then there exists $g_{1}(t, s, w) \in$ $F\left(t, s, w, u_{1}(t, s, w)\right)$ such that
$h_{1}(x, y, z)=Q(x, y, z)+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} g_{1}(t, s, w) d w d s d t$ for each $(t, s, w) \in \mathcal{D}$.
From (H2) it follows that

$$
H_{d}\left(F\left(t, s, w, u_{1}(t, s, w)\right), F\left(t, s, w, u_{2}(t, s, w)\right)\right) \leq L\left|u_{1}(t, s, w)-u_{2}(t, s, w)\right|
$$

Hence there is $p \in F\left(t, s, w, u_{2}(t, s, w)\right)$ such that

$$
\left|g_{1}(t, s, w)-p\right| \leq L\left|u_{1}(t, s, w)-u_{2}(t, s, w)\right|, \quad(t, s, w) \in \mathcal{D} .
$$

Consider $U: \mathcal{D} \rightarrow \mathcal{P}(E)$, given by

$$
U(t, s, w)=\left\{p \in E:\left|g_{1}(t, s, w)-p\right| \leq L\left|u_{1}(t, s, w)-u_{2}(t, s, w)\right|\right\} .
$$

Since the multivalued operator $V(t, s, w)=U(t, s, w) \cap F\left(t, s, w, u_{2}(t, s, w)\right)$ is measurable (see Proposition III. 4 in [3]) there exists $g_{2}(t, s, w)$ a measurable selection for V. Thus $g_{2}(t, s, w) \in F\left(t, s, w, u_{2}(t, s, w)\right)$ and
$\left|g_{1}(t, s, w)-g_{2}(t, s, w)\right| \leq L\left|u_{1}(t, s, w)-u_{2}(t, s, w)\right|$ for each $(t, s, w) \in \mathcal{D}$.
Let us define for each $(t, s, w) \in \mathcal{D}$

$$
h_{2}(x, y, z)=Q(x, y, z)+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} g_{2}(t, s, w) d w d s d t .
$$

Then we have

$$
\begin{aligned}
\left|h_{1}(x, y, z)-h_{2}(x, y, z)\right| & \leq \int_{0}^{x} \int_{0}^{y} \int_{0}^{z}\left|g_{1}(t, s, w)-g_{2}(t, s, w)\right| d w d s d t \\
& \leq L \int_{0}^{x} \int_{0}^{y} \int_{0}^{z}\left|u_{1}(t, s, w)-u_{2}(t, s, w)\right| d w d s d t \\
& =L \int_{0}^{x} \int_{0}^{y} \int_{0}^{z}\left\|u_{1}-u_{2}\right\|_{C} e^{m(t+s+w)} d w d s d t \\
& \leq \frac{L e^{m(x+y+z)}}{m^{3}}\left\|u_{1}-u_{2}\right\|_{C} .
\end{aligned}
$$

Thus

$$
\left\|h_{1}-h_{2}\right\|_{C} \leq \frac{L}{m^{3}}\left\|u_{1}-u_{2}\right\|_{C} .
$$

Essentially the same reasoning (obtained by interchanging the roles of u_{1} and u_{2}) yields

$$
H_{d}\left(N\left(u_{1}\right), N\left(u_{2}\right)\right) \leq \frac{L}{m^{3}}\left\|u_{1}-u_{2}\right\|_{C} .
$$

Let m be a positive constant such that $L<m^{3}$. Then N is a contraction and thus, by Lemma 2.2 N has a fixed point u, which is a solution to (1)-(2).

Now Schaefer's theorem combined with a selection theorem of Bressan and Colombo for lower semicontinuous maps with nonempty closed and decomposable values also gives us an existence result for the problem (1)-(2). Before this, let us introduce the following hypotheses which are assumed hereafter:
(C1) $F: \mathcal{D} \times E \longrightarrow \mathcal{P}(E)$ is a nonempty compact valued multivalued map such that:
a) $(x, y, z, u) \mapsto F(x, y, z, u)$ is $\mathcal{L} \otimes \mathcal{B}$ measurable;
b) $u \mapsto F(x, y, z, u)$ is lower semi-continuous for a.e. $(x, y, z) \in \mathcal{D}$;
(C2) For each $r>0$, there exists a function $h_{r} \in L^{1}\left(\mathcal{D}, \mathbb{R}^{+}\right)$such that

$$
\begin{aligned}
|F(x, y, z, u)|:= & \sup \{|v|: v \in F(x, y, z, u)\} \leq h_{r}(x, y, z) \\
& \text { for a.e. }(x, y, z) \in \mathcal{D} \text { and } u \in E \text { with }|u| \leq r .
\end{aligned}
$$

In the proof of our next main result we will need the following well known theorem.

Lemma 3.4. [13]. Let $F: \mathcal{D} \times E \rightarrow \mathcal{P}(E)$ be a multivalued map. Assume $(C 1)$ and (C2) hold. Then F is of l.s.c. type.

Theorem 3.5. Suppose, in addition to hypotheses (C1), (C2), the following also hold:
(H3) There exist functions $p, q \in L^{1}\left(\mathcal{D}, \mathbb{R}^{+}\right)$such that

$$
|F(x, y, z, u)|:=\sup \{|v|: v \in F(x, y, z, u)\} \leq p(x, y, z)+q(x, y, z)|u|
$$

for almost all $(x, y, z) \in \mathcal{D}$ and all $u \in E$.
(H4) For each $(x, y, z) \in \mathcal{D}$, the multivalued map $F(x, y, z, \cdot)$ maps bounded sets of E into relatively compact sets of E.

Then the initial value problem (1)-(2) has at least one solution on \mathcal{D}.
Proof. Now (C1) and (C2) (see Lemma 3.4) that F is of lower semicontinuous type. Then from Theorem 2.5 there exists a continuous function $\mathcal{R}: C(\mathcal{D}, E) \rightarrow L^{1}(\mathcal{D}, E)$ such that $\mathcal{R}(u) \in \mathcal{F}(u)$ for all $u \in C(\mathcal{D}, E)$.

We consider the problem

$$
\begin{gather*}
\frac{\partial^{3} u(x, y, z)}{\partial x \partial y \partial z}=\mathcal{R}(u)(x, y, z), \quad(x, y, z) \in \mathcal{D} \tag{9}\\
u(x, y, 0)=f(x, y), \quad u(0, y, z)=g(y, z), \quad u(x, 0, z)=h(x, z) \tag{10}
\end{gather*}
$$

If $u \in C(\mathcal{D}, E)$ is a solution of the problem (9)-(10), then u is a solution to the problem (1)-(2).

We transform problem (9)-(10) into a fixed point problem by considering the operator $N: C(\mathcal{D}, E) \rightarrow C(\mathcal{D}, E)$ defined by:

$$
N(u)(x, y, z):=Q(x, y, z)+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} \mathcal{R}(u)(\xi, \eta, \theta) d \theta d \eta d \xi .
$$

We shall show that N is a continuous and completely continuous operator.

Step 1: N is continuous.
Let $\left\{u_{n}\right\}$ be a sequence such that $u_{n} \longrightarrow u$ in $C(\mathcal{D}, E)$. Then

$$
\begin{gathered}
\left|N\left(u_{n}\right)(x, y, z)-N(u)(x, y, z)\right| \leq \int_{0}^{t} \int_{0}^{s} \int_{0}^{w} \mid \mathcal{R}\left(u_{n}\right)(\xi, \eta, \theta)- \\
-\mathcal{R}(u)(\xi, \eta, \theta)\left|d \theta d \eta d \xi \leq \int_{0}^{a} \int_{0}^{b} \int_{0}^{c}\right| \mathcal{R}\left(u_{n}\right)(\xi, \eta, \theta)-\mathcal{R}(u)(\xi, \eta, \theta) \mid d \theta d \eta d \xi .
\end{gathered}
$$

Since the function \mathcal{R} is continuous, then

$$
\left\|N\left(u_{n}\right)-N(u)\right\|_{\infty} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Step 2: N is bounded on bounded sets of $C(\mathcal{D}, E)$.
Indeed, it is enough to show that there exists a positive constant k such that for each $u \in B_{r}=\left\{u \in C(\mathcal{D}, E):\|u\|_{\infty} \leq r\right\}$ one has $\|N(u)\|_{\infty} \leq k$.

By (H2) we have

$$
|(N u)(x, y, z)| \leq|Q(x, y, z)|+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} h_{r}(t, s, w) d w d s d t,
$$

so

$$
\|N(u)\|_{\infty} \leq\|Q\|_{\infty}+\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} h_{r}(t, s, w) d w d s d t:=k
$$

Step 3: N maps bounded sets into equicontinuous sets of $C(\mathcal{D}, E)$.
Let $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in \mathcal{D}, x_{1}<x_{2}, y_{1}<y_{2}, z_{1}<z_{2}$. Thus we obtain

$$
\begin{gathered}
\left|(N u)\left(x_{2}, y_{2}, z_{2}\right)-(N u)\left(x_{1}, y_{1}, z_{1}\right)\right| \leq\left|f\left(x_{2}, y_{2}\right)-f\left(x_{1}, y_{1}\right)\right|+ \\
=\left|g\left(y_{2}, z_{2}\right)-g\left(y_{1}, z_{1}\right)\right|+\left|h\left(x_{2}, z_{2}\right)-h\left(x_{1}, z_{1}\right)\right|+
\end{gathered}
$$

$$
\begin{aligned}
& +\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}}|\mathcal{R}(u)(t, s, w)| d w d s d t+\int_{x_{1}}^{x_{2}} \int_{0}^{y_{1}} \int_{z_{1}}^{z_{2}}|\mathcal{R}(u)(t, s, w)| d w d s d t+ \\
& +\int_{0}^{x_{1}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}}|\mathcal{R}(u)(t, s, w)| d w d s d t+\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{0}^{z_{1}}|\mathcal{R}(u)(t, s, w)| d w d s d t \leq \\
& \leq\left|f\left(x_{2}, y_{2}\right)-f\left(x_{1}, y_{1}\right)\right|+\left|g\left(y_{2}, z_{2}\right)-g\left(y_{1}, z_{1}\right)\right|+\left|h\left(x_{2}, z_{2}\right)-h\left(x_{1}, z_{1}\right)\right|+ \\
& \quad+\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} h_{q}(t, s, w) d w d s d t+\int_{x_{1}}^{x_{2}} \int_{0}^{y_{1}} \int_{z_{1}}^{z_{2}} h_{q}(t, s, w) d w d s d t+ \\
& \quad+\int_{0}^{x_{1}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} h_{q}(t, s, w) d w d s d t+\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{0}^{z_{1}}\left|h_{q}(t, s, w)\right| d w d s d t
\end{aligned}
$$

where $q=\|u\|_{\infty}$. As $\left(x_{2}, y_{2}, z_{2}\right) \longrightarrow\left(x_{1}, y_{1}, z_{1}\right)$ the right-hand side of the above inequality tends to zero. As a consequence of Steps 1 to 3 and (H4) together with the Arzela-Ascoli theorem we can conclude that N is completely continuous.

Step 4: Now it remains to show that the set

$$
\Omega:=\{u \in C(\mathcal{D}, E): u=\lambda N(u), \quad \text { for some } \quad 0<\lambda<1\}
$$

is bounded.
Let $u \in \Omega$. Then $u=\lambda N(u)$ for some $0<\lambda<1$ and

$$
u(x, y, z)=\lambda Q(x, y, z)+\lambda \int_{0}^{x} \int_{0}^{y} \int_{0}^{z} \mathcal{R}(u(t, s, w)) d w d s d t, \quad(x, y, z) \in \mathcal{D}
$$

where \mathcal{R} is as described at the beginning of the proof. This implies by (H3) that for each $(x, y, z) \in \mathcal{D}$ we have

$$
\begin{aligned}
|u(x, y, z)| & \leq|Q(x, y, z)|+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z}[p(t, s, w)+q(t, s, w)|u(t, s, w)|] d w d s d t \\
& \leq\|Q\|_{\infty}+\|p\|_{L^{1}}+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} q(t, s, w)|u(t, s, w)| d w d s d t .
\end{aligned}
$$

Invoking Gronwall's inequality we get that

$$
|u(x, y, w)| \leq\left[\|Q\|_{\infty}+\|p\|_{L^{1}}\right] \exp \|q\|_{L^{1}}:=K .
$$

This shows that Ω is bounded. As a consequence of Schaefer's theorem ([22, 23]) we deduce that N has a fixed point u which is a solution to problem (9)-(10). Then u is a solution to the problem (1)-(2).

Remark 3.6. A slight modification of the proof above (i.e. in Step 4 use the standard Leray-Schauder alternative [15]) guarantees that (H3) could be replaced by
(H3)* There exist a function $q \in L^{1}\left(\mathcal{D}, \mathbb{R}^{+}\right)$and a continuous nondecreasing function $\psi:[0, \infty) \rightarrow(0, \infty)$ such that

$$
|F(x, y, z, u)| \leq q(x, y, z) \psi(|u|)
$$

for almost all $(x, y, z) \in \mathcal{D}$ and all $u \in E$ provided there exists a constant $M>0$ with

$$
\frac{M}{\|Q\|_{\infty}+\psi(M) \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} q(t, s, w) d w d s d t}>1
$$

4 The Darboux Problem for Hyperbolic Functional Differential Inclusions

Definition 4.1. By a solution of (3)-(4) we mean a function $u(\cdot, \cdot, \cdot) \in$ $C\left(\left[-r_{1}, a\right] \times\left[-r_{2}, b\right] \times\left[-r_{3}, c\right], E\right)$ such that, there exists $v \in L^{1}(\mathcal{D}, E)$ for which we have

$$
\begin{gathered}
u(x, y, z)=\phi(x, y, 0)+\phi(x, 0, z)+\phi(0, y, z)-\phi(0,0,0)+ \\
\quad+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} v(t, s, w) d w d s d t
\end{gathered}
$$

for each $(x, y, z) \in \mathcal{D}$ and $v(t, s, w) \in F\left(t, s, w, u_{(t, s, w)}\right)$ a.e. on \mathcal{D} and $u(x, y, z)=\phi(x, y, z)$ on $\left[-r_{1}, a\right] \times\left[-r_{2}, b\right] \times\left[-r_{3}, c\right] \backslash((0, a] \times(0, b] \times(0, c])$.

Let $\bar{D}=\left[-r_{1}, a\right] \times\left[-r_{2}, b\right] \times\left[-r_{3}, c\right]$ and $\tilde{D}=\left[-r_{1}, a\right] \times\left[-r_{2}, b\right] \times$ $\left[-r_{3}, c\right] \backslash((0, a] \times(0, b] \times(0, c])$. The main result of this section is the following:

Theorem 4.2. Assume that:
(B1) $F: \mathcal{D} \times C\left(\left[-r_{1}, 0\right] \times\left[-r_{2}, 0\right] \times\left[-r_{3}, 0\right], E\right) \longrightarrow P_{c p}(E)$ has the property that $F(\cdot, \cdot, \cdot, u):\left[-r_{1}, 0\right] \times\left[-r_{2}, 0\right] \times\left[-r_{3}, 0\right] \rightarrow P_{c p}(E)$ is measurable for each $u \in C\left(\left[-r_{1}, 0\right] \times\left[-r_{2}, 0\right] \times\left[-r_{3}, 0\right], E\right)$;
(B2) $H_{d}(F(t, s, w, u), F(t, s, w, \bar{u})) \leq \bar{L}\|u-\bar{u}\|$, for each $(t, s, w) \in \mathcal{D}$ and $u, \bar{u} \in C\left(\left[-r_{1}, 0\right] \times\left[-r_{2}, 0\right] \times\left[-r_{3}, 0\right], E\right)$, where \bar{L} is a positive constant, and

$$
H_{d}(0, F(t, s, w, 0)) \leq N(t, s, w) \quad \text { for a.e. } \quad(t, s, w) \in \mathcal{D},
$$

with

$$
N(\cdot, \cdot, \cdot) \in L^{1}\left(\mathcal{D}, \mathbb{R}^{+}\right)
$$

Then the IVP (3)-(4) has at least one solution on $\left[-r_{1}, a\right] \times\left[-r_{2}, b\right] \times$ $\left[-r_{3}, c\right]$. In (B2) $\|\cdot\|$ is the sup norm on $\left[-r_{1}, 0\right] \times\left[-r_{2}, 0\right] \times\left[-r_{3}, 0\right]$.

Proof. Let m be a positive constant and on the space $C(\bar{D}, E)$ take the norm $\|\cdot\|_{C}$ given by

$$
\|u\|_{C}=\sup _{(x, y, z) \in \bar{D}} e^{-m(x+y+z)}|u(x, y, z)| .
$$

We transform the problem (3)-(4) into a fixed point problem. Consider the multivalued operator $N: C(\bar{D}, E) \rightarrow \mathcal{P}(C(\bar{D}, E))$ defined by:

$$
N(u)=\left\{h \in C(\bar{D}, E): h(x, y, z)=\left\{\begin{array}{l}
\phi(x, y, z), \quad(x, y, z) \in \tilde{D} \\
\phi(x, y, 0)+\phi(x, 0, z) \\
+\phi(0, y, z)-\phi(0,0,0) \\
+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} v(t, s, w) d w d s d t \\
(x, y, z) \in \mathcal{D}
\end{array}\right\}\right.
$$

where

$$
\begin{gathered}
v \in S_{F, u}=\left\{v \in L^{1}(\mathcal{D}, E): v(t, s, w) \in F\left(t, s, w, u_{(t, s, w)}\right)\right. \\
\text { for a.e. }(t, s, w) \in \mathcal{D}\}
\end{gathered}
$$

Now apply Lemma 2.2. The ideas are essentially the same as those in Section 3 so as a result we omit the details.

Also Schaefer's theorem combined with a selection theorem of Bressan and Colombo for lower semi-continuous maps guarantees our next result.

Theorem 4.3. Suppose, in addition to hypotheses (C1), (C2), the following also hold:
(H3)' There exist functions $p, q \in L^{1}\left(\mathcal{D}, \mathbb{R}^{+}\right)$such that
$|F(x, y, z, u)|:=\sup \{|v|: v \in F(x, y, z, u)\} \leq p(x, y, z)+q(x, y, z)\|u\|$, for almost all $(x, y, z) \in \mathcal{D}$ and all $u \in C\left(\left[-r_{1}, 0\right] \times\left[-r_{2}, 0\right] \times\right.$ $\left.\left[-r_{3}, 0\right], E\right)$.
(H4)' For each $(x, y, z) \in \bar{D}$, the multivalued map $F(x, y, z, \cdot)$ maps bounded sets in $C\left(\left[-r_{1}, 0\right] \times\left[-r_{2}, 0\right] \times\left[-r_{3}, 0\right], E\right)$ into relatively compact sets of E.

Then the initial value problem (3)-(4) has at least one solution on \mathcal{D}.

5 Nonlocal Darboux Problem

In this section we indicate some generalizations of the problem (1)-(2). By using the same method, as in Theorem 3.2 (with obvious modifications), we can prove existence results for the nonlocal Darboux problem (5)-(8). We introduce the following additional assumptions:
(D1) $\gamma_{k} \in C\left(J_{a} \times J_{b}, E\right)(k=1, \cdots, r), v_{i} \in C\left(J_{b} \times J_{c}, E\right)(i=$ $1, \cdots, p), \vartheta_{j} \in C\left(J_{a} \times J_{c}, E\right)(j=1, \cdots, \ell), \gamma_{k}(x, 0)=\gamma_{k}(0, y)=0(k=$ $1, \cdots, r), v_{i}(y, 0)=v_{i}(0, z)=0(i=1, \cdots, p), \vartheta_{j}(x, 0)=\vartheta_{j}(0, z)=$ $0(j=1, \cdots, \ell)$.

By a solution of the nonlocal problem (5)-(8) we mean a function $u(\cdot, \cdot, \cdot) \in C(\mathcal{D}, E)$ such that there exists $v \in L^{1}(\mathcal{D}, E)$ for which we have

$$
\begin{gathered}
u(x, y, z)=f(x, y)+g(y, z)+h(x, z)-\sum_{k=1}^{r} \gamma_{k}(x, y) u\left(x, y, c_{k}\right)- \\
\quad-\sum_{i=1}^{p} v_{i}(y, z) u\left(a_{i}, y, z\right) \\
-\sum_{j=1}^{q} \vartheta_{j}(x, z) u\left(x, b_{j}, z\right)-v^{1}(x)-v^{2}(y)-v^{3}(z)+v^{0} \\
+\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} v(t, s, w) d w d s d t \text { for each }(x, y, z) \in \mathcal{D}
\end{gathered}
$$

and with $v(x, y, z) \in F(x, y, z, u(x, y, z))$ a.e. on \mathcal{D}.
For results on nonlocal problems the interested reader is referred to [2] and the references cited therein.

Theorem 5.1. Assume that hypotheses (H1), (H2) and (D1) hold. Then the nonlocal problem (5)-(8) has at least one solution on \mathcal{D}.

Theorem 5.2. Assume that hypotheses (C1), (C2), (H3), (D1) hold. Then the nonlocal problem (5)-(8) has at least one solution on \mathcal{D}.
[1] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86.
[2] L. Byszewski and V. Lakshmikantham, Monotone iterative technique for nonlocal hyperbolic differential problem, J. Math. Phys. Sci. 26 (4) (1992), 345-359.
[3] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[4] L. Castellano, Sull'approssimazione, col metodo di Tonelli, delle soluzioni del problema di Darboux per l'equazione $u_{x y z}=$ $f\left(x, y, z, u, u_{x}, u_{y}, u_{z}\right)$, Matematiche (Catania), 23 (1968), 107-109.
[5] A. Corduneanu, About the equation $u_{x y z}+c u=g$, Buletinul Institului Politehnic dinlasi, T. XX(XXIV)(1974), Fasc.1-2, sectia I, Mecanica teoretica, Fizica, 103-109.
[6] H. Covitz and S.B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11.
[7] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin-New York, 1992.
[8] K. Deimling, Das charakteristiche Anfangswertproblem fur $u_{x_{1} x_{2} x_{3}}=f$ unter Carathéodory-Voraussetzungen, Arch. Math. (Basel) 22 (1971), 514-522.
[9] G. Dezso, The Darboux-Ionescu problem for a third order equation, presented to the III Conference of the Romanian Mathematical Society, June 1998, Acta Technica Napocensis (to appear).
[10] G. Dezso, The Darboux-Ionescu problem for a third order systems of hyperbolic equations, Libertas Math., Tomus XXI (2001), 27-33.
[11] M. Frasca, $S u$ un problema ai limiti per l'equazione $u_{x y z}=$ $f\left(x, y, z, u, u_{x}, u_{y}, u_{z}\right)$, Mathematiche (Catania) 21 (1966), 396-412.
[12] M. Frasca, Sulla risoluzione del problema di Darboux per l'equazione $u_{x y z}=f\left(x, y, z, u, u_{y}, u_{z}, u_{x y}\right)$, Mathematiche (Catania) 24 (1969), 355367.
[13] M. Frigon and A. Granas, Théorèmes d'existence pour des inclusions différentielles sans convexité, C. R. Acad. Sci. Paris, Ser. I 310 (1990), 819-822.
[14] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999.
[15] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
[16] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers, Dordrecht, 1997, Volume II: Applications, Kluwer Academic Publishers, Dordrecht, 2000.
[17] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Mathematics and Applications 486, Dordrecht, 1999.
[18] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.
[19] M. Kwapisz, B. Palczewski, W. Pawelski, Sur l'existence et l'unicité des solutions de certaines équations différentielles du type $u_{x y z}=$ $f\left(x, y, z, u, u_{x}, u_{y}, u_{z}, u_{x y}, u_{y z}\right)$, Ann. Polon. Math. 11 (1961), 75-106.
[20] B. Palczewski, Existence and uniqueness of solutions of the Darboux problem for the equation

$$
\frac{\partial^{3} u}{\partial x_{1} \partial x_{2} \partial x_{3}}=f\left(x_{1}, x_{2}, x_{3}, u, \frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \frac{\partial u}{\partial x_{3}}, \frac{\partial^{2} u}{\partial x_{1} x_{2}}, \frac{\partial^{2} u}{\partial x_{2} x_{3}}, \frac{\partial^{2} u}{\partial x_{1} x_{3}}\right)
$$

Ann. Polon. Math., 13 (1963), 267-277.
[21] B. Rzepecki, Existence of solutions of the Darboux problem for partial differential equations in Banach spaces, Comment. Math. Univ. Carolinae 28 (3) (1987), 421-426.
[22] H. Schaefer, Über die methode der a priori schranken, Math. Ann. 129 (1955), 415-416.
[23] D. R. Smart, Fixed Point Theorems, Cambridge Univ. Press, Cambridge, 1974.
[24] G. Teodoru, The Darboux problem for third order hyperbolic inclusions, Libertas Math., 23 (2003), 119-127.
[25] G. Teodoru, The Darboux problem for the equation $u_{x y z}=f(x, y, z, u)$, Sesiunea stinfica jubiliara " 40 de ani de invatamant superior de Constructii la lasi Sectia G: Matematica, 23-25 Octombrie 1981, Iasi, 37-39.
[26] G. Teodoru, Despre neconvergenta sirului de aproximatii succive in problema lui Darboux pentru ecuatia $u_{x y z}=f(x, y, z, u)$, Buletinul Institutului Politehnic Iasi, T. XXVII(XXXI)(1981), Fasc. 1-2, Sectia I: Matematica, Mecanica teoretica, Fizica, 65-72.
[27] G. Teodoru, The data dependence for the solutions of Darboux-Ionescu problem for a hyperbolic inclusion of third order. Fixed Point Theory $\mathbf{7}$ (2006), 127-146.
[28] G. Teodoru, The Darboux-Ionescu problem for third order hyperbolic inclusions with modified argument. Fixed Point Theory 5 (2004), 379391.
[29] A.A. Tolstonogov, Differential Inclusions in a Banach Space, Kluwer Academic Publishers, Dordrecht, 2000.

ІСНУВАННЯ РОЗВ'ЯЗКІВ ЗАДАЧІ ДАРБУ ДЛЯ ГІПЕРБОЛІЧНИХ ДИФЕРЕНЦІАЛЬНИХ ВКЛЮЧЕНЬ В БАНАХОВИХ ПРОСТОРАХ

A. АРАРА, М. БЕНЧОХРА

Досліджено існування розв’язків задачі Діріхле для гіперболічних диференціальних і функціональних диференціальних включень третього порядку з не опуклозначною правою частиною.

[^0]: *MSC 2000: 35L15, 35L70, 35R70, 35L99
 *Corresponding author

