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The main result of this note is the following one: asdimSPn
GX ≤

n asdimX, where X is a proper metric space and asdim stands for the
asymptotic dimension in the sense of Gromov. The corresponding result
is also valid for a generalization of the asymptotic dimension called
the Assouad-Nagata asymptotic dimension. By SPn

G the G-symmetric
power functor is denoted.

1 Introduction
The notion of dimension, being one of the most fundamental mathemati-

cal notions, has its counterparts in di�erent areas of mathematics, in parti-
cular, in the asymptotic topology (see, e.g. [3]). The latter deals with the
large scale properties of metric spaces and, more generally, of the so called
coarse spaces.

The asymptotic dimension of metric spaces is introduced by M. Gromov
[2]. This dimension is a quasi-isometry invariant and therefore can be de�ned
for �nitely generated groups. It turned out that the asymptotic dimension
plays an important role in the geometric group theory. Therefore, it is of
interest to �nd counterparts of results in the classical (covering) dimension
theory for the asymptotic dimension. The aim of this note is to �nd an
estimation of the asymptotic dimension of the G-symmetric powers. The
corresponding result for the covering dimension is proved by Basmanov [4].

Let us start with the necessary de�nitions. Recall that a family U of
subsets in a metric space X (a generic metric is de�ned by d) is called
uniformly bounded if mesh U = sup{diamU | U ∈ U} < ∞. Given D > 0,
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we say that a family U of subsets of X is D-disjoint if, for any U, V ∈ U ,
U 6= V ,

d(U, V ) = inf{d(x, y)| x ∈ U, y ∈ V } > D.

De�nition 1.1. We say that a metric space X is of asymptotic dimension
≤ n (denoted asdimX ≤ n), if, for every D > 0, there exists a uniformly
bounded cover U of X such that U = U0 ∪U1 ∪ · · · ∪ Un, where every family
U i, i = 0, 1, . . . , n, is D-disjoint.

The notion of asymptotic dimension turned out to be of great importance
in geometric group theory, analysis, metric geometry and other �elds of
mathematics.

If is well-known that the asymptotic dimension satis�es the logarithmic
law

asdim(X × Y ) ≤ asdimX + asdimY

(the metric on the product X × Y is de�ned by

d((x1, y1), (x2, y2)) = max{d(x1, x2), d(y1, y2)}).
For any metric space X, n ∈ N, we therefore have

asdimXn ≤ n asdimX. (∗)
In this paper, we prove a generalization of inequality (∗), namely, we

prove the inequality

asdimSPn
GX ≤ n asdimX, (∗∗)

where SPn
G stands for the G-symmetric power functor.

Recall that, for any subgroup G of the symmetric group Sn, the G-
symmetric power SPn

GX is de�ned as follows. Denote by∼ the following equi-
valence relation on Xn : (x1, . . . , xn) ∼ (y1, . . . , yn) if there exists σ ∈ G such
that yi = xσ(i), for every i = 1, . . . , n. Denote by [x1, . . . , xn] the equivalence
class containing (x1, . . . , xn). Then SPn

GX = {[x1, . . . , xn]|(x1, . . . , xn) ∈
Xn} = Xn/G.

The metric d̂ on SPn
GX is de�ned as follows:

d̂([x1, . . . , xn], [y1, . . . , yn]) = min
σ∈G

max
1≤i≤n

d(xi, yσ(i)).

Note that, in the case of trivial group G, one obtains the l∞-metric on
the space SPn

GX = Xn.



306 O. Shukel', M. Zarichnyi

The main result of the paper is a counterpart of Basmanov's theorem
on dimension of the symmetric powers as well as another spaces of the form
F (X), where F is a functor in the category of compact Hausdor� spaces [5].
Note that, for the case of asymptotic dimension zero, the result is proved in
[6]. The following de�nition corresponds to an equivalent de�nition of the
asymptotic dimension (see [10]).

The notion of the asymptotic dimension was recently modi�ed. Recall
that L(U) is a Lebesgue number of a cover U of a metric space; that L(U) > d
means that every ball of radius d is contained in an element of the family U .
De�nition 1.2. The asymptotic Assouad-Nagata dimension of a metric
space X does not exceed n, AN -asdimX ≤ n, if there is a c > 0 and
an r0 > 0 such that for every r ≥ r0, there is a cover U of X such that
meshU ≤ cr, L(U) > r, and U has multiplicity ≤ n + 1 (the latter means
that every point of X belongs to at most n + 1 elements of U).

2 Preliminaries
Recall that a uniform polyhedron is a polyhedron whose vertices are unit

vectors of the Hilbert space l2. Such a polyhedron is considered as a metric
space with the induced metric. Given a uniform polyhedron, K, we say that
a map f : X → |K| is uniformly cobounded if, there exists M > 0 such that,
for every vertex x of K, diam f−1(St(x)) < M . (Here, by St(x) we denote
the open star of a vertex x).

Recall that a map f : (X, d) → (Y, ρ) is C-Lipschitz (where C > 0 is a
constant) if

ρ(f(x), f(y)) ≤ Cd(x, y),

for every x, y ∈ X.
We say that a map f is Lipschitz if f is C-Lipschitz, for some C > 0.

Also, a map is bi-Lipschitz if both f and f−1 are Lipschitz.
A metric space X is an absolute neighborhood Lipschitz retract if for any

metric space Y ⊃ X, there exists a Lipschitz retraction r : U → X, for some
neighborhood U of X in Y .

Let (X, d) be a path connected metric space. The length-metric on X is
de�ned as follows. Given x, y ∈ X, and a path γ : [a, b] → X connecting x
and y, we let

L(γ) = sup
σ

n∑

i=1

d(γ(ti), γ(ti−1)),
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where the supremum is taken over all the subdivisions σ = (ti)n
i=0 of the

segment [a, b]. A path γ is called recti�able if L(γ) < ∞. The lenght-metric
% is de�ned by the formula

%(x, y) = inf{L(γ) | γ is a recti�able path connecting x and y}

(we tacitly assumed that every two points in X are connected with recti�able
paths).

We will need the following characterization theorem for asymptotic di-
mension ([2]; see [10] for the detailed proof).

Theorem 2.1. A metric space X is of asymptotic dimension ≤ n if and
only if, for every ε > 0, there exists a uniform polyhedron K of dimension
≤ n and an ε-Lipschitz uniformly cobounded map f : X → |K|.

Let us describe a triangulation of SPn
GX, for a polyhedron X = |K| (see

[8]). We denote by V the set of vertices of K and by S the set of simplices
of K. Let ≤ be a partial order on V such that ≤ restricted on any subset
A ∈ S of V is a linear order in A.

We �rst de�ne a triangulation Kn of Xn (see [8]) as follows. Let V n be
the set of vertices of Kn. De�ne a partial order ≤ on V n by (v1, . . . , vn) ≤
(w1, . . . , wn) whenever vi ≤ wi for every i = 1, . . . , n.

A subset T = {(w1(t), . . . , wn(t))| t ∈ A} is a simplex in Kn if, for
any i ∈ {1, . . . , n}, the set {wi(t)| t ∈ A} are the vertices (not necessarily
distinct) of a simplex in K.

Then the projection πi : Xn → X on the i-th factor is a simplicial map
with respect to this triangulation.

By Sd(Kn) we denote, as usual, the barycentric subdivision of the tri-
angulation Kn. Recall that the set B of vertices of Sd(Kn) consists of all
the barycenters of the simplices in Kn.

By the de�nition, K(n,G), a triangulation of SPn
GX is de�ned as follows.

The set A of vertices of K(n, G) is B/G (the group G acts on B by the
permutation of the coordinates). The m-simplices of K(n,G) are in one-to-
one correspondence wish the equivalence classes of m-simplices in Sd(Kn).
Note that SPn

GX is an nm-dimensional polyhedron if X is an n-dimensional
polyhedron.

In what follows we assume that m ≥ 1; the case m = 0 is considered in
[6].

We will need the following statement.

Proposition 2.2. The identity map id : |K| → |Sd(K)| is bi-Lipschitz.
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Proof. Without loss of generality, one may assume that |K| is connected
and bounded with respect to the length-metric (otherwise one may connect
every vertex of |K| with a point outside |K| by a one-dimensional segment.
Then, as it is well-known, since |K| is a Lipschitz neighborhood retract, the
length-metric on |K| is bi-Lipschitz equivalent to the metric induced from
l2.

Therefore, we will consider the length-metrics on |K| and |Sd(K)|. Note
that, for every simplex σ of K, the map id|σ is Lipschitz and Lipschitz
constant C can be chosen to that is does not depend on σ. We conclude that
the map id is Lipschitz.

Applying similar arguments to the map id−1 = id: |Sd(K)| → |K| one
concludes that this map is Lipschitz as well. 2

Proposition 2.3. Let f : X → Y be a C-Lipschitz map, where (X, d) and
(Y, %) are proper metric spaces. Then the map SPn

Gf : SPn
GX → SPN

G Y is
C-Lipschitz as well.

Proof. Let [x1, . . . , xn], [y1, . . . , yn] ∈ SPn
GX, then there exists σ ∈ Sn

such that

%̂(SPn
Gf([x1, . . . , xn]), SPn

Gf([y1, . . . , yn])) = max
i

%(f(xi), f(yσ(i))),

therefore

%̂(SPn
G([x1, . . . , xn]), SPn

G([y1, . . . , yn])) ≤max
i

Cd(xi, yσ(i))

≤Cf̂([x1, . . . , xn], [y1, . . . , yn])

and we are done. 2

3 Main result
The main result of this note is the following

Theorem 3.1. For any proper metric space X, we have

asdimSPn
GX ≤ n asdimX.

Proof. Let asdimX = m. Let f : X → |K| be a C-Lipschitz map uni-
formly cobounded map, where K is an m-dimensional uniform polyhedron.
The composition map

SPn
GX

SP n
Gf−→ SPn

G|K|
SP n

Gid−→ SPn
G|Sd(K)|
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is also C-Lipschitz. We are going to show that this map is uniformly coboun-
ded. Since any open star with respect to the triangulation Sd(K) is a subset
of a triangulation K, one have only to demonstrate that the family

{(SPn
Gf)−1((St(x1)× · · · × St(xn))/ ∼) | xi is a vertex of K, i = 1, . . . , n}

is uniformly bounded. Since the map

(x1, . . . , xn) 7→ [x1, . . . , xn] : Xn → SPn
GX

is known to be nonexpanding, to this end is su�cient to show that the family

{f−1(St(x1))× · · · × f−1(St(xn)) | xi is a vertex of K, i = 1, . . . , n}
is uniformly bounded. In its turn, this follows from the fact that

diam f−1(St(x1))×· · ·×f−1(St(xn)) = max{diam f−1(St(x1)) | i = 1, . . . , n}
and the uniform coboundedness of the map f . By Proposition 2.3, the map
f is C-Lipschitz.

It follows from Theorem 2.1 that asdimSPn
GX ≤ nm. 2

4 Asymptotic Assouad-Nagata dimension
It is known (see [10, Proposition 1.7]) that, for any metric space (X, d),

the following are equivalent:
(1) AN -asdimX ≤ n;

(2) there is a C > 0 and an ε0 > 0 such that for all ε < ε0 (ε > 0), there
is an ε-Lipschitz, C/ε-cobounded map p : X → P to an n-dimensional
simplicial complex P .

(Here, a map f into a simplicial complex is called C-cobounded if

diam f−1(St(x)) ≤ C,

for any vertex x).
Theorem 4.1. For any proper metric space X, we have

AN - asdimSPn
GX ≤ nAN - asdimX.

Actually, the proof of of Theorem 3.1 works also in the case of the
Assouad-Nagata dimension. We have only to use the characterization of the
asymptotic Assouad-Nagata dimension in terms of the maps into polyhedra
which is placed above.
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5 Remarks and open questions
It is an open question whether the counterpart of this result holds for

another functors acting in the asymptotic categories. The metric on the
spaces of the form F (X), where F is a normal functor of �nite degree (see [1]
for the notion of normal functor in the category of compact Hausdor� spaces
which served as a model for the corresponding notion in the asymptotic
category) is de�ned in [6]. A possible approach to attacking this problem can
be based on results of [9] on triangulation of the spaces of the form F (X),
where X is a polyhedron and F a covariant functor of �nite degree acting in
some topological categories. A particular case of the hypersymmetric power
functor is brie�y discussed in [7].

Another possible generalization concerns the so called coarse structures.
The asymptotic dimension of coarse spaces is considered in [11].

Recently, a hyperbolic dimension hypdim of metric spaces is de�ned [12].
A subset U of a metric space X is called large scale doubling if there is a
constant N ∈ N such that for every su�ciently large r > 1 and for every ball
B2r(x) in X of radius 2r, the intersection B2r(x) ∩ U can be covered by at
most N balls of radius r.

The hyperbolic dimension of X is the minimal integer hypdim(X) = n
such that for every d > 0 the is an open covering U of X with multiplicity
≤ n + 1 and L(U) > d, which is uniformly large scale doubling.

The following natural question arises.

Question 5.1. Is a counterpart of Theorem 3.1 valid for the hyperbolic
dimension hypdim?
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ÀÑÈÌÏÒÎÒÈ×ÍÈÉ ÂÈÌIÐ ÑÈÌÅÒÐÈ×ÍÈÕ ÑÒÅÏÅÍIÂ

Îêñàíà ØÓÊÅËÜ, Ìèõàéëî ÇÀÐI×ÍÈÉ

Ëüâiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò

Îñíîâíèé ðåçóëüòàò ñòâåðäæó¹, ùî asdimSPn
GX ≤ n asdimX, äå X �

âëàñíèé ìåòðè÷íèé ïðîñòið, à asdim � àñèìïòîòè÷íèé âèìið ó ñåíñi
Ãðîìîâà. Âiäïîâiäíèé ðåçóëüòàò òàêîæ âèêîíàíî äëÿ îäíi¹¨ ìîäèôiêà-
öi¨ àñèìïòîòè÷íîãî âèìiðó � òàê çâàíîãî âèìiðó Àññóàäà-Íàãàòè. Òóò
SPn

G îçíà÷à¹ ôóíêòîð G-ñèìåòðè÷íîãî ñòåïåíÿ.




