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new nonuniform and non-autonomous hierarchies of symmetries are
constructed.
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1 Introduction

We study the symmetries of the nonuniform Focker-Planck type kinetic
dynamical system

ut = uxx + xux + u := K[x; u], (1.1)

on M, where M ⊂ C∞(R; R) is a Schwartz type functional submanifold,
x ∈ R is the spatial variable and t ∈ R+ is the evolution parameter.

Our analysis is based completely on the Lie-Backlund symmetry approach
[1, 2, 4], which makes it possible to construct for equation (1.1) new hierarchi-
es of nonuniform and non-autonomous symmetries.

2 Symmetry and recursion structure analysis

We start from observing that equation (1.1) on the manifold M can be
representable in the split form as

K[x; u] = α1[u] + 2β0[x; u], (2.1)

where
α1[u] := uxx, β0[x; u] :=

1
2
(xux + u). (2.2)

Moreover, as it is well known [1], the expression β0[x; u] := 1
2(xux + u) is a

nonuniform symmetry of the flow

ut1 := uxx = α1[u], (2.3)

satisfying the important Lie commutator condition

[β0, α1] = α1. (2.4)

Herewith, we can easily construct the suitable uniform and non-autonomous
Lie-Backlund symmetries of flow (2.1) from those of flow (2.3), whi-
ch we will consider from now as a generating one. Now we will make use
of the elementary fact from [1, 4] that all of linear operators Λ̃n := ∂n :
T (M) → T (M), n ∈ Z, acting in the tangent space T (M), are the "recursi-
on"operators for the generative flow (2.3), that is the Lie derivatives

Lα1Λ̃n := dΛ̃n/dt1 − [α
′
1, Λ̃n] = 0, (2.5)
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for all n ∈ Z, where LX denotes the Lie derivative [2] along the vector field
X : M → T (M) and the sign ”′” denotes the standard Frechet derivative.
In particular,

Λ̃1 = ∂, Λ̃2 = ∂2, Λ̃3 = ∂3 (2.6)

and so on. Taking further into account (2.4) one easily obtains that

LKΛ̃1 = Lα1+2β0Λ̃1 = Lα1Λ̃1 + 2Lβ0Λ̃1 = 0 + ∂ = Λ̃1. (2.7)

Recalling that the Lie derivative LK is here a derivation in the space End
T (M), we can define the expression

Λ̂[1] := e−tΛ̃1 = e−t∂, (2.8)

satisfying the generalized "determining"recursion condition

(∂/∂t + LK)Λ̂[1] = 0 (2.9)

for our dynamical system (1.1). As a corollary, we obtain that all expressions

K
(1)
j := Λ̂j

[1]K[x; u] (2.10)

for j ∈ Z are also the nonuniform-non-autonomous symmetries of flow (1.1).
The same way we can construct many other recursion operators for (1.1)

from (2.7), in particular, expressions

Λ̂[n] := Λ̂n
[1] = e−nt∂n (2.11)

for all n ∈ Z are recursive operators for (1.1) too.
Doing similarly, one can succeed in finding from (2.7) other recursion

operators as

Λ̂(1) : = Λ̂[1] = e−t∂, Λ̂(2) = ∂2 + x∂,

Λ̂(3) = et(∂ + x), (2.12)

Λ̂(4) = e2t(∂2 + 2x∂ + x2 + 1).

For instance, it is easy to calculate that

(∂/∂t + LK)(Λ̃2 + xΛ̃1) = LK(Λ̃2 + xΛ̃1) = LKΛ̃2 + (2.13)
+LK(xΛ̃1) = 2∂2 − 2∂2 = 0,

that is the expression

Λ̂(2) = Λ̃2 + xΛ̃1 = ∂2 + x∂ (2.14)
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is a new recursion operator for flow (1.1).
Similarly,

LK(Λ̃2+2xΛ̃1+f(x; t)I) = −2Λ̃2−2fx(x; t)∂−xfx(x; t)I−fxx(x; t)I (2.15)

since for any scalar multiplication operator f(x; t)I : T (M) → T (M), x ∈ R,
there holds the general relationship

LK [f(x; t)I] = [f(x; t)I, K ′] = 2fx(x; t)∂ − xfx(x; t)I − fxx(x; t)I. (2.16)

From (2.15) at f(x; t) = x2 one obtains easily that

LK(Λ̃2 + 2xΛ̃1 + x2 + 1) = −2(Λ̃2 + 2xΛ̃1 + x2 + 1), (2.17)

which can be equivalently rewritten as

(∂/∂t + LK)[e2t(Λ̃2 + 2xΛ̃1 + x2 + 1)] = 0, (2.18)

meaning, evidently, that the operator

Λ̂(4) := e2t(Λ̃2 + 2xΛ̃1 + x2 + 1) = e2t(∂2 + 2x∂ + x2 + 1)

is recursive for (1.1). Concerning the operator Λ̂(3) = et(∂ + x) one finds
easily, as above, that

LKΛ̃1 = −∂ − x = −(Λ̃1 + x). (2.19)

Making use of (2.16) at f(x; t) = x, expression (2.19) one rewrites equi-
valently as

(∂/∂t + LK)[et(Λ̃1 + x)] = 0. (2.20)

Thereby, owing to (2.20) the operator

Λ̂(3) := et(Λ̃1 + x) = et(∂ + x) (2.21)

is also recursive for flow (1.1). The algorithm demonstrated above can be,
evidently, continued further for any n ∈ Z.

3 The symmetry generation

Now we are in a position to construct regularly the sets of nonuniform and
non-autonomous symmetries

K
(r)
j := Λ̂j

(r)K, (3.1)
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where j ∈ Z, r = 1, 4. (We are not writing down them in explicit form leaving
these calculations for the interested Reader.)

It is the place here to stress once more that all of the results presented
above are obtained regularly making use of the Lie-Bäcklund symmetries
and related recursion operators properties in a proper way, as it was just
demonstrated.

In the work we have constructed the nonuniform and non-autonomous
symmetries of the Focker-Planck type dynamical system (1.1). The method
used is based on the splitting trick of the right hand of (1.1) into two
parts, satisfying the standard Lie subalgebra condition. The related recursi-
on operators, which can be constructed regularly for any n ∈ Z, follow easily
from the fact that the first split part, mentioned above, as a basic dynamical
system, possesses an infinite hierarchy of elementary recursion operators.

4 Conclusion

The nonuniform Focker-Planck type equation (1.1) can be considered as
a model for studying much more interesting and complicated nonlinear
dynamical systems such as nonuniform Burgers, Korteweg-de Vries and
Schrodinger type systems. It is easy to observe that their full analytical
treatment fits very deeply to the parametric gradient-holonomic scheme,
devised in [4]. Moreover, the complete picture of such dynamical systems
can be extracted from the fundamental criterion of so-called Lax type iso-
spectrally integrable nonlinear dynamical systems, which is formulated [3, 4]
as follows.
Criterion: Any Lax type iso-spectrally integrable dynamical system K :

M → T (M) possesses at least one special infinite-dimensional Lie subalgebra
G : = {αj , βk : j, k ∈ Z} of uniform and non-uniform symmetries isomorphic
to the current Lie algebra of the Banach group G =Diff(S1) � D(S1), the
semi-direct product of the diffeomorphism group Diff(S1) of the circle S1and
the abelian group D(S1) of smooth 2π-periodic functions. The correspondi-
ng recursion operator Λ̃ : T (M) → T (M) satisfies the set of determining
equations

Lαj Λ̃ = 0, Lβj
Λ̃ = Λ̃j+1, (4.1)

where vector fields αj , βk : M → T (M), j, k ∈ Z, satisfy the Lie algebra
relationships

[K, αj ] = 0, [αj , αj ] = 0, [βk, αj ] = (j + ε)αj+k (4.2)
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for some parameter ε ∈ R, depending on the dynamical system K : M →
T (M).

As a corollary, one can construct many infinite hierarchies of non-uniform
nonlinear dynamical systems

Kj = αj +
∑
k∈Aj

cjkβk (4.3)

for any sets of indices Aj , j ∈ Z, and values cjk ∈ R, k ∈ A.j , whose suitable
recursion operators Λ̃(j) : T (M) → T (M), j ∈ Z, follow the same scheme, as
used above, from the determining equations

LKj Λ̃ =
∑
k∈Aj

cjkΛ̃k+1. (4.4)

Based on equations (4.4) one can obtain the corresponding recursion
operators for dynamical systems (4.3) on which we do not stop here in detail.
This and related problems will be analyzed elsewhere.
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Стаття присвячена симетрiйному аналiзу лiнiйної неоднорiдної кiне-
тичної динамiчної системи типу Фоккера-Планка ut = uxx + xux + u :=
K[x; u]. Грунтуючись на симетрiйному пiдходi Лi-Беклунда побудованi
новi iєрархiї неоднорiдних та неавтономних симетрiй.




