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A novel approach based upon vertex operator representation is devised

to study the AKNS hierarchy. It is shown that this method reveals the

remarkable properties of the AKNS hierarchy in relatively simple, rather

natural and particularly effective ways. In addition, the connection of this

vertex operator based approach with Lie-algebraic integrability schemes

is analyzed and its relationship with τ -function representations is briefly

discussed. An approach based on the spectral and Lie-algebraic techniques

for constructing vertex operator representation for solutions to a Riemann

type hydrodynamical hierarchy is devised. A functional representation

generating an infinite hierarchy of dispersive Lax type integrable Hamil-

tonian flows is obtained.

1 Introduction

The “miraculous” properties of the AKNS hierarchy related to calculations
connected with the integrability of nonlinear dynamical systems have, since
the early work of their discoverers [1, 2], been the focus of considerable re-
search. These investigations, such as in [3, 4, 5, 6, 7, 8], have produced
further insights into the nature of the AKNS hierarchy and several addi-
tional methods of construction. In what follows, we devise an alternative
approach to exploring the properties of the AKNS hierarchy based upon
its vertex operator representation. It appears that our formulation offers
several advantages over existing methods when it comes to simplicity, effec-
tiveness, flexibility and ease of extension, but more detailed confirmation
of these observations must await further investigations.

Nonlinear hydrodynamic equations are of constant interest still from
classical works by B. Riemann, who had extensively studied them in gen-
eral three-dimensional case, having paid special attention to their one-
dimensional spatial reduction, for which he devised the generalized method
of characteristics and Riemann invariants. These methods appeared to be
very effective [9] in investigating many types of nonlinear spatially one-
dimensional systems of hydrodynamical type and, in particular, the char-
acteristics method in the form of a “reciprocal” transformation of variables
has been used recently in studying a so called Gurevich-Zybin system
[10, 11] in [12] and a Whitham type system in [13, 14, 15, 16] and [15, 17].
Moreover, this method was further effectively applied to studying solu-
tions to a generalized [15] (owing to D. Holm and M. Pavlov) Riemann
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type hydrodynamical system

DN
t u = 0, Dt := ∂/∂t+ u∂/∂x, (1)

where N ∈ Z+ and u ∈ C∞(R2;R) is a smooth function. Making use of
novel methods, devised in [16, 18] and based both on the spectral theory
[6, 7, 19, 20] and the differential algebra techniques, the Lax type repre-
sentations for the cases N = 1, 4 were constructed in explicit form.

2 The AKNS hierarchy vertex representation analysis

2.1 The AKNS hierarchy and its algebraic structure description

To set the stage for our approach, we begin with some fundamentals of
the remarkable sequence of Lax integrable dynamical systems that is the
focus of this study. We shall analyze the AKNS hierarchy of Lax inte-
grable dynamical systems on a complex 2π-periodic functional manifold
M ⊂ C∞(R/2πZ;C2), which is well known [1, 2, 4, 6] to be related to the
following linear differential spectral problem of Lax type:

df/dx− `(x;λ)f = 0, `(x;λ) :=

(
λ/2 u

v −λ/2

)
. (2)

Here x ∈ R, f ∈ L1(R;C2), the vector function (u, v)> ⊂ M , > de-
notes the transpose and λ ∈ C is a spectral parameter. Assume that a
vector function (u, v)> ⊂ M depends parametrically on the infinite set
t := {t1, t2, t3, . . .} ∈ CN in such a way that the generalized Floquet
spectrum σ(`) := {λ ∈ C : supx∈R ||f(x;λ)||1 < ∞} of the problem (2)
persists in being parametrically iso-spectral, that is dσ(`)/dt = 0. The
iso-spectrality condition gives rise to the AKNS hierarchy of nonlinear dy-
namical systems on the functional manifold M in the general form

d

dtj
(u(t), v(t))> = Kj[u(t), v(t)], (3)

where (
u(t)

v(t)

)
:=

(
u(x+ t1, t2,t3,...)

v(x+ t1, t2,t3,...)

)
(4)
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for t ∈ CN.
The corresponding vector fields Kj : M → T (M), j ∈ N, can be con-

structed [2, 4, 7, 8, 20, 21] via the following Lie-algebraic scheme: We
define the centrally extended affine current s`(2)-algebra Ĝ := G̃ ⊕ C

G̃ := {a =
∑

j∈Z, j�∞

a(j) ⊗ λj : a(j) ∈ C∞ (R/2πZ; s`(2;C)) }, (5)

endowed with the Lie commutator

[(a1, c1), (a2, c2)] := ([a1, a2], 〈a1, da2/dx〉) (6)

with the scalar product

〈a1, a2〉 := resλ=∞

∫ 2π

0

tr(a1a2)dx (7)

for any two elements a1, a2 ∈ G̃, where “res” and “tr” are the usual residue
and trace maps, respectively. As the spectrum σ(`) ⊂ C is supposed to
be parametrically independent, there is a natural association with flows.
These flows are generated by the set I(Ĝ∗) of Casimir invariants of the
coadjoint action of the current algebra Ĝ on a given element `(x;λ) ∈
G̃∗
−
∼= G̃+ contained in the space of functionals D(Ĝ). Here we have denoted

by G̃ := G̃+⊕G̃− the natural splitting into two affine subalgebras of positive
and negative λ-expansions. In particular, a functional γ(λ) is in I(Ĝ) if
and only if

[S̃(x;λ), `(x;λ)] +
d

dx
S̃(x;λ) = 0, (8)

where the gradient S̃(x;λ) := gradγ(λ)(`) ∈ G̃− is defined with respect to
the scalar product (7) by means of the variation

δγ(λ) := 〈gradγ(λ)(`), δ`〉 . (9)

We note here that the determining matrix equation (8) in the case of the
element `(x;λ) ∈ G̃∗

−, given by the spectral problem (2), can be easily
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solved recursively as λ → ∞ in the following asymptotic form as

S̃(x;λ) ∼
∑
j∈Z+

S̃j(x)λ
−(j+1), S̃(x;λ) =

(
s̃11 s̃12
s̃21 s̃22

)
, (10)

S̃0(x) =

(
1/2 0

0 −1/2

)
, S̃1(x) =

(
0 u

v 0

)
,

S̃2(x) =

(
−uv ux

−vx vu

)
, S̃3(x) =

(
vux − uvx uxx − 2u2v

vxx − 2v2u uvx − vux

)
, ...,

and so on, based upon the differential relationships

λs̃12 = s̃12,x + u(s̃11 − s̃22),

−λs̃21 = s̃21,x − v(s̃11 − s̃22), (11)

s̃11,x = us̃21 − vs̃12 = −s̃22,x,

following from (8).
Now we will take into into account that the coadjoint orbits of elements

` ∈ G̃∗
− with respect to the standard R-structure [4] on the Lie algebra Ĝ

[(a1, c1), (a2, c2)]R := ([Ra1, a2] + [a1,Ra2], 〈Ra1, da2/dx〉−
− < da1/dx,Ra2 >)

(12)

where, by definition, R := 1
2
(P+ − P−) and P±G̃ := G̃±, are Poissonian

manifolds [4, 7, 8, 21, 22, 23, 24]. Then the corresponding a priori iso-
spectral AKNS flows can be constructed as the commuting Hamiltonian
systems on G̃∗

−

d`

dtj
:= {γj, `} = [(λj+1S̃)+, `] +

d

dx
(λj+1S̃)+ (13)

generated by the Casimir invariants γj ∈ I(Ĝ∗), j ∈ N, with respect to the
Lie-Poisson structure on Ĝ∗ defined as

{γ, ξ} := 〈`, [gradγ(λ)(`), gradξ(λ)(`)]R〉+
+
〈
Rgradγ(λ)(`), d

dx
gradξ(λ)(`)

〉
−
〈

d
dx
gradγ(λ)(`),Rgradξ(λ)(`)

〉
(14)

for any smooth functionals γ, ξ ∈ D(Ĝ∗). As a result of (13) equation (8)
is easily augmented by the commuting hierarchy of evolution equations

dS̃/dtj = [(λj+1S̃)+, S̃] (15)
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for j ∈ N, including the determining equation (8) at j = 1.

The hierarchies (13) and (15) can be rewritten with respect to the
unique λ-parametric vector field

d/dt :=
∑
j∈Z+

λ−jd/dtj+1 (16)

on the manifold M as the generating flows

d

dt

(
u

v

)
=

(
λ2s̃12,x + uλ2(s̃11 − s̃22)

λ2s̃21,x − vλ2(s̃11 − s̃22)

)
(17)

and
d

dt
S̃(x;µ) = [S̃(x;µ),

λ3

µ− λ
S̃(x;λ) + λS̃0(x)], (18)

where the parameters λ, µ → ∞ in such a way that |µ/λ| < 1. Since the
flow (17) is, by construction, Hamiltonian on the adjoint space G̃∗

−, it can be
represented also as a Hamiltonian flow on the functional manifold M. This
will be done in the next two sections with respect to both the evolution
vector field (16) and the related vertex vector field mapping X̂λ : M → M

defined as

X̂λ := (X̂+
λ , X̂

−
λ ), X̂+

λ = expDλ, X̂−
λ = exp(−Dλ),

Dλ :=
∑
j∈Z+

1

(j + 1)
λ−(j+1) d

dtj+1

, (19)

and satisfying the determining relationship

d

dt
= ∓λ2X̂±,−1

λ

d

dλ
X̂±

λ , (20)

as λ → ∞. These vertex vector field maps and their connections with inte-
grability theory have been studied extensively by a number of researchers,
most notably in [2, 3].

2.2 Hamiltonian analysis

Consider the Casimir functional γ(λ) ∈ I(Ĝ), λ ∈ C, and its gradient with
respect to its dependence on a point (u, v)> ∈ M given by

gradγ(λ)[u, v] = (s̃21(x;λ), s̃12(x;λ))
> ∈ T ∗(M), (21)
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as follows easily from definition (9). By introducing on the manifold M

the following two skew-symmetric operators

θ :=

(
0 1

−1 0

)
, η :=

(
2u∂−1u ∂ − 2u∂−1v

∂ − 2v∂−1u 2v∂−1v

)
, (22)

the relationships (11) can be rewritten as

λθgradγ(λ)[u, v] = ηgradγ(λ)[u, v], (23)

holding for all λ ∈ C. It follows directly from (17) that

d

dt
(u, v)> = −ηgradγ(λ)[u, v], (24)

so it is easy to verify that the Casimir invariant γ(λ) ∈ I(Ĝ) simultaneously
satisfies the two involutivity conditions

{γ(λ), γ(µ)}θ = 0 = {γ(λ), γ(µ)}η (25)

for all λ, µ ∈ C with respect to two Poissonian structures

{·, ·}θ := (grad(·), θgrad(·)), {·, ·}η := (grad(·), ηgrad(·)) (26)

on the manifold M, where (·, ·) is the standard convolution on the product
bundle T ∗(M)× T (M).

As a direct consequence of (24) and (25), one can readily verify that
the operators θ, η : T ∗(M) → T (M), defined by (22), are co-symplectic,
Nötherian and compatible [7, 20, 21] on M. This, in particular, implies
that the Lie derivatives [7, 21, 23, 24]

L d
dt
θ = 0 = L d

dt
η, L d

dt
gradγ(λ)[u, v] = 0 (27)

vanish identically on the manifold M.

2.3 Vertex operator structure analysis

It is well known [4, 6, 7, 20] that the Casimir invariants determining equa-
tion (8) allows a general solution representation in the following two im-
portant forms:

S̃(x;λ) = k(λ)F (x+ 2π, x;λ)− k̃(λ)

2
trF (x+ 2π, x;λ) (28)
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and
S̃(y;λ) = F̃ (y, x0;λ)C̃(x0;λ)F̃

−1(y, x0;λ). (29)

Here F (y, x;λ) and F̃ (y, x0;λ) belong to the space of linear endomor-
phisms of C2, End C2, for all x, x0, y ∈ R, and are matrix solutions to the
spectral equation (2) satisfying, respectively, the Cauchy problems

d

dy
F (y, x;λ) = `(y;λ)F (y, x;λ), F (y, x;λ)|y=x = I, (30)

and

d

dy
F̃ (y, x0;λ) = `(y;λ)F̃ (y, x0;λ), F̃ (y, x0;λ)|y=x0 = I+O(1/λ), (31)

for all λ ∈ C and x ∈ R, where I ∈ End C2 is the identity matrix. Here
the parameters k̃(λ) ∈ C and C̃(x0;λ) ∈ EndC2 are invariants, chosen in
such a way that the asymptotic condition

S̃(x;λ) ∈ G̃− (32)

as λ → ∞ holds for all x ∈ R.
To construct the solution (28) satisfying condition (32), we find a pre-

liminary partial solution F̃ (y, x;λ) ∈ EndC2, x, y ∈ R, to equation (31) at
x0 = x ∈ R, satisfying the asymptotic Cauchy data

F̃ (y, x;λ)|y=x = I+O(1/λ) (33)

as λ → ∞. It is easy to check that

F̃ (y, x;λ) =

(
ẽ1(y, x;λ) −ũ(y;λ)λ−1ẽ2(y, x;λ)

ṽ(y;λ)λ−1ẽ1(y, x;λ) ẽ2(y, x;λ)

)
, (34)

is an exact functional solution to (31) satisfying condition (33). Here we
have defined

ẽ1(y, x;λ) := exp{(y − x)λ/2 + λ−1

∫ y

x

uṽds}, (35)

ẽ2(y, x;λ) := exp{(x− y)λ/2− λ−1

∫ y

x

ũvds},



266 D.Blackmore, Y.Prykarpatsky, J.Golenia, A.Prykarpatsky

where the vector-function (ũ, ṽ)> ∈ M satisfies the determining functional
relationships

ũ = u+ ũxλ
−1 − ũ2vλ−2, ṽ = v − ṽxλ

−1 − ṽ2uλ−2, (36)

as λ → ∞, which were discovered earlier in a very interesting article [25].
It was also shown that exact asymptotic (as λ → ∞) functional solutions
of these relationships can be easily constructed by means of the standard
iteration procedure.

The fundamental matrix F (y, x;λ) ∈ EndC2 is represented for all
x, y ∈ R in the form

F (y, x;λ) = F̃ (y, x;λ)F̃−1(x, x;λ). (37)

Consequently, if one sets y = x+ 2π in this formula and defines

k̃(λ) := λ−1[ẽ1(x+ 2π, x;λ)− ẽ2(x+ 2π, x;λ)]−1, (38)

it follows from (37) that the exact matrix representation

S̃(x;λ) =

(
λ2−ũṽ

2λ(λ2+ũṽ)
ũ

λ2+ũṽ
ṽ

λ2+ũṽ
ũṽ−λ2

2λ(λ2+ũṽ)

)
, (39)

satisfies the necessary condition (32) as λ → ∞ .

Remark 1. The invariance of the functional (37) with respect to the gen-
erating vector field (16) on the manifold M derives from the representation
(34), the evolution equations (31) and

d

dt
F̃ (y, x0;µ) =

(
λ3

µ− λ
S̃(x;λ) + λS̃0(x)

)
F̃ (y, x0;µ), (40)

which follows naturally from the determining matrix flows (13) upon ap-
plying the translation y → y + 2π.

The matrix expression (39) coincides as λ → ∞ with the asymptotic ex-
pansion (10), whose matrix elements satisfy the following important func-
tional relationships:

1− λ(s̃11 − s̃22)

2s̃21
= ũ,

1− λ(s̃11 − s̃22)

2s̃12
= ṽ, (41)
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allowing to introduction in a natural way of the vertex vector field (19).
To show this, we need to take the preliminary step of deriving the cor-
responding evolution equation for the vector function (ũ, ṽ)> ∈ M with
respect to the generating vector field (16) in the asymptotic form (17) as
λ → ∞. Before doing this we shall find the form of evolution equation
(18) as µ, λ → ∞ :

d

dt
S̃(x;µ) = [λ3 d

dλ
S̃(x;µ)− λS̃0(x), S̃(x;λ)], (42)

which entails the following differential relationships:

ds̃11/dt = λ3(s̃21ds̃12/dλ− s̃12ds̃21/dλ),

ds̃22/dt = λ3(s̃12ds̃21/dλ− s̃21ds̃12/dλ),

ds̃22/dt = λ3[s̃12
d
dλ
(s̃11 − s̃22)− (s̃11 − s̃22)

ds̃12
dλ

)− λs̃12,

ds̃11/dt = λ3[s̃21
d
dλ
(s̃22 − s̃11)− (s̃22 − s̃11)

ds̃21
dλ

) + λs̃21.

(43)

Using the relationships (43), one can easily obtain by means of simple, but
rather cumbersome calculations, the evolution equations for the vector
function (ũ, ṽ)> ∈ M expressed in the form (41)

d
dt
[1−λ(s11−s22)

2s12
] = −λ2 d

dλ
[1−λ(s11−s22)

2s12
],

d
dt
[1−λ(s11−s22)

2s12
] = λ2 d

dλ
[1−λ(s11−s22)

2s12
],

(44)

which hold as λ → ∞. As a direct consequence of the differential rela-
tionships (44), the following vertex operator representation for the vector
function (ũ, ṽ)> ∈ M

ũ(t;λ) := u+(t;λ) = X̂+
λ u(t), (45)

ṽ(t;λ) := v−(t;λ) = X̂−
λ u(t),

holds. Here we took into account that, owing to the determining functional
representations (36), the limits

lim
λ→∞

ũ(t;λ) = u(t), lim
λ→∞

ṽ(t;λ) = v(t), (46)

exist and the vertex operator X̂λ : M → M acts on the functional man-
ifold M via the corresponding shift operators defined above by means of
the differential relationships (19) and (20). The vertex representation (45)
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allows, in particular, to readily construct infinite hierarchies of the conser-
vation laws for the generating AKNS integrable vector field (16) as

H+(λ) :=

∫ 2π

0

u+(t;λ)v(t)dx, H−(λ) :=

∫ 2π

0

v−(t;λ)u(t)dx, (47)

which follow from (34), (35), and reasoning from Remark (1). Since the
fundamental matrix (37) at y = x+ 2π defines the solution

S(x;λ) := F̃ (x+ 2π, x;λ)F̃−1(x, x;λ) (48)

to the determining equations (8) and (11), its determinant detS(x;λ)

is invariant with respect to the generating vector field (16) and equals
detS(x;λ) = det F̃ (x + 2π, x;λ) det F̃−1(x, x;λ) = 1 for all x ∈ R and
λ ∈ C owing to the condition tr `(x;λ) = 0. Accordingly, based on the
matrix representation (34), one finds that the relationships

ẽ1(x+ 2π, x;λ) := exp [πλ+ λ−1H+(λ)] ,

ẽ2(x+ 2π, x;λ) := exp [−πλ− λ−1H−(λ)] ,

ẽ1(x+ 2π, x;λ)ẽ2(x+ 2π, x;λ) = 1,
d
dt
ẽ1(x+ 2π, x;µ) = 0 = d

dt
ẽ2(x+ 2π, x;µ)

(49)

hold for all x ∈ R and λ, µ ∈ C. As a consequence of (49), we obtain

H+(λ) = H−(λ) (50)

for all λ ∈ C; that is, the two hierarchies of conservations law (47) coin-
cide. Concerning the AKNS hierarchy vector fields (16) and the related
Hamiltonian flows on the manifold M, we can easily derive them from the
canonical vertex representations (45), taking into account the recursive
functional equations (36). We obtain from that (36) and (47) that

X+
λ u = u+ = u+ λ−1ux + λ−2[u+

xx + (u+)2v] + λ−3[(u+)2v]x = ..., (51)

X−
λ v = v− = v − λ−1vx − λ−2[v−xx + (v−)2u] + λ−3[(v−)2u]x = ...,

which immediately yield the whole AKNS hierarchy of nonlinear Lax in-
tegrable dynamical systems on the functional manifold M. For instance,

d

dt1

(
u

v

)
=

(
ux

vx

)
,
d

dt2

(
u

v

)
=

(
uxx + 2u2v

−vxx + 2v2u

)
, ..., (52)

and so on.
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2.4 The τ-function representation

The vertex operator representations (34), (39) and (46) can also be natu-
rally associated with the results in [2, 3], based on the generating τ -function
approach. The latter makes extensive use of the versatile dual represen-
tation (29) for the generating current algebra element S̃(x;λ) ∈ G̃∗

− (as
λ → ∞) for the AKNS flows with the specially chosen invariant matrix

C̃(x0;λ) =

(
1 0

0 −1

)
∈ EndC2. (53)

In the context of our approach, the relation with the τ -function repre-
sentation devised in [2, 3] can be based on the matrix solution (34) and
the simple vertex operator mapping properties

X̂

(
ẽ1(x, y;λ)

ẽ2(x, y;λ)

)
=

(
ẽ2(y, x;λ)

ẽ1(y, x;λ)

)
, (54)

which follow directly from the definitions (35) and (45).
As a result of (34) and (54), the crucial expression for the normalized

matrix

F̄ (y, x;λ) :=
(
det F̃ (x, x;λ)

)−1/2

F̃ (y, x;λ) =

=

 λẽ−2 (x,y;λ)

[λ2+u+(x;λ)v−(x;λ)]1/2
− u+(y;λ)ẽ+1 (x,y;λ)

[λ2+u+(x;λ)v−(x;λ)]1/2

v−(y;λ)ẽ+2 (x,y;λ)

[λ2+u+(x;λ)v−(x;λ)]1/2
λẽ+1 (x,y;λ)

[λ2+u+(x;λ)v−(x;λ)]1/2

 := (55)

=

(
τ−(y,x;λ)
τ(y,x;λ))

−u+(y;λ)τ+(y,x;λ)
λτ(y,x;λ)

v−(y;λ)τ−(y,x;λ)
λτ(y,x;λ)

τ+(y,x;λ)
τ(y,x;λ)

)
,

holds, where we defined the quantities

τ−(y, x;λ)

τ(y, x;λ)
:=

λẽ−2 (x, y;λ)

[λ2 + u+(x;λ)v−(x;λ)]1/2
,

τ+(y, x;λ)

τ(y, x;λ)
:=

λẽ+1 (x, y;λ)

[λ2 + u+(x;λ)v−(x;λ)]1/2
, (56)

satisfying the compatibility relationship

τ+(y, x;λ)τ−(y, x;λ)

τ(y, x;λ)2
=

λ2 exp[λ−1
∫ y

x
(u+v − uv−)ds]

[λ2 + u+(x;λ)v−(x;λ)]
. (57)
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The vertex operator expression (55), as is easily checked, can be readily
employed to derive the representation (30), where the exact result (39)
entails the additional application of the useful [2] vertex representation

F̄ (y, x;λ) =
1

τ(y, x;λ)

(
τ−(y, x;λ) −λ−1σ+(y, x;λ)

λ−1ρ−(y, x;λ) τ+(y, x;λ)

)
, (58)

which holds as λ → ∞ if ρ(y, x;λ) := v(y)τ(y, x;λ), σ(y, x;λ) := u(y)×
τ(y, x;λ), x, y ∈ R, and mappings ρ− and σ+ are defined in the obvious
fashion. In this regard, it should be noted that the vertex operator repre-
sentation (58) for the matrix (55) was obtained in [2] as a special normal-
ized solution to the determining equation (31). Taking into account these
two dual vertex representations of the AKNS hierarchy of integrable flows
on the functional manifold M, one can see that the first one — presented
in this work — is both technically simpler and more effective in obtaining
exact descriptions of such important functional ingredients as conservation
laws, symplectic structures and related commuting vector fields.

3 The Gurevich-Zybin system vertex representation

analysis

3.1 The Gurevich-Zybin system and its algebraic structure de-
scription

In this Section we are interested in constructing the so called vertex oper-
ator representations [2, 3, 25, 26, 27] for solutions to the Riemann type
hydrodynamical hierarchy (1) for the case N = 2 :{

Dtu = ut + uux = v,

Dtv = vt + uvx = 0,
(59)

whose Lax `-operator equals

`[u, v;λ] :=

(
−λux/2 −vx
λ2/2 λux/2

)
, (60)

where we denoted v := Dtu, and for the case N = 3 :

du1/dt = u2 − u1u1,x,

du2/dt = u3 − u1u2,x,

du3/dt = −u1u3,x,

(61)
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whose Lax `-operator equals

`[u;λ] =

 λu2,x u3,x 0

0 λuN−1,x 2u3,x

−3λ3 −λ23u1,x −λ22u2,x

 , (62)

where we denoted u1 := u, and u2 := Dtu and u3 := D2
t u, making use an

approach recently devised in [27, 28] for the case of the classical AKNS hi-
erarchy of integrable flows, and which can be easily generalized for treating
the problem for arbitrary integers N ∈ Z+. We begin with a Lax type lin-
ear spectral problem [12, 15, 29] for equation (59) defined on the space of
smooth real-valued 2π-periodic functions (u, v)ᵀ ∈ M ⊂ C∞(R/2πZ;R2) :

df/dx = `[u, v;λ]f, `[u, v;λ] :=

(
−λux/2 −vx
λ2/2 λux/2

)
, (63)

where, by definition, v := Dtu, f ∈ L∞(R/2πZ;C2) and λ ∈ C is a
spectral parameter. Assume that a vector function (u, v)> ∈ M depends
parametrically on the infinite set t := {t1, t2, t3, . . .} ∈ RZ+ in such a
way that the generalized Floquet spectrum [4, 6, 20] σ(`) := {λ ∈ C :

supx∈R ||f(x;λ)||∞ < ∞} of the linear problem (63) persists in being
parametrically iso-spectral, that is dσ(`)/dtj = 0 for all tj ∈ R. The iso-
spectrality condition gives rise to a hierarchy of commuting to each other
nonlinear bi-Hamiltonian dynamical systems on the functional manifold
M in the general form

d

dtj
(u(t), v(t))> = −ϑgradHj[u, v] := Kj[u(t), v(t)], (64)

where Kj : M → T (M) and Hj ∈ D(M), j ∈ Z+, are, respectively, vector
fields and conservation laws, on the manifold M , which were described
before in [15, 18, 29],

ϑ :=

(
0 ∂

∂ 0

)
(65)

is a Poisson structure on the manifold M and, by definition,(
u(t)

v(t)

)
:=

(
u(x, t1, t2,t3,...)

v(x.t1, t2,t3,...)

)
(66)
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for t ∈ RN.

It is well known [4, 6, 7, 20] that the Casimir invariants, determining
conservation laws for dynamical systems (64), are generated by the suitably
normalized monodromy matrix S̃(x;λ) ∈ End C2 of the linear problem
(63)

S̃(x;λ) = k(λ)S(x;λ)− k(λ)

2
trS(x;λ), (67)

where F (y, x;λ) ∈ End C2 is the matrix solution to the Cauchy problems

d

dy
F (y, x;λ) = `(y;λ)F (y, x;λ), F (y, x;λ)|y=x = I, (68)

for all λ ∈ C and x, y ∈ R, where I ∈ End C2 is the identity matrix,
S(x;λ) := F (x+2π, x;λ) is the usual monodromy matrix for the equation
(68). Here the parameter k(λ) ∈ C is invariant with respect to flows (64)
and is chosen in such a way that the asymptotic condition

S̃(x;λ) ∈ G̃− (69)

as λ → ∞ holds for all x ∈ R. Here G̃− ⊂ G̃, where G̃ := G̃+ ⊕ G̃− is
the natural splitting into two affine subalgebras of positive and negative
λ-expansions of the centrally extended [4, 8] affine current sl(2)-algebra
Ĝ := G̃ ⊕ C :

G̃ := {a =
∑

j∈Z, j�∞

a(j) ⊗ λj : a(j) ∈ C∞ (R/2πZ; sl(2;C)) }. (70)

The latter is endowed with the Lie commutator

[(a1, c1), (a2, c2)] := ([a1, a2], 〈a1, da2/dx〉), (71)

where the scalar product is defined as

〈a1, a2〉 := resλ=∞

∫ 2π

0

tr(a1a2)dx (72)

for any two elements a1, a2 ∈ G̃ with “res” and “tr” being the usual residue
and trace maps, respectively. As the spectrum σ(`) ⊂ C of the problem
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(63) is supposed to be parametrically independent, flows (64) are naturally
associated with evolution equations

dS̃/dtj = [(λj+1S̃)+, S̃] (73)

for all j ∈ R, which are generated by the set I(Ĝ∗) of Casimir invariants
of the coadjoint action of the current algebra Ĝ on a given element
`(x;λ) ∈ G̃∗

−
∼= G̃+ contained in the space of smooth functionals D(Ĝ). In

particular, a functional γ(λ) ∈ I(Ĝ) if and only if

[S̃(x;λ), `(x;λ)] +
d

dx
S̃(x;λ) = 0, (74)

where the gradient S̃(x;λ) := gradγ(λ)(`) ∈ G̃− is defined with respect to
the scalar product (72) by means of the variation

δγ(λ) := 〈gradγ(λ)(`), δ`〉 . (75)

To construct the solution to matrix equation (74), we find preliminary a
partial solution F̃ (y, x;λ) ∈ End C2, x, y ∈ R, to equation (68) satisfying
the asymptotic Cauchy data

F̃ (y, x;λ)|y=x = I+O(1/λ) (76)

as λ → ∞. It is easy to check that

F̃ (y, x;λ) =

(
ẽ1(y, x;λ) − β̃(y;λ)

λ
ẽ2(y, x;λ)

− λ
α̃(y;λ)

ẽ1(y, x;λ) ẽ2(y, x;λ)

)
, (77)

is an exact functional solution to (68) satisfying condition (76), where we
have defined

ẽ1(y, x;λ) := exp{λ
2
[u(x)− u(y)] + λ

∫ y

x

α̃ dv(s)}, (78)

ẽ2(y, x;λ) := exp{λ
2
[u(y)− u(x)]− λ

2

∫ y

x

β̃ ds},

with the vector-functions α± ∈ C∞(R/2πZ;R) satisfying the following
determining functional relationships:

α̃ = ux + (u2
x − 2vx + ξα̃)1/2,

β̃ = ux − (u2
x − 2vx + ξβ̃)1/2, (79)
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as ξ := 1/λ → 0 and existing when the condition ϕ(x, t) :=
√

u2
x − 2vx 6= 0

on the manifold M at t = 0 ∈ RN.

The fundamental matrix F (y, x;λ) ∈ End C2 can be represented for
all x, y ∈ R in the form

F (y, x;λ) = F̃ (y, x;λ)F̃−1(x, x;λ). (80)

Consequently, if one sets y = x + 2π in this formula and defines the ex-
pression

k(λ) := λ−1[ẽ1(x+ 2π, x;λ)− ẽ2(x+ 2π, x;λ)]−1, (81)

it follows from (67), (77), and (80) that the exact functional matrix rep-
resentation

S̃(x;λ) =

 [α̃(x;λ)+β̃(x;λ)]

2λ[α̃(x;λ)−β̃(x;λ)]

α̃β̃

λ2[α̃(x;λ)−β̃(x;λ)]

− 1
[α̃(x;λ)−β̃(x;λ)]

[β̃(x;λ)+α̃(x;λ)]

2λ[β̃(x;λ)−α̃(x;λ)]

 , (82)

satisfies the necessary condition (69) as λ → ∞.

Remark 2. The invariance of the expression (81) with respect to the gen-
erating vector field (64) on the manifold M derives from the representation
(80), the equations (74) and

d

dt
F̃ (y, x0;µ) =

λ3

µ− λ
S̃(x;λ)F̃ (y, x0;µ), (83)

which follows naturally from the determining matrix flows (73) upon ap-
plying the translation y → y + 2π.

The matrix expression (82) gives rise to the following important func-
tional relationships:

1− λ(s̃11 − s̃22)

2s̃21
= α̃,

−2λ2s̃12
1− λ(s̃11 − s̃22)

= β̃, (84)

which allow to introduce in a natural way the vertex operator vector fields

X±
λ = exp(±Dλ), Dλ :=

∑
j∈Z+

1

(j + 1)
λ−(j+1) d

dtj+1

, (85)
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acting on an arbitrary smooth function η ∈ C∞(RZ+ ;R) by means of the
shifting mappings:

X±
λ η(x, t1, t2, ..., tj, ...) := η±(x, t;λ) =

= η(x, t1 ± 1/λ, t2 ± /(2λ2), t3 ± 1/(3λ3)..., tj ± 1/(jλj), ...)
(86)

as λ → ∞. Namely, we following proposition holds.

Proposition 1. The functional vertex operator expressions

α̃(x, t;λ) = X−
λ α(x, t) = α−(x, t;λ), (87)

β̃(x, t;λ) = X+
λ β(x, t)) = β+(x, t;λ)

solve the functional equations (79), that is

α− = ux + (u2
x − 2vx + ξα−)1/2,

β+ = ux − (u2
x − 2vx + ξβ+)1/2, (88)

where t ∈ RZ+and ξ = 1/λ → 0.

Proof. To state this proposition it is enough to show that the following
relationships hold:

d

dξ

[
1− λ(s̃11 − s̃22)

2s̃21

]
λ=1/ξ

=
d

dt

[
1− λ(s̃11 − s̃22)

2s̃21

]
λ=1/ξ

,

d

dξ

[
−8λ2s̃12

1− λ(s̃11 − s̃22)

]
λ=1/ξ

=
d

dt

[
−8λ2s̃12

1− λ(s̃11 − s̃22)

]
λ=1/ξ

(89)

for any parameter ξ → 0, where by definition

d

dt
:=

d

dξ
Dλ

∣∣∣∣
λ=1/ξ

=
∑
j∈Z+

ξj
d

dtj+1

(90)

is a generating evolution vector field. Before doing this we find the evolu-
tion equation

d

dt
S̃(x;µ) = [λ3 d

dλ
S̃(x;µ), S̃(x;λ)] (91)
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on the matrix S̃(x;µ) as µ, λ → ∞, which entails the following differential
relationships:

ds̃11/dt = λ3(s̃21ds̃12/dλ− s̃12ds̃21/dλ),

ds̃22/dt = λ3(s̃12ds̃21/dλ− s̃21ds̃12/dλ),

ds̃22/dt = λ3[s̃12
d
dλ
(s̃11 − s̃22)− (s̃11 − s̃22)

ds̃12
dλ

),

ds̃11/dt = λ3[s̃21
d
dλ
(s̃22 − s̃11)− (s̃22 − s̃11)

ds̃21
dλ

).

(92)

Using these relationships (92), one can easily obtain by means of simple,
but rather cumbersome calculations, the needed relationships (89). As
their direct consequences the vertex operator representations (87) for the
vector functions α̃, β̃ ∈ C(RZ+ ;R) hold.

Now we take into account that, owing to the determining functional
representations (79), taht the limits∞

lim
λ→∞

α−(x, t;λ) = ux(x, t) + ϕ(x, t), (93)

lim
λ→∞

β+(x, t;λ) = ux(x, t)− ϕ(x, t), ϕ(x, t) :=
√

u2
x(x, t)− 2vx(x, t),

exist on the mamifold M. Moreover, having iterated the functional rela-
tionships (79), one can find that

X−
λ α = α− = ux + ϕ+ ξ(

uxx

ϕ
+

ϕx

ϕ
)+

+
ξ2

2
(
u2
xx + 2uxxϕx − u3xϕ

ϕ3
+

ϕxxϕ+ 5ϕ2
x

ϕ3
) +O(ξ3),

X+
λ β = β+ = ux − ϕ− ξ(

uxx

ϕ
− ϕx

ϕ
)− (94)

− ξ2

2
(
u2
xx − 2uxxϕx + u3xϕ

ϕ3
+

ϕxxϕ+ 5ϕ2
x

ϕ3
) +O(ξ3),

which immediately yield the higher Riemann type commuting nonlinear
Lax integrable dispersive dynamical systems on the functional manifold
M. For instance, making use of the relationships

lim
λ→∞

[α−(x, t;λ)± β+(x, t;λ)]/2 =

{
ux(x, t),

ϕ(x, t),
(95)

one easily obtains that

d

dt1

(
ux

ϕ

)
=

(
−uxx/ϕ

−ϕx/ϕ

)
,
d

dt2

(
ux

ϕ

)
=

(
(u2

xx + 7ϕ2
x)/ϕ

3

(2u3xϕ− 4uxϕx)/ϕ3

)
, ..., (96)
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and so on, where ϕ =
√

u2
x − 2vx and we took into account that the

following asymptotic expansiopns hold

X−
λ α(x, t;λ) = ux + ϕ− ξ(ux,t1 + ϕt1)+

+ ξ2

2
(ux,t1,t1 + ϕt1,t1 − ux,t2 − ϕt2) +O(ξ3),

X+
λ β(x, t;λ) = ux − ϕ+ ξ(ux,t1 − ϕt1)+

+ ξ2

2
(ux,t1,t1 − ϕt1,t1 + ux,t2 − ϕt2) +O(ξ3)

(97)

as ξ = 1/λ → 0.

It is worth here to mention that the scheme devised above for finding
the corresponding vertex operator representations for the Riemann type
equation (59) can be similarly generalized for treating other equations of
the infinite hierarchy (1) when N ≥ 3, having taken into account the
existence of their suitable Lax type representations found before in recent
works [16, 15, 29].

4 Concluding remarks

The vertex operator functional representations of the matrix solutions (34)
and (39) for the determining equations (30) and (8), respectively, as one can
see from the above analysis, are essentially derived from the intrinsic Lie-
algebraic structure (13) of the generating vector field (16) on the manifold
M. As the decisive property of the vertex operator relationships (45) and
(47) is fundamentally based on the representations (41) and equations (43),
they provide a very straightforward and transparent explanation of many
of “miraculous” calculations in [2, 3]. Of course, the results for the AKNS
hierarchy in these earlier papers were obtained in a distinctly different
manner; namely by means of direct asymptotic power series expansions of
solutions to the determining matrix equations (30) and (34).

It should be noted that, in a certain sense, the effectiveness of our ap-
proach to studying the vertex operator representation of the AKNS hierar-
chy owes much to the important exact representation (28) for the solution
of the Casimir invariants determining equation (8). This equation entails
the extremely effective AKNS hierarchy representation in the simple re-
cursive form (51), which explains several other very interesting results in
the literature, such as in [25, 26]. On the other hand, the dual solution
representation to (8) in the form (28), used extensively in [2], led naturally
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to the introduction of the well-known τ -function and made it possible to
present the whole AKNS hierarchy in terms of its suitable partial deriva-
tives. Nonetheless, both our vertex operator approach and the τ -function
method, as was briefly demonstrated above, are intimately related to each
other.

The vertex operator functional representations of the solution to the
Riemann type hydrodynamical equations (59) in the form (88) and (93)
in the form (94) is crucially based on the corresponding representations
(84), (85) and evolution equations (89), (91), which also explains many of
vertex operator calculations presented before both in [2, 3] and in [25]. It
should be noted that the effectiveness of our approach to studying the ver-
tex operator representation of the Riemann type hierarchy owes much to
the important exact representation (82) for the corresponding monodromy
matrix, whose properties are described by means of applying the standard
[4, 7, 20, 21] Lie-algebraic techniques. As an indication of possible future
research, it should also be mentioned that it would be interesting to gen-
eralize the vertex operator approach devised in this work to other linear
spectral problems such as those related to dynamical systems with a para-
metrical spectral [13, 20, 30] dependence, spatially two-dimensional [31],
Pavlov’s and heavenly [32] dynamical systems, and to the BSR systems
studied recently in [13, 14, 15, 16].
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support of the research by A.K. Prykarpatsky and Y.A. Prykarpatsky.
Y.A. Prykarpatsky also expresses his thanks to the State Fund for Fun-
damental Research of Ukraine for the support in the frame of the Project
GP/F32/0002 “Investigation of the properties of dynamical systems on the
multidimensional functional manifolds”.



The AKNS hierarchy, Gurevich-Zybin dynamical system 279

[1] Ablowitz M.J., Kaup D.J., Newell A.C., Segur H. The inverse scatter-
ing transform // Fourier analysis for nonlinear problems. Stud. Appl.
Math. — 1974. — 53, №4. — P. 249–315.

[2] Newell A.C. Solitons in mathematics and physics. — Arizona: SIAM
Publ., 1987. — 262 p.

[3] Dickey L.A. Soliton equations and Hamiltonian systems. — New York:
World Scientific, 1991. — 320 p.

[4] Faddeev L.D., Takhtadjan L.A. Hamiltonian methods in the theory of
solitons. — New York: Springer, 2007. — 592 p.

[5] Gesztesy F., Weikard, R. Elliptic algebro-geometric solutions of the
KdV and AKNS hierarchies - an analytic approach // Bull. AMS. —
1998. — 35. — P. 271–317.

[6] Novikov S.P. Theory of solitons: the inverse scattering methods. —
Springer, 1984. — 276 p.

[7] Prykarpatsky A., Mykytyuk I. Algebraic integrability of nonlinear dy-
namical systems on manifolds: classical and quantum aspects. —
Kluwer Academic Publ., the Netherlands, 1998. — 553 p.

[8] Reyman A.G., Semenov-Tian-Shansky M. Integrable systems. —
Moscow-Izhevsk: R&C-Dynamics, 2003. — 350 p. (in Russian).

[9] Whitham G.B. Linear and Nonlinear Waves. — New York: Wiley-
Interscience, 1974. — 221 p.

[10] Gurevich A.V., Zybin K.P. Nondissipative gravitational turbulence //
Sov. Phys. — JETP. — 1988. — 67. — P. 1–12.

[11] Gurevich A.V., Zybin K.P. Large-scale structure of the Universe //
Analytic theory Sov. Phys. Usp. — 1995. — 38. — P. 687–722.

[12] Pavlov M. The Gurevich-Zybin system // J. Phys. A: Math. Gen. —
2005. — 38. — P. 3823–3845.



280 D.Blackmore, Y.Prykarpatsky, J.Golenia, A.Prykarpatsky

[13] Blackmore D., Prykarpatsky A.K., Samoylenko V.H. Nonlinear dy-
namical systems of mathematical physics. — NJ: World Scientific,
2011. — 542 p.

[14] Blackmore D., Urban K., Rosato A. Integrability analysis of regular
and fractional Blackmore-Samulyak-Rosato fields // Condensed Mat-
ter Phys. — 2010. — 13, №4. — P. 43403: 1–7.

[15] Golenia J., Pavlov M., Popowicz Z., Prykarpatsky A. On a nonlocal
Ostrovsky-Whitham type dynamical system, its Riemann type inho-
mogenious regularizations and their integrability // SIGMA. — 2010.
— 6. — P. 1–13.

[16] Prykarpatsky A.K., Artemovych O.D., Popowicz Z., Pavlov M.V.
Differential-algebraic integrability analysis of the generalized Riemann
type and Korteweg–de Vries hydrodynamical equations // J. Phys. A:
Math. Theor. — 2010. — 43. — 295205 (13p).

[17] Prykarpatsky A.K., Prytula M.M. The gradient-holonomic integra-
bility analysis of a Whitham-type nonlinear dynamical model for a
relaxing medium with spatial memory // Nonlinearity. — 2006. — 19.
— P. 2115–2122.

[18] Popowicz Z., Prykarpatsky A. K. The non-polynomial conservation
laws and integrability analysis of generalized Riemann type hydro-
dynamical equations // Nonlinearity. — 2010. — 23. — P.2517–2537;
arXiv:submit/0044844 [nlin.SI]. — 21 May 2010.

[19] Mitropolski Yu.A., Bogoliubov N.N. (Jr.), Prykarpatsky A.K.,
Samoilenko V.Hr. Integrable Dynamical Systems. — Kiev: Naukowa
dumka, 1987. — 295 p. (in Russian).

[20] Hentosh O.Ye., Prytula M.M., Prykarpatsky A.K. Differential-
geometric integrability fundamentals of nonlinear dynamical systems
on functional manifolds.. — Lviv: Lviv University Publ., 2006. — 408
p. (in Ukrainian).

[21] B laszak M. Bi-Hamiltonian dynamical systems. — New York:
Springer, 1998.



The AKNS hierarchy, Gurevich-Zybin dynamical system 281

[22] Holod P.I., Klimyk A.U. Mathematical backgrounds of the symme-
try theory. — Moscow-Izhevsk: R&C-Dynamics, 2001. — 528 p. (in
Russian).

[23] Abraham R., Marsden J. Foundation of mechanics. — Co, Mas-
sachusetts: The Benjamin/Cummings Publ., 1978. — 838 p.

[24] Arnold V.I. Mathematical methods of classical mechanics. — New
York: Springer, 1989. — 508 p.

[25] Pritula G.M., Vekslerchik V.E. Conservation laws for the nonlinear
Schrödinger equation in Miwa variables // Inverse Problems. — 2002.
— 18. — P. 1355. arxiv:nlin.SI/0008034. — 2000.

[26] Vekslerchik V.E. Functional representation of the Ablowitz-Ladik hi-
erarchy // J. Phys. A: Math. Gen. — 1998. — 31. — P. 1087.

[27] Blackmore D., Prykarpatsky A.K., Prykarpatsky Y.A. Isospectral in-
tegrability analysis of dynamical systems on discrete manifolds //
Opuscula Mathematica. — 2012. — 32, №1. — P. 39–54.

[28] Blackmore D., Prykarpatsky A.K. The AKNS hierarchy revisited: A
vertex operator approach and its Lie-algebraic structure // arXiv:
1012.1024v1 [nlin.SI].

[29] Golenia J., Bogolubov N. (jr.), Popowicz Z., Pavlov M., Prykarpatsky
A. A new Riemann type hydrodynamical hierarchy and its integrabil-
ity analysis. Preprint ICTP , IC/2009/095, 2010.

[30] Burtsev S.P., Zakhariov V.E., Mikhaylov A.V. Innverse scattering
problem with changing spectral parameter // Theor. Math. Phys. —
1987. — 70, №3. — P. 323–341 (in Russian).

[31] Zakharov V.E., Manakov S.M. Construction of multi-dimensional
nonlinear integrable systems and their solutions // Funct. Anal. Appl.
— 1985. — 19, №2. — P. 11–25 (in Russian).

[32] Manakov S.M., Santini P.M. On the solutions of the second heavenly
and Pavlov equations // J. Phys. A: Math and Theor. — 2009. — 42,
№40. — P. 404013–404023.



282 D.Blackmore, Y.Prykarpatsky, J.Golenia, A.Prykarpatsky

НОВI АСПЕКТИ IНТЕГРОВНОСТI IЄРАРХIЇ АКНС ТА

ДИНАМIЧНОЇ СИСТЕМИ ГУРЄВIЧА-ЗИБIНА

Денiс БЛЕКМОР1, Ярема ПРИКАРПАТСЬКИЙ 2, Йоланта
ГОЛЄНЯ 4, Анатолiй ПРИКАРПАТСЬКИЙ 4,5

1Iнститут технологiй Нью Джерсi, США,
e-mail: deblac@m.njit.edu
2Рiльничий унiверситет,

вул. Балiцка 253с, Кракiв 30062, Польща
Iнститут математики НАН України,
вул. Терещенкiвська 3, Київ 01601

e-mail: yarpry@gmail.com
4Гiрничо-металургiйна академiя, Унiверситет науки i технологiй,

Кракiв 30059, Польща
e-mail: goljols@tlen.pl

5Державний педагогiчний унiверситет iменi Iвана Франка,
вул. Франка 24, Дрогобич 82100

e-mail: pryk.anat@ua.fm, prykanat@cybergal.com

Запропоновано новий пiдхiд до вивчення iєрархiї АКНС та нелi-
нiйної динамiчної системи Гурєвiча-Зибiна, що грунтується на вер-
шинному операторному представленнi. Показано, що цей метод дає
iнтерпретацiю незвичайних властивостей iєрархiї АКНС за допомогою
ясної, простої, натуральної i ефективної для застосувань конструкцiї.
Також аналiзується зв’язок вершинного операторного методу з Лi-
алгебраїчною схемою iнтегровностi та коротко обговорюється пiдхiд
на основi τ -функцiонального представлення. Розвинуто також пiдхiд,
що грунтується на спектральних та Лi-алгебраїчних методах, до знахо-
дження вершинного операторного представлення для гiдродинамiчної
системи Гурєвiча-Зибiна. Знайдено функцiональне представлення, що
генерує нескiнченну iєрархiю дисперсiйних iнтегровних за Лаксом га-
мiльтонових потокiв.




