HARDY TYPE SPACES ON REDUCED HEISENBERG GROUPS

© 2011 Michael OLEKSIENKO
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Ukrainian National Academy of Sciences, 3-b Naukova Str., Lviv 79060, Ukraine
e-mail: oleksienko.michael@gmail.com

Received 24 June 2011

Abstract

The Hardy space of complex functions defined on the Schrödinger orbit of reduced $(2 d+1)$-Heisenberg group, generated by the Gauss density function, is investigated. The Cauchy type integral formula is established and radial boundary values for analytic extensions are decribed.

1 Main results

The Hardy type spaces for irreducible regular representations of locally compact groups were introduced in [1]. In this work we concentrate on an important similar case of such spaces, defined by the Schrödinger representation of reduced $(2 d+1)$-Heisenberg group $\mathbb{H}_{2 d+1}$. To be more precise, the Hardy type space \mathcal{H}_{μ}^{2} consists of complex functions which are defined on the unitary orbit G (under the Schrödinger representation $\mathbb{H}_{2 d+1} \ni$ $(x, y, \tau) \longmapsto U_{x, y, \tau}$ over $\left.L^{2}\left(\mathbb{R}^{d}\right)\right)$ of the Gauss density function $h \in L^{2}\left(\mathbb{R}^{d}\right)$. At that \mathcal{H}_{μ}^{2} is defined to be the closure in $L_{\mu}^{2}(G)$ of all Hilbert-Schmidt polynomials over $L^{2}\left(\mathbb{R}^{d}\right)$, where μ means an invariant measure on G which

[^0]Key words and phrases: Hardy space, Heisenberg group
is uniquely determined by the Haar measure $d x d y d \tau$ on $\mathbb{H}_{2 d+1}$. We establish the Cauchy type formula

$$
\begin{equation*}
C[f](\xi)=\int_{\mathbb{H}_{2 d+1}} C\left(\xi, U_{x, y, \tau} h\right)\left(f \circ U_{x, y, \tau}\right)(h) d x d y d \tau, \quad \xi \in B_{L^{2}\left(\mathbb{R}^{d}\right)} \tag{1}
\end{equation*}
$$

which for each function $f \in \mathcal{H}_{\mu}^{2}$ produces its unique analytic extension $C[f]$ on the open unit ball $B_{L^{2}\left(\mathbb{R}^{d}\right)}$ in $L^{2}\left(\mathbb{R}^{d}\right)$. It is proved that for every function $f \in \mathcal{H}_{\mu}^{2}$ the radial boundary values of analytic extension $C[f]$ on the orbit G are equal to f in some sense.

2 Reduced (2d+1)-Heisenberg group and its Schrödinger representation

Let us consider the reduced Heisenberg group $\mathbb{H}_{2 d+1}=\mathbb{R}^{d} \times \mathbb{R}^{d} \times \mathbb{T}$ with the multiplication

$$
\left(x, y, e^{\mathrm{i} \vartheta}\right)\left(u, v, e^{\mathrm{i} \eta}\right)=\left(x+u, y+v, e^{\mathrm{i}(\vartheta+\eta)} e^{\frac{\mathrm{i}}{2}(x \cdot v-y \cdot u)}\right), \quad x \cdot y=\sum_{j=1}^{d} x_{j} y_{j},
$$

for all $x, y, v, u \in \mathbb{R}^{d}$ and $\vartheta, \eta \in \mathbb{T}:=\left\{e^{i \vartheta}: \vartheta \in[0,2 \pi)\right\}$, where $x=$ $\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$ and $\mathfrak{i}=\sqrt{-1}$. The Haar measure on $\mathbb{H}_{2 d+1}$ coincides with the Lebesque measure and has the form $d x d y d \tau$, where $d x:=d x_{1} \ldots d x_{d}, d y:=d y_{1} \ldots d y_{d}, d \tau=d \vartheta / 2 \pi$ with $\tau=e^{\mathrm{i} \vartheta} \in \mathbb{T}$. We refer to [2] about Heisenberg groups.

In order to define the Schrodinger representation of $\mathbb{H}_{2 d+1}$ we need the space $L^{2}\left(\mathbb{R}^{d}\right)$ of complex functions $\xi: \mathbb{R}^{d} \ni\left(t_{1}, \ldots, t_{d}\right)=t \longmapsto \xi(t)$ with the scalar product $\langle\xi \mid \zeta\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}=\int_{\mathbb{R}^{d}} \xi(t) \bar{\zeta}(t) d t$ and the norm $\|\xi\|_{L^{2}\left(\mathbb{R}^{d}\right)}=$ $\langle\xi \mid \xi\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}^{1 / 2}$, where $d t:=d t_{1} \ldots d t_{d}$.

The Schrödinger representation U from $\mathbb{H}_{2 d+1}$ into $\mathscr{L}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$ has the form

$$
U_{x, y, \tau}: \psi\left(t_{1}, \ldots, t_{d}\right) \longmapsto \tau e^{\frac{\mathrm{i}}{2} x \cdot y} \psi_{1}\left(t_{1}+x_{1}\right) e^{\mathrm{i} y_{1} t_{1}} \ldots \psi_{d}\left(t_{d}+x_{d}\right) e^{\mathrm{i} y_{d} t_{d}}
$$

for all function $\psi=\psi_{1} \otimes \ldots \otimes \psi_{d} \in L^{2}\left(\mathbb{R}^{d}\right)$ with $\psi_{1}, \ldots, \psi_{d} \in L^{2}(\mathbb{R})$ and $\left(t_{1}, \ldots, t_{d}\right), x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$.

In order to continue we need the symmetric Fock space over the space $L^{2}\left(\mathbb{R}^{d}\right)$. Consider its hilbertian n-th tensor power $\otimes_{\mathfrak{h}}^{n} L^{2}\left(\mathbb{R}^{d}\right)$ with the norm $\|\omega\|_{\otimes_{n}^{n} L^{2}\left(\mathbb{R}^{d}\right)}=\langle\omega \mid \omega\rangle_{\otimes_{n}^{n} L^{2}\left(\mathbb{R}^{d}\right)}^{1 / 2}$, where

$$
\left\langle\xi_{1} \otimes \ldots \otimes \xi_{n} \mid \zeta_{1} \otimes \ldots \otimes \zeta_{n}\right\rangle_{\otimes_{n}^{n} L^{2}\left(\mathbb{R}^{d}\right)}=\left\langle\xi_{1} \mid \zeta_{1}\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)} \ldots\left\langle\xi_{d} \mid \zeta_{d}\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

denotes the scalar product on $\otimes_{\mathfrak{h}}^{n} L^{2}\left(\mathbb{R}^{d}\right)$ defined on the total subset of functions $\omega=\xi_{1} \otimes \ldots \otimes \xi_{n} \in \otimes_{h}^{n} L^{2}\left(\mathbb{R}^{d}\right)$ with $\xi_{1}, \ldots, \xi_{n} \in L^{2}\left(\mathbb{R}^{d}\right)$. We denote by $\mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$ the codomain of the orthogonal projector

$$
P_{n}: \otimes_{\mathfrak{h}}^{n} L^{2}\left(\mathbb{R}^{d}\right) \ni \xi_{1} \otimes \ldots \otimes \xi_{n} \longmapsto \frac{1}{n!} \sum_{\sigma} \xi_{\sigma(1)} \otimes \ldots \otimes \xi_{\sigma(n)},
$$

where σ runs through all n-elements permutations. We denote $\xi^{\otimes n}:=$ $P_{n}\left(\xi_{1} \otimes \ldots \otimes \xi_{n}\right)$ if $\xi_{1}=\ldots=\xi_{n}$. Clearly, functions from $\mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$ are symmetric under the permutation of d-dimensional variables. The symmetric Fock space is defined to be the orthogonal sum

$$
\mathcal{F}:=\bigoplus_{n \in \mathbb{Z}_{+}} \mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]=\mathbb{C} \oplus L^{2}\left(\mathbb{R}^{d}\right) \oplus \mathcal{F}_{2}\left[L^{2}\left(\mathbb{R}^{d}\right)\right] \oplus \ldots
$$

with the scalar product $\langle\psi \mid \omega\rangle_{\mathcal{F}}=\sum_{n=0}^{\infty}\left\langle\psi_{n} \mid \omega_{n}\right\rangle_{\otimes_{n}^{n} L^{2}\left(\mathbb{R}^{d}\right)}$ and the norm $\|\psi\|_{\mathcal{F}}=\langle\psi \mid \psi\rangle_{\mathcal{F}}^{1 / 2}$ for all $\psi=\sum_{n=0}^{\infty} \psi_{n}, \omega=\sum_{n=0}^{\infty} \omega_{n} \in \mathcal{F}$ and $\psi_{n}, \omega_{n} \in$ $\mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$.

To construct the orthogonal basis in \mathcal{F} we first consider the Hilbert space $L^{2}(\mathbb{R})$ of quadratically integrable complex functions of one variable $s \in \mathbb{R}$. In $L^{2}(\mathbb{R})$ we fix the orthonormal basis
$\varphi_{j}(s)=\frac{e^{-s^{2} / 2}}{\sqrt[4]{\pi}} \frac{H_{j}(s)}{\sqrt{2^{j} j!}}, \quad H_{j}(s)=(-1)^{j} e^{s^{2}} \frac{d^{j}}{d s^{j}} e^{-s^{2}}, \quad s \in \mathbb{R}, \quad j \in \mathbb{Z}_{+}$,
where H_{j} means the Hermitean polynomials. Then the orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$ forms the system $\left\{\varphi_{j_{1}} \otimes \ldots \otimes \varphi_{j_{d}}: j_{1}, \ldots, j_{d} \in \mathbb{Z}_{+}\right\}$(see [3]). Now we consider the d-block indexes subset in $\mathbb{Z}_{+}^{d n}$ of the form

$$
Z_{+}^{d n}:=\left\{[\alpha]:=\left[\left(\alpha_{1}\right), \ldots,\left(\alpha_{n}\right)\right]:\left(\alpha_{j}\right) \in \mathbb{Z}_{+}^{d}, j \neq i \Longrightarrow\left(\alpha_{j}\right) \neq\left(\alpha_{i}\right), \forall j, i\right\}
$$

with $\left(\alpha_{j}\right):=\left(\alpha_{j}^{1}, \ldots, \alpha_{j}^{d}\right) \in \mathbb{Z}_{+}^{d}$ and $j, i=1, \ldots, n$. In the subspace $\mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$ the following system forms an orthogonal basis,

$$
\Phi_{n}:=\left\{P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\left.\otimes k_{n}\right)}\right):(k):=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n},|(k)|=n\right\},
$$

where $\varphi_{\left(\alpha_{j}\right)}:=\varphi_{\alpha_{j}^{1}} \otimes \ldots \otimes \varphi_{\alpha_{j}^{d}} \in L^{2}\left(\mathbb{R}^{d}\right),[\alpha] \in Z_{+}^{d n}$ and $|(k)|:=k_{1}+\ldots+k_{n}$. Clearly, the system

$$
\Phi=\left\{\left(0, \ldots, 0, P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\otimes k_{n}}\right), 0,0 \ldots\right):[\alpha] \in Z_{+}^{d n}, n \in \mathbb{Z}_{+}\right\}
$$

forms an orthogonal basis in the symmetric Fock space \mathcal{F} (see [3]). Remind that

$$
\left\|P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\otimes k_{n}}\right)\right\|_{\mathcal{F}}^{2}=\frac{k_{1}!\ldots k_{n}!}{n!}, \quad|(k)|=n
$$

Now we consider the Gauss density function $h=h_{1} \otimes \ldots \otimes h_{d} \in L^{2}\left(\mathbb{R}^{d}\right)$, where every function $h_{j}\left(t_{j}\right)=\pi^{-1 / 4} e^{-t_{j}^{2} / 2}, j=1, \ldots, d$, of the variable $t_{j} \in \mathbb{R}$ belongs to $L^{2}(\mathbb{R})$, hence,

$$
h: \mathbb{R}^{d} \ni t=\left(t_{1}, \ldots, t_{d}\right) \longmapsto h\left(t_{1}, \ldots, t_{d}\right)=\pi^{-d / 4} e^{-\left(t_{1}^{2}+\ldots+t_{d}^{2}\right) / 2} .
$$

It is easy to see that $\|h\|_{L^{2}\left(\mathbb{R}^{d}\right)}=1$, so h belongs to the unit sphere $S_{L^{2}\left(\mathbb{R}^{d}\right)}$ in $L^{2}\left(\mathbb{R}^{d}\right)$. Consider its orbit under the Schrödinger representation

$$
\begin{aligned}
G & :=\left\{U_{x, y, \tau} h:(x, y, \tau) \in \mathbb{H}_{2 d+1}\right\}= \\
& =\left\{g_{x, y, \tau}(t):=\pi^{-\frac{d}{2}} \tau e^{\frac{i}{2} x \cdot y} e^{-\frac{\left(t_{1}+x_{1}\right)^{2}+\ldots+\left(t_{d}+x_{d}\right)^{2}}{2}} e^{\mathrm{i}\left(y_{1} t_{1}+\ldots+y_{d} t_{d}\right)}\right\},
\end{aligned}
$$

which consists of complex functions $g_{x, y, \tau}: \mathbb{R}^{d} \ni t \longmapsto g_{x, y, \tau}(t)$ belonging to the unit sphere in $L^{2}\left(\mathbb{R}^{d}\right)$ and subsequently means the Gauss orbit.

To define on G a $\left(\mathbb{H}_{2 d+1}\right)$-invariant measure let the closed unit ball $B_{L^{2}\left(\mathbb{R}^{d}\right)} \cup S_{L^{2}\left(\mathbb{R}^{d}\right)}$ be endowed with the weak topology of $L^{2}\left(\mathbb{R}^{d}\right)$, in which it is a compact. Since $\mathbb{H}_{2 d+1}$ is a second countable locally compact group, its Gauss orbit G is a Borel subset in this compact. Recall that a Borel measure μ on the orbit G means $\left(\mathbb{H}_{2 d+1}\right)$-invariant if

$$
\int_{G}\left(f \circ U_{x, y, \tau}\right)(g) d \mu(g)=\int_{G} f(g) d \mu(g), \quad f \in L_{\mu}^{1}(G), \quad(x, y, \tau) \in \mathbb{H}_{2 d+1} .
$$

Theorem 2.1. On the Gauss orbit G the following equality

$$
\begin{equation*}
\int_{G} f(g) d \mu(g)=\int_{\mathbb{H}_{2 d+1}}\left(f \circ U_{x, y, \tau}\right)(h) d x d y d \tau, \quad f \in L_{\mu}^{1}(G), \tag{2}
\end{equation*}
$$

uniquely defines a $\left(\mathbb{H}_{2 d+1}\right)$-invariant measure μ which has the following decomposition

$$
\begin{equation*}
\int_{G} f(g) d \mu(g)=\frac{1}{2 \pi} \int_{G} d \mu(g) \int_{0}^{2 \pi} f\left(e^{\mathrm{i} \vartheta} g\right) d \vartheta \tag{3}
\end{equation*}
$$

Proof. First recall (see e.g., [4]) that for any locally compact second countable group \mathfrak{G} with a Haar measure χ and its compact subgroup \mathfrak{G}_{0} with the Haar measure ς the equality

$$
\int_{\mathfrak{G} / \mathfrak{G}_{0}} d \mu(v) \int_{\mathfrak{G}_{0}} f(v u) d \varsigma(u)=\int_{\mathfrak{G}} f(g) d \chi(g), \quad f \in L_{\chi}^{1}(\mathfrak{G})
$$

holds. Put $\mathfrak{G}=\mathbb{H}_{2 d+1}$. Now let us equip the Gauss orbit G with the weak topology of $L^{2}\left(\mathbb{R}^{d}\right)$. Then we can identify the Gauss orbit G with the topological factor-space $\mathbb{H}_{2 d+1} / \mathfrak{G}_{0}, \mathfrak{G}_{0}:=\left\{(x, y, \tau) \in \mathbb{H}_{2 d+1}: U_{x, y, \tau} h=h\right\}$ is a stationary subgroup in $\mathbb{H}_{2 d+1}$ under the Schrödinger representation. The stationary subgroup \mathfrak{G}_{0} exactly coincides with the group unit $(0, \ldots, 0,1)$ in $\mathbb{H}_{2 d+1}$. Hence, the above equality takes the form (2). The formula (3) is a consequence of (2) and Fubini's theorem (see [5]).

3 Polynomial orthogonal systems on orbit

For any element $\psi_{n} \in \mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$ uniquely assists the Hermitean form $\psi_{n}^{*}:=\left\langle\cdot \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} L^{2}\left(\mathbb{R}^{d}\right)}$ which belongs to the Hermitean dual $\mathcal{F}_{n}^{*}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$. We can identify this form with the n-homogeneous Hilbert-Schmidt polynomial $\psi_{n}^{*}: L^{2}\left(\mathbb{R}^{d}\right) \ni \xi \rightarrow \psi_{n}^{*}(\xi):=\left\langle\xi^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} L^{2}\left(\mathbb{R}^{d}\right)}$. Now for each ψ_{n}^{*} with $\psi_{n} \in \mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$ we assign the complex function

$$
h_{n}\left(\psi_{n}\right): G \ni g \longmapsto\left\langle g^{\otimes n} \mid \psi_{n}\right\rangle_{\otimes_{n}^{n} L^{2}\left(\mathbb{R}^{d}\right)}
$$

of the variable $g=U_{x, y, \tau} h$ with $(x, y, \tau) \in \mathbb{H}_{2 d+1}$ belonging to the Gauss orbit G and the mapping $h_{n}: \mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right] \ni \psi_{n} \longmapsto h_{n}\left(\psi_{n}\right) \in L_{\mu}^{2}(G)$. The following axillary statements show that the mapping h_{n} is well defined.

Lemma 3.1. For any $n \in \mathbb{N}$ and $(k) \in \mathbb{Z}_{+}^{n}$ such that $|(k)|=n$, and any $\left[\left(\alpha_{1}\right), \ldots,\left(\alpha_{n}\right)\right] \in Z_{+}^{d n}$ the inequality

$$
\int_{\mathbb{H}_{2 d+1}} \left\lvert\,\left.\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n}\right| P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\left.\otimes k_{n}\right)}\right\rangle_{\mathcal{F}}\right|^{2} d x d y d \tau \leq\left(\frac{2 \pi}{n}\right)^{d}\right.
$$

holds, which transforms into the equality for $\left(\alpha_{1}\right)=(0, \ldots, 0) \in \mathbb{Z}_{+}^{d}$ and $(k)=(n, 0, \ldots, 0)$.

Proof. Let us use the following equality $\prod_{j=1}^{n}\left\langle U_{x, y, \tau} h \mid \varphi_{\left(\alpha_{j}\right)}\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}^{k_{j}}=$

$$
\begin{aligned}
\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n}\right| P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}}\right. & \left.\left.\otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\otimes k_{n}}\right)\right\rangle_{\mathcal{F}} \text {. Since } \\
\left\langle U_{x, y, \tau} h \mid \varphi_{(j)}\right\rangle_{L_{\mathbb{R}^{d}}^{2}} & =\tau e^{\frac{i}{2} x \cdot y} \pi^{\frac{d}{2}} \prod_{l=1}^{d} \int_{\mathbb{R}} e^{i y_{l} t_{l}} e^{-\frac{\left(t_{l}+x_{l}\right)^{2}}{2}} \varphi_{j_{l}}\left(t_{l}\right) d t_{l}= \\
& =\tau e^{\frac{i}{2} x \cdot y} \prod_{l=1}^{d} \frac{(-1)^{j_{l}}\left(x_{l}-i y_{l}\right)^{j_{l}}}{\sqrt{2^{j_{l}} j_{l}!}} e^{-\left(x_{l}^{2}+2 i x_{l} y_{l}+y_{l}^{2}\right) / 4},
\end{aligned}
$$

we have the sequence of equalities

$$
\begin{aligned}
& \left|\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\otimes k_{n}}\right)\right\rangle_{\mathcal{F}}\right|^{2}= \\
& =\left(\prod_{l=1}^{d} \frac{e^{-\frac{x_{l}^{2}+y_{l}^{2}}{2}}\left(x_{l}^{2}+y_{l}^{2}\right)^{\alpha_{1}^{l}}}{2^{\alpha_{1}^{l}} \alpha_{1}^{l}!}\right)^{k_{1}} \ldots\left(\prod_{l=1}^{d} \frac{e^{-\frac{x_{l}^{2}+y_{l}^{2}}{2}}\left(x_{l}^{2}+y_{l}^{2}\right)^{\alpha_{n}^{l}}}{2^{\alpha_{n}^{l}} \alpha_{n}^{l}!}\right)^{k_{n}}= \\
& =e^{-\frac{n\left(x_{1}^{2}+y_{1}^{2}\right)}{2}} \prod_{m=1}^{n}\left(\frac{\left(x_{1}^{2}+y_{1}^{2}\right)^{\alpha_{m}^{1}}}{2^{\alpha_{m}^{1}} \alpha_{m}^{1}!}\right)^{k_{m}} \ldots e^{-\frac{n\left(x_{d}^{2}+y_{d}^{2}\right)}{2}} \prod_{m=1}^{n}\left(\frac{\left(x_{d}^{2}+y_{d}^{2}\right)^{\alpha_{m}^{d}}}{2^{\alpha_{m}^{d}} \alpha_{m}^{d}!}\right)^{k_{m}} .
\end{aligned}
$$

Now using the facts that

$$
\begin{array}{r}
\int_{0}^{+\infty} e^{-n q} \prod_{l=1}^{n}\left(\frac{q^{j_{l}}}{j_{l}!}\right)^{k_{l}} d q=\prod_{l=1}^{n} \frac{m!}{\left(j_{l}!\right)^{k_{l}}} \int_{0}^{+\infty} e^{-n q} \frac{q^{m}}{m!} d q= \\
=\prod_{l=1}^{n} \frac{m!}{\left(j_{l}!\right)^{k_{l}}} \frac{1}{n^{m}} \int_{0}^{+\infty} e^{-n q} \frac{(q n)^{m}}{m!} d q \leq \frac{1}{n}
\end{array}
$$

with $m=\sum_{l=1}^{n} j_{l} k_{l}$ and that

$$
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f\left(\frac{p^{2}+s^{2}}{2}\right) d p d s=4 \int_{0}^{+\infty} \int_{0}^{\pi / 2} f(q) d q d \vartheta=2 \pi \int_{0}^{+\infty} f(q) d q
$$

with $p^{2}=2 q \cdot \cos ^{2} \vartheta$ and $s^{2}=2 q \cdot \sin ^{2} \vartheta$, we finally obtain

$$
\int_{\mathbb{H}_{2 d+1}} \mid\left.\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n}\right| P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\left.\otimes k_{n}\right)}\right\rangle_{\mathcal{F}}\right|^{2} d x d y d \tau=
$$

$$
=\int_{\mathbb{H}_{2 d+1}} \prod_{j=1}^{d} e^{-\frac{n\left(x_{j}^{2}+y_{j}^{2}\right)}{2}} \prod_{m=1}^{n}\left(\frac{\left(x_{j}^{2}+y_{j}^{2}\right)^{\alpha_{m}^{j}}}{2^{\alpha_{m}^{j}} \alpha_{m}^{j}!}\right)^{k_{m}} d x d y d \tau \leq\left(\frac{2 \pi}{n}\right)^{d} .
$$

If $\left(\alpha_{1}\right)=(0, \ldots, 0) \in \mathbb{Z}_{+}^{d}$ and $(k)=(n, 0, \ldots, 0)$ then the above inequality transforms to the equality.

The next statement gives an estimation for any $\psi_{n}^{*} \in \mathcal{F}_{n}^{*}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$.
Lemma 3.2. For any $\psi_{n} \in \mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$ the following inequality holds

$$
\int_{\mathbb{H}_{2 d+1}}\left|\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid \psi_{n}\right\rangle_{\mathcal{F}}\right|^{2} d x d y d \tau \leq n!\left(\frac{2 \pi}{n}\right)^{d}\left\|\psi_{n}\right\|_{\otimes_{h}^{n} L^{2}\left(\mathbb{R}^{d}\right)}^{2} .
$$

Proof. Since $\left\{P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\otimes k_{n}}\right):\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n},|(k)|=n\right.$, $\left.\left[\left(\alpha_{1}\right), \ldots,\left(\alpha_{n}\right)\right] \in Z_{+}^{d n}\right\}$ forms the orthogonal basis in $\mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$, we can consider the Fourier decomposition of ψ_{n} :

$$
\psi_{n}=\sum_{\alpha \in Z_{+}^{d n},|(k)|=n} \beta_{\alpha, k} P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\otimes k_{n}}\right) \sqrt{\frac{n!}{k_{1}!\ldots k_{n}!}}
$$

with $\left\|\psi_{n}\right\|_{\otimes_{h}^{n} L^{2}\left(\mathbb{R}^{d}\right)}^{2}=\sum\left|\beta_{\alpha, k}\right|^{2}$, where $\alpha=\left[\left(\alpha_{1}\right), \ldots,\left(\alpha_{n}\right)\right]$ and $(k)=$ $\left(k_{1}, \ldots, k_{n}\right)$. It follows that

$$
\begin{aligned}
& \int_{\mathbb{H}_{2 d+1}}\left|\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid \psi_{n}\right\rangle_{\mathcal{F}}\right|^{2} d x d y d \tau \leq \\
& \leq n!\int_{\mathbb{H}_{2 d+1}}\left(\sum\left|\beta_{\alpha, k}\right|\left|\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\otimes k_{n}}\right)\right\rangle_{\mathcal{F}}\right|\right)^{2} d x d y d \tau= \\
& =n!\sum_{\alpha, k, i, m}\left|\beta_{\alpha, k}\right|\left|\beta_{i, m}\right| \int_{\mathbb{H}_{2 d+1}}\left|\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\otimes k_{n}}\right)\right\rangle_{\mathcal{F}}\right| \times \\
& \times\left|\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid P_{n}\left(\varphi_{\left(i_{1}\right)}^{\otimes m_{1}} \otimes \ldots \otimes \varphi_{\left(i_{n}\right)}^{\left.\otimes m_{n}\right)}\right)\right\rangle_{\mathcal{F}}\right| d x d y d \tau .
\end{aligned}
$$

Using the Cauchy-Schwartz inequality for the integral we get that

$$
\int_{\mathbb{H}_{2 d+1}} \mid\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n}\right| P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\left.\otimes k_{n}\right)}\right\rangle_{\mathcal{F}} \mid \times
$$

$$
\begin{aligned}
& \times \mid\left\langle\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid P_{n}\left(\varphi_{\left(i_{1}\right)}^{\otimes m_{1}} \otimes \ldots \otimes \varphi_{\left(i_{n}\right)}^{\otimes m_{n}}\right)\right\rangle_{\mathcal{F}}\right| d x d y d \tau \leq \\
& \leq\left(\int_{\mathbb{H}_{2 d+1}} \mid\left.\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n}\right| P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\left.\otimes k_{n}\right)}\right\rangle_{\mathcal{F}}\right|^{2} d x d y d \tau\right)^{1 / 2} \times \\
& \times\left(\int_{\mathbb{H}_{2 d+1}}\left|\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid P_{n}\left(\varphi_{\left(i_{1}\right)}^{\otimes m_{1}} \otimes \ldots \otimes \varphi_{\left(i_{n}\right)}^{\otimes m_{n}}\right)\right\rangle_{\mathcal{F}}\right|^{2} d x d y d \tau\right)^{1 / 2} \leq \\
& \leq\left(\frac{2 \pi}{n}\right)^{d} .
\end{aligned}
$$

Finally, using the Cauchy-Schwartz inequality one more time, i.e.

$$
\sum_{\alpha, k, i, m}\left|\beta_{\alpha, k}\right|\left|\beta_{i, m}\right| \leq\left(\sum_{\alpha, k}\left|\beta_{\alpha, k}\right|^{2}\right)^{1 / 2}\left(\sum_{i, m}\left|\beta_{i, m}\right|^{2}\right)^{1 / 2}=\left\|\psi_{n}\right\|_{\otimes_{n}^{n} L^{2}\left(\mathbb{R}^{d}\right)}^{2}
$$

we achieve the required inequality.
Consider the following closed subspaces and their hilbertian orthogonal $\operatorname{sum} F_{n}:=\mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right] \ominus \operatorname{ker} h_{n}, F:=\mathbb{C} \oplus F_{1} \oplus F_{2} \oplus \ldots$, where ker h_{n} means the kernel of h_{n}. Now let us introduce the denotations $\widetilde{h}_{n}:=h_{n} /\left\|h_{n}\right\|$ and $\widetilde{\psi}_{n}:=\widetilde{h}_{n}\left(\psi_{n}\right)$ and consider the corresponding linear mapping

$$
\widetilde{h}: F \ni \psi=\sum_{n \in \mathbb{Z}_{+}} \psi_{n} \longrightarrow \widetilde{\psi}:=\sum_{n \in \mathbb{Z}_{+}} \widetilde{\psi}_{n} .
$$

Let $\mathcal{H}_{n}^{2}:=\widetilde{h}_{n}\left(F_{n}\right)$ and $\mathcal{H}_{\mu}^{2}:=\widetilde{h}(F)$ mean codomains in $L_{\mu}^{2}(G)$ of the mapping \widetilde{h}_{n} and \widetilde{h}, respectively.
Theorem 3.1. The mappings \widetilde{h} and \widetilde{h}_{n} have the following properties:
(i) \widetilde{h}_{n} is an isometry between F_{n} and its codomain \mathcal{H}_{n}^{2}.
(ii) \widetilde{h} is an isometry between F and \mathcal{H}_{μ}^{2}.
(iii) the orthogonal decomposition $\mathcal{H}_{\mu}^{2}=\mathbb{C} \oplus \mathcal{H}_{1}^{2} \oplus \mathcal{H}_{2}^{2} \oplus \mathcal{H}_{3}^{2} \oplus \ldots$ holds.

Proof. Lemma 3.2 implies that the operator h_{n} is bounded. It follows that

$$
\int_{G} h_{n}\left(\psi_{n}\right) \overline{h_{n}\left(\omega_{n}\right)} d \mu=\int_{G}\left(\psi_{n}^{*} \circ U_{x, y, \tau}\right)(h) \overline{\left(\omega_{n}^{*} \circ U_{x, y, \tau}\right)(h)} d \mu\left(U_{x, y, \tau} h\right)
$$

is an Hermitean continuous form on F_{n}, which is linear by ω_{n} and antilinear by ψ_{n}. So, there exists a bounded operator $A_{n} \in \mathscr{L}\left(F_{n}\right)$ for
which $\left\langle\omega_{n} \mid A_{n} \psi_{n}\right\rangle_{\mathcal{F}}=\int_{G} h_{n}\left(\psi_{n}\right) \overline{h_{n}\left(\omega_{n}\right)} d \mu$. Using the same technique as in [1] we show that A_{n} commutates with the diagonal nth tensor power of Schrödinger's representation $\left\{U_{\tilde{x}, \tilde{y}, \tilde{\tau}}^{\otimes n}=U_{\tilde{x}, \tilde{y}, \tilde{\tau}} \otimes \ldots \otimes U_{\tilde{x}, \tilde{y}, \tilde{\tau}}:(\tilde{x}, \tilde{y}, \tilde{\tau}) \in\right.$ $\left.\mathbb{H}_{2 d+1}\right\}$. Applying the $\left(\mathbb{H}_{2 d+1}\right)$-invariancy of the measure μ on the Gauss orbit G we obtain

$$
\begin{aligned}
& \left\langle\omega_{n} \mid\left(A_{n} \circ U_{\tilde{x}, \tilde{y}, \tilde{\tau}}\right) \psi_{n}\right\rangle_{\mathcal{F}}= \\
& =\int_{G}\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid U_{\tilde{x}, \tilde{y}, \tilde{\tau}}^{\otimes n} \psi_{n}\right\rangle_{\mathcal{F}} \overline{\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid \omega_{n}\right\rangle_{\mathcal{F}}} d \mu\left(U_{x, y, \tau} h\right)= \\
& =\int_{G}\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid \psi_{n}\right\rangle_{\mathcal{F}} \overline{\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid U_{(-\tilde{x},-\tilde{y}, \tilde{\tau}-1)}^{\otimes n} \omega_{n}\right\rangle_{\mathcal{F}}} d \mu\left(U_{x, y, \tau} h\right)= \\
& =\left\langle\omega_{n} \mid\left(U_{\tilde{x}, \tilde{y}, \tilde{\tau}}^{\otimes n} \circ A_{n}\right) \psi_{n}\right\rangle_{\mathcal{F}} .
\end{aligned}
$$

Since for any $n \in \mathbb{N}$ the set $\left\{\left(U_{x, y, \tau} h\right)^{\otimes n}:(x, y, \tau) \in \mathbb{H}_{2 d+1}\right\}$ is total in F_{n} due to its definition, the representations $U_{\tilde{x}, \tilde{y}, \tilde{\tau}}^{\otimes n}$ are irreducible over F_{n}. Via to the well-known property [6, Theorem 21.30] the operator A_{n} is proportional to the identity operator $1_{F_{n}}$ on F_{n} i.e., $\left.A_{n}\right|_{F_{n}}=\aleph^{-2} 1_{F_{n}}$ for some $\aleph^{2} \in \mathbb{C}$. Hence, we have

$$
\begin{equation*}
\left\langle\omega_{n} \mid \psi_{n}\right\rangle_{\mathcal{F}}=\aleph^{2} \int_{G} h_{n}\left(\psi_{n}\right) \overline{h_{n}\left(\omega_{n}\right)} d \mu,\left\|h_{n}\right\|=\sup _{\left\|\psi_{n}\right\|_{\mathcal{F}=1}}\left\|h_{n}\left(\psi_{n}\right)\right\|_{L_{\mu}^{2}}=\frac{1}{\aleph_{n}} \tag{4}
\end{equation*}
$$

Finally, applying Theorem 2.1 for all $\psi_{n} \in F_{n}$ and $\omega_{m} \in F_{m}$ we get

$$
\begin{aligned}
\int_{G} h_{n}\left(\psi_{n}\right) \overline{h_{m}\left(\omega_{m}\right)} d \mu & =\frac{1}{2 \pi} \int_{G} h_{n}\left(\psi_{n}\right) \overline{h_{m}\left(\omega_{m}\right)} d \mu \int_{0}^{2 \pi} e^{i(n-m) \vartheta} d \vartheta= \\
& =\left\{\begin{array}{cl}
0 & : n \neq m \\
\left\langle\omega_{n} \mid \psi_{n}\right\rangle_{\mathcal{F}} & : n=m .
\end{array}\right.
\end{aligned}
$$

Hence $\widetilde{h}_{n}\left(\psi_{n}\right) \perp \widetilde{h}_{m}\left(\omega_{m}\right)$ if $n \neq m$ and the orthogonal decomposition (iii) holds.

4 Cauchy type formula for Gauss orbit

Note that the lemmas directly imply the estimation $\left\|h_{n}\right\| \leq \sqrt{n!\left(\frac{2 \pi}{n}\right)^{d}}$ and the equality

$$
\left\|h_{n}\left(h^{\otimes n}\right)\right\|_{L_{\mu}^{2}(G)}^{2}=\int_{\mathbb{H}_{2 d+1}}\left|\left\langle\left(U_{x, y, \tau} h\right)^{\otimes n} \mid h^{\otimes n}\right\rangle_{\mathcal{F}}\right|^{2} d x d y d \tau=\left(\frac{2 \pi}{n}\right)^{d} .
$$

Though finding the exact value of $\left\|h_{n}\right\|$ is not an easy task we can give another estimation for $\left\|h_{n}\right\|$ which will be useful for \aleph_{n}. It easy to see that $h^{\otimes n} \in F_{n}$ and $\left\|h^{\otimes n}\right\|_{\mathcal{F}}=1$. It follows that the following estimation holds

$$
\left\|h_{n}\right\|=\sup _{\left\|\psi_{n}\right\|_{\mathcal{F}}=1}\left\|h_{n}\left(\psi_{n}\right)\right\|_{L_{\mu}^{2}(G)} \geq\left\|h_{n}\left(h^{\otimes n}\right)\right\|_{L_{\mu}^{2}(G)}=\left(\frac{2 \pi}{n}\right)^{d / 2} .
$$

From $\left(\frac{2 \pi}{n}\right)^{d / 2} \leq\left\|h_{n}\right\| \leq(n!)^{1 / 2}\left(\frac{2 \pi}{n}\right)^{d / 2}$ it follows that $\sqrt{\frac{1}{n!}\left(\frac{n}{2 \pi}\right)^{d}} \leq \aleph_{n} \leq$ $\sqrt{\left(\frac{n}{2 \pi}\right)^{d}}$. The fact that $\lim _{n \rightarrow \infty} \sqrt[n]{\aleph_{n}^{2}} \leq \lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n}{2 \pi}\right)^{d}}=1$ justifies that we can mean

$$
\begin{align*}
C\left(\xi, U_{x, y, \tau} h\right) & =\sum_{n \in \mathbb{Z}_{+}} \aleph_{n}^{2}\left\langle\xi \mid U_{x, y, \tau} h\right\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}^{n}=\sum_{n \in \mathbb{Z}_{+}} \aleph_{n}^{2}\left\langle\xi^{\otimes n} \mid\left(U_{x, y, \tau} h\right)^{\otimes n}\right\rangle_{\mathcal{F}}= \\
& =1+\sum_{n \in \mathbb{N}} \aleph_{n}^{2}\left(\frac{\tau e^{\frac{i}{2} x \cdot y}}{\pi^{d / 4}} \prod_{l=1}^{d} \int_{\mathbb{R}} \xi_{l}\left(t_{l}\right) e^{\mathrm{i} y_{l} t_{l}-\left(t_{l}-x_{l}\right)^{2} / 2} d t_{l}\right)^{n} \tag{5}
\end{align*}
$$

with $\xi \in B_{L^{2}\left(\mathbb{R}^{d}\right)}$ and $(x, y, \tau) \in \mathbb{H}_{2 d+1}$, as a generalization of the Cauchy kernel. Since $U_{x, y, \tau} h \in S_{L^{2}\left(\mathbb{R}^{d}\right)}$ for all $(x, y, \tau) \in \mathbb{H}_{2 d+1}$ and above power series is convergent for all $\|\xi\|_{L^{2}\left(\mathbb{R}^{d}\right)}<1$, the kernel $C(\xi, \cdot)$ is an analytic $L^{\infty}\left(\mathbb{H}_{2 d+1}\right)$-valued function by the variable $\xi \in B_{L^{2}\left(\mathbb{R}^{d}\right)}$ (see [5]).

Theorem 4.1. The integral operator
$C[f](\xi)=\int_{\mathbb{H}_{2 d+1}} C\left(\xi, U_{x, y, \tau} h\right)\left(f \circ U_{x, y, \tau}\right)(h) d x d y d \tau, \quad f \in \mathcal{H}_{\mu}^{2}, \xi \in B_{L^{2}\left(\mathbb{R}^{d}\right)}$,
belongs to $\mathscr{L}\left(\mathcal{H}_{\mu}^{2}\right)$. The function $C_{r}[f]: G \ni \xi \longmapsto C[f](r \xi)$ belongs to \mathcal{H}_{μ}^{2} and

$$
\|f\|_{L_{\mu}^{2}(G)}=\sup _{r \in[0 ; 1)}\left(\int_{G}|C[f](r \xi)|^{2} d \mu(\xi)\right)^{1 / 2}
$$

For any $f=\sum_{n \in \mathbb{Z}_{+}} f_{n} \in \mathcal{H}_{\mu}^{2}$ with $f_{n} \in \mathcal{H}_{\mu}^{2}$ the integral transform $C[f]$ is a unique analytic extension of f on the open ball $B_{L^{2}\left(\mathbb{R}^{d}\right)}$ for which its radial boundary values on G are equal to f in the following sense

$$
\lim _{r \rightarrow 1} \int_{G}\left|C_{r}[f]-f\right|^{2} d \mu=0, \quad r \in[0,1) .
$$

Proof. Use the short notation $\varphi_{[\alpha]}^{\otimes(k)}:=P_{n}\left(\varphi_{\left(\alpha_{1}\right)}^{\otimes k_{1}} \otimes \ldots \otimes \varphi_{\left(\alpha_{n}\right)}^{\otimes k_{n}}\right)$ with $|(k)|=$ n. All such elements $\varphi_{[\alpha]}^{\otimes(k)}$ have been previously identified with Φ_{n}. For $\varphi_{[\alpha]}^{\otimes(k)} \in \Phi_{n}$ we denote $\widetilde{\varphi}_{[\alpha]}^{(k)}:=\widetilde{h}_{n}\left(\varphi_{[\alpha]}^{\otimes(k)}\right)$. Substituting elements $\omega_{n}=\varphi_{[\alpha]}^{\otimes(k)}$ and $\psi_{n}=\varphi_{\left[\alpha^{\prime}\right]}^{\otimes\left(k^{\prime}\right)}$ from Φ_{n} with different indexes in the equality (4) we get

$$
\int_{G} \widetilde{\varphi}_{[\alpha]}^{(k)} \overline{\widetilde{\varphi}_{\left[\alpha^{\prime}\right]}^{\left(k^{\prime}\right)}} d \mu=\left\langle\varphi_{[\alpha]}^{\otimes(k)} \mid \varphi_{\left[\alpha^{\prime}\right]}^{\otimes\left(k^{\prime}\right)}\right\rangle_{\mathcal{F}}=0 .
$$

So, the system $\widetilde{\varphi}_{[\alpha]}^{(k)}$ with all $\varphi_{[\alpha]}^{\otimes(k)} \in \Phi_{n}$ forms an orthonormal basis in \mathcal{H}_{n}^{2}. We can write the Fourier expansion $\xi^{\otimes n}=\sum_{\varphi_{[\alpha]}^{\otimes(k)} \in \Phi_{n}}\left\langle\xi^{\otimes n} \mid \varphi_{[\alpha]}^{\otimes(k)}\right\rangle_{\mathcal{F}} \varphi_{[\alpha]}^{\otimes(k)}$ for any element $\xi^{\otimes n} \in \mathcal{F}_{n}\left[L^{2}\left(\mathbb{R}^{d}\right)\right]$. Using this we have

$$
C_{n}\left(\xi, U_{x, y, \tau} h\right):=\aleph_{n}^{2}\left\langle\xi^{\otimes n} \mid\left(U_{x, y, \tau} h\right)^{\otimes n}\right\rangle_{\mathcal{F}}=r^{n} \sum_{\varphi_{[\alpha]}^{\otimes(k)} \in \Phi_{n}} \widetilde{\varphi}_{[\alpha]}^{(k)}(\xi / r) \overline{\widetilde{\varphi}_{[\alpha]}^{(k)}}\left(U_{x, y, \tau} h\right),
$$

where $r=\|\xi\|_{L^{2}\left(\mathbb{R}^{d}\right)}$. It follows that

$$
\begin{aligned}
C\left(\xi, U_{x, y, \tau} h\right) & =\sum_{n \in \mathbb{Z}_{+}} r^{n} \sum_{\varphi_{[\alpha]}^{\otimes(k)} \in \Phi_{n}} \widetilde{\varphi}_{[\alpha]}^{(k)}(\xi / r) \overline{\widetilde{\varphi}_{[\alpha]}^{(k)}}\left(U_{x, y, \tau} h\right)= \\
& =\sum_{n \in \mathbb{Z}_{+}} r^{n} C_{n}\left(\xi / r, U_{x, y, \tau} h\right) .
\end{aligned}
$$

Now Theorem 3.1 implies that

$$
\int_{G} \widetilde{\varphi}_{[\alpha]}^{(k)}\left(U_{x, y, \tau} h\right) C_{n}\left(\xi / r, U_{x, y, \tau} h\right) d \mu\left(U_{x, y, \tau} h\right)=\widetilde{\varphi}_{[\alpha]}^{(k)}(\xi / r) .
$$

Since $\widetilde{\varphi}_{[\alpha]}^{(k)}$ with all $\varphi_{[\alpha]}^{\otimes(k)} \in \Phi_{n}$ form an orthonormal basis in \mathcal{H}_{n}^{2}, the integral operator with kernel C_{n} produces the identity mapping over \mathcal{H}_{n}^{2}.

Let $f=\sum_{n \in \mathbb{Z}_{+}} f_{n} \in \mathcal{H}_{\mu}^{2}$ with $f_{n} \in \mathcal{H}_{n}^{2}$. Using that $f_{n} \perp C_{m}$ if $n \neq m$ in $L_{\mu}^{2}(G)$ we obtain

$$
\begin{aligned}
f(\xi) & =\sum_{n \in \mathbb{Z}_{+}} \int_{G} C_{n}\left(\xi, U_{x, y, \tau} h\right) f_{n}\left(U_{x, y, \tau} h\right) d \mu\left(U_{x, y, \tau} h\right)= \\
& =\int_{G} C\left(\xi, U_{x, y, \tau} h\right) f\left(U_{x, y, \tau} h\right) d \mu\left(U_{x, y, \tau} h\right)
\end{aligned}
$$

for all $\xi \in G$. It follows that the series $C[f](\xi)=\sum_{n \in \mathbb{Z}_{+}} C\left[f_{n}\right](\xi)$ with

$$
\begin{aligned}
& C\left[f_{n}\right](\xi)=\int_{G} C_{n}\left(\xi, U_{x, y, \tau} h\right) f_{n}\left(U_{x, y, \tau} h\right) d \mu\left(U_{x, y, \tau} h\right)= \\
& =r^{n} \int_{G} C_{n}\left(\xi / r, U_{x, y, \tau} h\right) f_{n}\left(U_{x, y, \tau} h\right) d \mu\left(U_{x, y, \tau} h\right)=r^{n} f_{n}(\xi / r)=f_{n}(\xi)
\end{aligned}
$$

is convergent in \mathcal{H}_{μ}^{2} by the variable $\xi / r \in G$, uniformly by $r \in[0, \varepsilon]$ with $0<\varepsilon<1$. Since $C_{m} \perp f_{n}$ and $f_{m} \perp f_{n}$ if $n \neq m$ in $L_{\mu}^{2}(G)$, we have

$$
\begin{aligned}
& \left\|C_{r}[f]\right\|_{L_{\mu}^{2}(G)}^{2}=\int_{G}\left|\sum_{n \in \mathbb{Z}_{+}} r^{n} \int_{G} C_{n}\left(\xi, U_{x, y, \tau} h\right) f_{n}\left(U_{x, y, \tau} h\right) d \mu\left(U_{x, y, \tau} h\right)\right|^{2} d \mu(\xi)= \\
& =\int_{G}\left|\sum_{n \in \mathbb{Z}_{+}} r^{n} f_{n}(\xi)\right|^{2} d \mu(\xi)=\left\|\sum_{n \in \mathbb{Z}_{+}} r^{n} f_{n}\right\|_{L_{\mu}^{2}(G)}^{2}=\sum_{n \in \mathbb{Z}_{+}} r^{2 n}\left\|f_{n}\right\|_{L_{\mu}^{2}(G)}^{2}
\end{aligned}
$$

for all $r<1$. It follows that

$$
\sup _{r \in[0.1)} \int_{G}|C[f](r \xi)|^{2} d \mu(\xi)=\sup _{r \in[0,1)} \sum_{\mathbb{Z}_{+}} r^{2 n}\left\|f_{n}\right\|_{L_{\mu}^{2}(G)}^{2}=\|f\|_{L_{\mu}^{2}(G)}^{2}
$$

We can apply the Cauchy-Schwarz inequality which implies

$$
\left\|C_{r}[f]\right\|_{L_{\mu}^{2}(G)}^{2} \leq \frac{1}{\sqrt{1-r^{2}}}\left(\sum_{n \in \mathbb{Z}_{+}}\left\|f_{n}\right\|_{L_{\mu}^{2}(G)}^{2}\right)^{1 / 2}=\frac{\left\|f_{n}\right\|_{L_{\mu}^{2}(G)}}{\sqrt{1-r^{2}}}
$$

for all $f \in \mathcal{H}_{\mu}^{2}$. Therefore the operator $C[f]$ belongs to $\mathscr{L}\left(\mathcal{H}_{\mu}^{2}\right)$.
Now we will use that $C(\xi, \cdot)$ is an analytic $L^{\infty}\left(\mathbb{H}_{2 d+1}\right)$-valued function by $\xi \in B_{L^{2}\left(\mathbb{R}^{d}\right)}$. Then in view of [7, Theorem 3.1.2] the function $C[f]$ is also analytic by $\xi \in B_{L^{2}\left(\mathbb{R}^{d}\right)}$. Applying the orthogonal property once again, we have

$$
\int_{G}\left|C_{r}[f]-f\right|^{2} d \mu=\sum_{n \in \mathbb{Z}_{+}}\left(r^{2 n}-1\right)\left\|f_{n}\right\|_{L_{\mu}^{2}(G)}^{2} \rightarrow 0
$$

if $r \rightarrow 1$. Thus, the theorem is completely proved.
[1] Lopushansky O. Hardy spaces for irreducible representations of locally compact groups // Topology. - 2009. - 48. - P. 169-177.
[2] Thangavelu S. Harmonic Analysis on the Heisenberg Group, vol. 159. Progress in Math. - Boston: Birkhauser, 1998. - 191 p.
[3] Berezanski Yu.M., Kondratiev Yu.G. Spectral Methods in InfiniteDimensional Analysis. - Dordrecht: Kluwer Academic Publ., 1995. - 572 p .
[4] Mackey G.W. Induced representations of locally compact groups, i,ii // Ann. Math. - 1952. - 55. - P. 101-139. \& - 1953. - 58. - P. 193-221.
[5] Lopushansky O., Oleksienko M. Hardy type spaces on infinite dimensional group orbits // Methods Funct. Analysis \& Topology. - 2011. - 17, №3. (in print)
[6] Hewitt E., Ross K.A. Abstract Harmonic Analysis, vol. 1,2. - Berlin Heidelberg New York: Springer, 1970. - 392 p.
[7] Hervé M. Analyticity in Infinite Dimensional Spaces, de Gruyter Stud. in Math., vol. 10. - Berlin New-York: de Gruyter, 1989. - 206 p.

ПРОСТОРИ ХАРДІ НА ЗВЕДЕНИХ ГРУПАХ ГЕЙЗЕНБЕРГА

Михайло ОЛЕКСІЄНКО

Інститут прикладних проблем механіки і математики
ім. Я. С. Підстригача НАН України, вул. Наукова 3-б, Львів 79060
e-mail: oleksienko.michael@gmail.com

Розглядається простір Харді комплексних функцій, визначених на орбіті Шредінгера зведеної ($2 d+1$)-вимірної групи Гейзенберга, породженої функцією Гаусса. Наведена інтегральна формула типу Коші та доведено існування граничних значень для аналітичних продовжень.

[^0]: УДК: 517.98; MSC 2000: Primary 46G20; Secondary 46E50, 46J15

