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Gelfand-Hille type theorems for topological algebras and for ordered topological algebras are considered.
It is shown that if a 2 A is Abel bounded in an ordered topological algebra (ordering is defined by a closed
normal algebra cone), then a is CesJaro bounded. We find conditions under which the identity element of an
ordered topological algebra A is the unique element a 2 A with spectrum �.a/ D f1g.

Mart Abel, Mati Abel. Теореми типу Ґельфанда-Гiлле для впорядкованих унiтальних топологiчних
алгебр // Мат. вiсник НТШ. — 2013. — Т.10. — C. 85–96.

Розглядаються теореми типу Ґельфанда-Гiлле для (впорядкованих) топологiчних алгебр. Показа-
но, що кожен обмежений за Абелем елемент a 2 A впорядкованої топологiчної алгебри A є обмежений
по Чезаро. Знайдено умови, за яких єдиним елементом a 2 A з одиничним спектром �.a/ D f1g є оди-
ниця впорядкованої топологiчної алгебри A.

1. Introduction

There are several papers written about the different boundedness conditions for ordered Banach
algebras. When one looks at the proofs more carefully, it is possible to observe that the existence
of the norm is not always necessary and that many results hold also in more general case. The
main source for this paper is [2], where several results and ideas of this paper can be found for
Banach algebra case. This paper is an attempt to generalize first the notions of different kinds of
boundedness for a topological algebra without using the norm.
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The second and the main goal of this paper is to show that results, known for ordered Banach
algebras, hold also in general case and that several proofs do not depend on the topology obtained
with the norm. Some results remain true also without the partial ordering. Nevertheless, there are
some results, which had to be presented with a bit different conditions.

2. Results for general topological algebras
By a topological algebra we mean a topological vector space over C in which the multiplication

is separately continuous. Through the whole paper, let A be a topological algebra with unit eA and
a zero element �A. Let RC D f� 2 R W � > 0g: Recall that the spectrum of an element a 2 A is
defined as the set

�.a/ D f� 2 C W a � �eA is not invertible in Ag:

We will say that an element a 2 A is

a) power bounded if for every neighbourhood O of zero in A there exists �O 2 RC such that
an 2 �OO for all n 2 N.

b) Cesàro bounded if for every neighbourhood O of zero in A there exists �O 2 RC such that

Mn.a/ WD
eA C a C � � � C an

n C 1
2 �OO

for all n 2 N.

c) Abel bounded if
1X

kD0

�kak .1/

exists in A for every � 2 .0; 1/ and for every neighbourhood O of zero in A there exists
�O 2 RC such that

.1 � �/

1X
kD0

�kak
2 �OO

for all � 2 .0; 1/.

d) uniformly Abel bounded if for every neighbourhood O of zero in A there exists �O 2 RC

such that

.1 � �/

nX
kD0

�kak
2 �OO

for all � 2 .0; 1/ and all n 2 N.

e) .N /-Abel bounded (for some N 2 N) if (1) exists in A for every � 2 .0; 1/ and for every
neighbourhood O of zero in A there exists �O 2 RC such that

.1 � �/N

1X
kD0

�kak
2 �OO

for all � 2 .0; 1/.



GELFAND-HILLE TYPE THEOREMS 87

We start with a generalization of Theorem 2.4 from [2, p. 44].

Theorem 2.1. Let A be a topological algebra with jointly continuous multiplication and let a 2 A

be such that aN is Abel bounded for some N 2 N. Then a is Abel bounded.

Proof. Let a 2 A and let N 2 N be such that aN is Abel bounded. Take any neighbourhood O of
zero in A. Then there exist balanced neighbourhoods U and V of zero in A such that U U � O

and
V C � � � C V„ ƒ‚ …
N summands

� U:

Moreover, there exist �0; : : : ; �N �1 2 RC such that

eA 2 �0V; �a 2 �1V; .�a/2
2 �2V; : : : ; .�a/N �1

2 �N �1V

for all � 2 .0; 1/, because V is balanced. Let � WD maxf�0; : : : ; �N �1g. Then

eA C �a C .�a/2
C � � � C .�a/N �1

2 �0V C �1V C �2V C � � � C �N �1V D

D �
��0

�
V
�

C �
��1

�
V
�

C � � � C �
��N �1

�
V
�

� �.V C � � � C V„ ƒ‚ …
N summands

/ � �U

for all � 2 .0; 1/. As �N 2 .0; 1/ and aN is Abel bounded, there exists �U 2 RC such that

.1 � �N /

1X
kD0

�N kaN k
2 �U U:

Since

N.mC1/�1X
kD0

�kak
D

mX
kD0

.�a/N k
C

mX
kD0

.�a/N kC1
C � � � C

mX
kD0

.�a/N kC.N �1/
D

D .eA C �a C .�a/2
C � � � C .�a/N �1/

mX
kD0

�N kaN k

for every m 2 N and all � 2 .0; 1/, then

1X
kD0

�kak
D lim

m!1

N.mC1/�1X
kD0

�kak
D .eA C �a C .�a/2

C � � � C .�a/N �1/

1X
kD0

�N kaN k:

Hence (1) exists in A for each � 2 .0; 1/. Now

.1 � �/

1X
kD0

�kak
D .eA C �a C .�a/2

C � � � C .�a/N �1/
1 � �

1 � �N
.1 � �N /

1X
kD0

�N kaN k
2

�U
1 � �

1 � �N
�U U D .��U /U

� 1 � �

1 � �N
U
�

� .��U /U U � .��U /O;

because 1��

1��N 2 .0; 1/. Taking �O WD ��U 2 RC, we obtain that .1 � �/
P1

kD0 �kak 2 �OO for
all � 2 .0; 1/. Hence, a is Abel bounded.
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Using analoguous argumentation, we can easily prove the following corollary (generalizing
Corollary 2.5 from [2, p. 44]).

Corollary 2.2. Let A be a topological algebra with jointly continuous multiplication and let a 2 A

be such that aN is uniformly Abel bounded for some N 2 N. Then a is uniformly Abel bounded.

Next result gives a generalization of Theorem 2.6 of [2, p. 44].

Proposition 2.3. Let A be a topological algebra with jointly continuous multiplication and with
continuous inversion. If a 2 A is Abel bounded and �.a/ � Œ0; 1/, then aN is Abel bounded for
all N 2 N.

Proof. Let a 2 A be Abel bounded and �.a/ 2 Œ0; 1/. Let � 2 .0; 1/. Moreover, let W be a
neighbourhood of zero in A. Fix an arbitrary N 2 N. Then there exists � 2 .0; 1/ such that
�N D � and a balanced neighbourhood O of zero in A such that NOO � W .

Let pN W A ! A be defined by pN .b/ D b C b2 C � � � C bN �1 for every b 2 A. Since
�.a/ � Œ0; 1/, then, by Spectral Mapping Theorem (see, for example, [1], Proposition 1.7.3.), we
have �.pN .�a// D pN .��.a// � Œ0; 1/ for all � 2 .0; 1/. Therefore, �1 62 �.pN .�a//. Hence,
eA C �a C .�a/2 C � � � C .�a/N �1 D pN .�a/ � .�1/eA is invertible in A for all � 2 Œ0; 1�/. By
assumption, the inversion in A is continuous. Thus, the map F W Œ0; 1� ! A, defined by

F.�/ D .eA C �a C � � � C .�a/N �1/�1

is continuous. Hence, F.Œ0; 1�/ is a compact subset in A, because Œ0; 1� is compact in R. Therefore,
F.Œ0; 1�/ is bounded in A (see, for example, [3, p. 147], Proposition 7). Consequently, there is a
positive number � such that .eA C �a C .�a/2 C � � � C .�a/N �1/�1 2 �O for all � 2 .0; 1/.

By the assumptions, we know that (1) exists in A for every � 2 .0; 1/ and for every neigh-
bourhood O of zero in A there exists �O 2 RC such that .1 � �/

P1

kD0 �kak 2 �OO for all
� 2 .0; 1/.

As it was shown in the proof of Theorem 1, for every m 2 N and each � 2 .0; 1/ we get

N.mC1/�1X
kD0

�kak
D .eA C �a C .�a/2

C � � � C .�a/N �1/

mX
kD0

�N kaN k:

Hence,
mX

kD0

�N kaN k
D .eA C �a C .�a/2

C � � � C .�a/N �1/�1

N.mC1/�1X
kD0

�kak:

Thus,
1X

kD0

�N kaN k
D lim

m!1

mX
kD0

�N kaN k
D .eA C �a C .�a/2

C � � � C .�a/N �1/�1

1X
kD0

�kak

for each � 2 .0; 1/. Therefore, the sum
P1

kD0 �k.aN /k D
P1

kD0 �N kaN k exists in A for each � 2

.0; 1/. It is easy to see that .eA � �a/
P1

kD0 �kak D eA and .eA � .�a/N /
P1

kD0.�a/N k D eA.
Moreover, eA � .�a/N D .eA � �a/.eA C �a C � � � C .�a/N �1/. Hence,

1X
kD0

.�a/N k
D .eA � .�a/N /�1

D .eA C �a C � � � C .�a/N �1/�1

1X
kD0

�kak:
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Finally,

.1 � �/

1X
kD0

�k.aN /k
D .1 � �N /

1X
kD0

.�a/N k
D

D .1 C � C �2
C � � � C �N �1/.eA C �a C � � � C .�a/N �1/�1.1 � �/

1X
kD0

�kak
2

2 ��ON
�1 C � C �2 C � � � C �N �1

N
OO

�
� ��O.NOO/ � ��OW

for all � 2 .0; 1/. Thus, taking �W WD ��O , we see that aN is Abel bounded. Since N 2 N was
chosen arbitrarily, aN is Abel bounded for all N 2 N.

3. Results for ordered topological algebras
Let A be an algebra. An algebra cone C � A is a subset of A which satisfies the following

conditions:

1) C C C � C ;

2) �C � C for every � 2 RC [ f0g;

3) C � C � C ;

4) eA 2 C .

An algebra cone is called

a) proper if C \ .�C / D f�Ag and

b) inverse closed if for every invertible element a 2 A (with inverse a�1 2 A) the inclusion
a 2 C implies a�1 2 C .

Every algebra cone C induces a partial order �C on A as follows:

for a; b 2 A we say that a �C b if and only if b � a 2 C:

Next, we generalize the definitions for the classes of algebra cones of Banach algebras to the case
of general topological algebras.

Let A be a topological algebra and C � A an algebra cone. We will endowe C with a subspace
topology induced by the topology of A. An algebra cone, is called

c) normal if for every neighborhood O of zero there exists a real number ˛ � 1 such that
fa 2 A W �A �C a �C bg � ˛ � O for every b 2 O;

d) closed if C is a closed subset in the topology of A.

We will denote by .A; �C / an algebra A with an order �C induced by an algebra cone C .
The following result generalizes Theorem 2.1 of [2, p. 42].
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Theorem 3.1. Let .A; �C / be an ordered topological algebra, where C is a closed normal algebra
cone. If a 2 C is Abel bounded, then a is Ces Jaro bounded.

Proof. Fix an arbitrary neighbourhood U of zero in A. Then there exists a balanced neighbourhood
O of zero such that O � U . By assumption, a is Abel bounded. Hence, there exists �O 2 RC

such that

.1 � �/

1X
kD0

�kak
2 �OO

for all � 2 .0; 1/. Since a 2 C and C is an algebra cone, we get

xn WD .1 � �/

nX
kD0

�kak
2 C

for every n 2 N. Since the sum (1) exists in A, then the sequence .xn/ converges in A and the limit
x of the sequence .xn/ also belongs to C , because C is closed, i.e.,

x WD .1 � �/

1X
kD0

�kak
2 C:

Similarily, we see that, for every fixed n0 2 N, we have

yn WD .1 � �/

nX
kDn0

�kak
2 C

for every n 2 N with n > n0. Taking again the limit, we get

x � xn0
D .1 � �/

1X
kDn0C1

�kak
2 C

for every n0 2 N. Now, we have obtained that

�A �C xn �C x and x 2 �OO

for every n 2 N. Fix now an arbitrary n 2 N. Since � is arbitrary in .0; 1/, we get that everything
remains true also for � D

n
nC1

. In this case

�
1 �

n

n C 1

� nX
kD0

� n

n C 1

�k

ak
D

1

n C 1

nX
kD0

� n

n C 1

�k

ak

and � n

n C 1

�n

Mn.a/ D
1

n C 1

� n

n C 1

�n
nX

kD0

ak:

Since a 2 C and C is an algebra cone, we have

Mn.a/;
� n

n C 1

�n

Mn.a/;
1

n C 1

nX
kD0

h� n

n C 1

�k

�

� n

n C 1

�ni
ak

2 C:
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As
1

n C 1

nX
kD0

h� n

n C 1

�k

�

� n

n C 1

�ni
ak

D xn �

� n

n C 1

�n

Mn.a/;

then
�A �C

� n

n C 1

�n

Mn.a/ �C xn �C x and xn 2 �OO:

Because �OO is also a neighbourhood of zero and C is a normal cone, it follows that there exists
a real number ˛ � 1 such that � n

n C 1

�n

Mn.a/ 2 ˛.�OO/:

Therefore,

Mn.a/ 2

�
1 �

1

n C 1

��n

˛�OO D

�
1 �

1

n C 1

��.nC1/ n

n C 1
� ˛�OO � e˛�0O

because O is balanced and

0 <
�
1 �

1

n C 1

��.nC1/

� e

for all n 2 N, where e is the Euler number. Taking �U WD e˛�O 2 RC, we see that Mn.a/ 2

�U O � �U U . Since n 2 N was chosen arbitrarily, we have Mn.a/ 2 �U U for all n 2 N. Thus, a

is CesJaro bounded.

Now we generalize Theorem 2.7 from [2, p. 45].

Proposition 3.2. Let .A; �C / be an ordered topological algebra with jointly continuous multipli-
cation and with continuous inversion, where C is a closed proper algebra cone. Let a 2 A be such
that �.a/ � Œ0; 1/. Then the following are equivalent:

a) a D eA;

b) there exist L; N 2 N such that aL is Abel bounded and aN �C eA.

Proof. The implication a)) b) is obvious (we take L D N D 1).
Suppose now, that b) holds. Then (by Theorem 2.1) a is Abel bounded because aL is Abel

bounded. By Proposition 2.3, we see that aN is also Abel bounded. Hence,

1X
kD0

�k.aN /k

exists in A for every � 2 .0; 1/ and for every neighbourhood O of zero in A there exists �O 2 RC

such that

.1 � �/S.aN; �/ WD .1 � �/

1X
kD0

�k.aN /k
2 �OO

for all � 2 .0; 1/. Therefore,
lim

�!1�
.1 � �/2S.aN; �/ D �A:
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Since
eA � �aN

D �
�1 � �

�
eA � .aN

� eA/
�
;

we have
1X

kD0

�k.aN /k
D .eA � �aN /�1

D
1

�

�1 � �

�
eA � .aN

� eA/
��1

:

Hence,

.1 � �/2S.aN ; �/ D
.1 � �/2

�

�1 � �

�
eA � .aN

� eA/
��1

D

D .1 � �/

1X
kD0

� �

1 � �

�k

.aN
� eA/k

D

D �.aN
� eA/ C .1 � �/eA C .1 � �/

1X
kD2

� �

1 � �

�k

.aN
� eA/k:

As eA 2 C and aN �C eA, then aN ; aN � eA; .aN /k 2 C for all k 2 N and

mX
kD2

� �

1 � �

�k

.aN
� eA/k

2 C

for all m 2 N with m � 2. Because C is closed, we get

1X
kD2

� �

1 � �

�k

.aN
� eA/k

2 C:

Taking this into account, we have that

.1 � �/eA C .1 � �/

1X
kD2

� �

1 � �

�k

.aN
� eA/k

2 C

for all � 2 .0; 1/. Hence,

lim
�!1�

�
.1 � �/eA C .1 � �/

1X
kD2

� �

1 � �

�k

.aN
� eA/k

�
D �.aN

� eA/:

Again, as C is closed, then �.aN � eA/ 2 C .
So, we have obtained that aN � eA 2 C and �.aN � eA/ 2 C . Consequently, aN � eA 2

C \ .�C / D f�Ag, since C is a proper cone. Therefore, aN D eA.
In case N D 1, we have a � eA D �A and our problem is solved. Suppose now that N � 2.

Then
�A D aN

� eA D .a � eA/.aN �1
C � � � C a C eA/:

Using again the map pN W A ! A, defined in the proof of Proposition 2.3, we obtain that

aN �1
C � � � C a C eA D pN .a/ � .�1/eA
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is invertible in A, because �.pN .a// 2 Œ0; 1/. Hence, .aN �1 C � � � C a C eA/�1 exists in A. Thus,

a � eA D �A.aN �1
C � � � C a C eA/�1

D �A

and we have again obtained a D eA.

Next, we give a version of the Theorem 3.1 from [2, p. 47].

Theorem 3.3. Let .A; �C / be a topological algebra, where C is a closed proper algebra cone. If
a 2 A and N 2 N are such that a �C eA and a is .N /-Abel bounded, then .a � eA/N D �A.

Proof. Let a 2 A and N 2 N be such that a is .N /-Abel bounded. Then (1) exists in A for every
� 2 .0; 1/ and for every neighbourhood O of zero in A there exists �O 2 RC such that

.1 � �/N

1X
kD0

�kak
2 �OO

for all � 2 .0; 1/.
Similarily as in the proof of Proposition 3.2, we have

.1 � �/N

1X
kD0

�kak
D �N

�1 � �

�

�N 1

�

�1 � �

�
eA � .a � eA/

��1

D

D �N �1
�1 � �

�

�N
1X

kD0

� �

1 � �

�kC1

.a � eA/k:

Hence,

S WD �N �1

 
1 � �

�

!N 1X
kD0

 
�

1 � �

!kC1

.a � eA/k
2 �OO

for all � 2 .0; 1/, which implies that S is bounded in A. Thus,

lim
�!1�

1 � �

�
S D �A:

Now,

1 � �

�
S D �N �1

1X
kD0

� �

1 � �

�k�N

.a � eA/k
D

D �N �1
��1��

�

�N

eAC

�1��

�

�N �1

.a�eA/C � � �C.a�eA/N
�
C�N �1

1X
kDN C1

� �

1��

�k�N

.a�eA/k:

Since a �C eA, then a � eA 2 C , which implies that

Sm WD �N �1

 
1 � �

�

!N mX
kD0

 
�

1 � �

!kC1

.a � eA/k
2 C
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for every m 2 N and every � 2 .0; 1/. Because C is closed, then

S D lim
m!1

Sm 2 C

and also

�N �1

1X
kDN C1

 
�

1 � �

!k�N

.a � eA/k
D

1 � �

�
.S � SN / 2 C .2/

for every � 2 .0; 1/. Now the equality

�A D lim
�!1�

1 � �

�
S D .a � eA/N

C lim
�!1�

�N �1

1X
kDN C1

 
�

1 � �

!k�N

.a � eA/k

implies

lim
�!1�

�N �1

1X
kDN C1

 
�

1 � �

!k�N

.a � eA/k
D �.a � eA/N :

Since C is closed, .2/ yields �.a � eA/N 2 C . Thus,

.a � eA/N
2 C \ .�C / D f�Ag;

because C is a proper cone. Consequently, .a � eA/N D �A.

Next result is a non-normed version of Theorem 3.2 from [2, p. 48].

Proposition 3.4. Let .A; �C / be an ordered topological algebra, where C is a closed normal
algebra cone. If there exists N 2 N such that a 2 C is .N /-Abel bounded, then

lim
n!1

Mn.a/

nN
D �A: .3/

Proof. Let N 2 N be such that a 2 C is .N /-Abel bounded. Then the sum (1) exists in A for
every � 2 .0; 1/. Thus,

lim
m!1

mX
kDnC1

�kak
D

1X
kDnC1

�kak

belongs to A for every � 2 .0; 1/ and every n 2 N. Since a 2 C and C is a cone, then

.1 � �/N

mX
kD0

�kak; .1 � �/N

mX
kDnC1

�kak; .1 � �/N

nX
kD0

.�k
� �n/ak

2 C

for every � 2 .0; 1/ and every m; n 2 N with n < m. Therefore,

.1 � �/N

1X
kD0

�kak; .1 � �/N

1X
kDnC1

�kak
2 C

for every n 2 N, because C is closed. Thus, we have obtained

�A �C .1��/N �n.nC1/Mn.a/ D .1��/N �n

nX
kD0

ak
�C .1��/N

nX
kD0

�kak
�C .1��/N

1X
kD0

�kak
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for every � 2 .0; 1/ and every n 2 N.
Let O be any neighbourhood of zero in A. Then there exists a balanced neighbourhood U of

zero in A such that U � O . Moreover, let ˛ � 1 be the constant from the normality condition for
the cone C .

Since a is .N /-Abel bounded, there exists �U 2 RC such that

.1 � �/N

1X
kD0

�kak
2 �U U

for all � 2 .0; 1/. By assumption, C is normal. Therefore,

.1 � �/N �n.n C 1/Mn.a/ 2 ˛�U U

for all n 2 N and all � 2 .0; 1/. If we take � WD
n

nC1
, then

Mn.a/ 2 ˛�U .n C 1/N �1
�
1 C

1

n

�n

U � ˛�U .n C 1/N �1eU;

because .1 C
1
n
/n � e for every n 2 N and U is balanced. Taking �O WD ˛�U e2, gives

Mn.a/

nN
2 ˛�U e

1

n

�
1 C

1

n

�N �1

U �
1

n
˛�U e2U �

1

n
�OU � U � O

for all n > maxf�O ; .e
1

N �1 � 1/�1g. Hence, (3) is true.

The last result is a generalization of Theorem 4.1 from [2, p. 49].

Theorem 3.5. Let .A; �C / be an ordered topological algebra with continuous inversion, where C

is a closed proper and inverse closed algebra cone. If a 2 A is such that �.a/ D f1g, then the
following are equivalent:

a) a D eA;

b) aN 2 C for some N 2 N.

Proof. It is obvious that a) implies b).
Suppose, now, that there exists N 2 N such that aN 2 C . Since C is an algebra cone, aN k

�kC1 2 C

for every � 2 RC and every k 2 N. Therefore,

Sm WD

mX
kD0

aN k

�kC1
2 C

for every � 2 RC and for every m 2 N. If �.a/ D f1g and � > 1, then the sequence .Sm/

converges and its limit

S D

1X
kD0

aN k

�kC1
D lim

m!1
Sm 2 C;
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because C is closed. Hence, S D .�eA � aN /�1 2 C . Since C is inverse closed, then also
�eA � aN 2 C for every � > 1. Using again the fact that C is closed, we obtain that

eA � aN
D lim

�!1C

.�eA � aN / 2 C:

From �.a/ D f1g it follows (by the Spectral Mapping Theorem) that �.aN / D f1g, thus aN is
invertible in A. Hence, a�N D .aN /�1 2 C , because C is inverse closed. Following the steps
above, we can show that

.�eA � a�N /�1
D

1X
kD0

a�N k

�kC1
2 C

for every � > 1. Taking the limit � ! 1C, we obtain that eA � a�N 2 C , as well. Therefore,

�.eA � aN / D aN
� eA D aN .eA � a�N / 2 C:

Since also eA � aN 2 C and C is proper, we get aN � eA D �A.
In case N D 1, we have a D eA. In case N � 2, we write

aN
� eA D .a � eA/.aN �1

C � � � C eA/ D �A

and use the same argumentation as in the proof of Proposition 3.2 to see that
.aN �1 C � � � C eA/ is invertible, which implies that a � eA D �A, i.e., a D eA.
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