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AUTOMORPHISMS OF FILTERS: A SELECTION OF OPEN PROBLEMS
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Given a set X and a filter ' on X , a bijection f W X �! X is called an automorphism of ' if, for every
subset A � X , A 2 ' if and only if f .A/ 2 '. We select and discuss some open problems concerning
automorphisms of filters on sets, groups and metric spaces.

I. Протасов, К. Протасова. Автоморфiзми фiльтрiв: вибранi вiдкритi проблеми // Мат. вiсник НТШ.
— 2013. — Т.10. — C. 122–126.

Для множини X та фiльтра ' на X , бiєкцiя f W X �! X називається автоморфiзмом ', якщо
пiдмножинаA � X належить фiльтру ' тодi i лише тодi, коли f .A/ 2 '. У статтi обговорюються деякi
вiдкритi проблеми, що стосуються автоморзмiв фiльтрiв на множинах, групах i метричних просторах.

1. Introduction
Let X be a set, SX is the group of all permutations of X , ' and  be filters on X . We say that

' and  are isomorphic if there exists g 2 SX such that, for every A � X ,

A 2 ' , g.A/ 2  :

A class of all filters on X isomorphic to ' is called a type of '.
Now we endow X with the discrete topology, identify the Stone- LC ech compactification ˇX of

X with the set of all ultrafilters on X , and X with the set of all principal ultrafilters, so X� D

ˇX n X is the set of all free ultrafilters on X . Recall that a family f NA W A � Xg is a base for open
sets in ˇX , where NA D fp 2 ˇX W A 2 pg. Given a filter ' on X , we set N' D

T
f NA W A 2 'g

and note that, for every non-empty closed subset K of ˇX , there exists a filter ' on X such that
K D N'. We denote '� D N' \X�.

By the universal property of ˇX , every mapping f W X �! K fromX to a compact Hausdorff
space K can be uniquely extended to the mapping f ˇ W ˇX �! K. By f � we denote the
restriction of f ˇ to X�.
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2. Automorphisms
Given any g 2 SX and a filter ' on X , we put

f ix.g/ D fx 2 X W g.x/ D xg; F ix.'/ D fg 2 SX W f ix.g/ 2 'g;

observe that F ix.'/ is an invariant subgroup of the group Aut.'/ of all automorphisms of ', and
note that Aut.'/ is a subgroup of the group Homeo. N'/ of all homeomorphisms of N'. If ' is the
Fréchet filter on ! D f0; 1; : : : g then Homeo. N'/ is the group of all autohomeomorphisms of !�.
For open questions concerning this group see [4].

We define the reduced automorphism group Aut�.'/ as the quotient group Aut 0.'/=F ix.'/
and note that Aut�.'/ can be identified with equivalence classes the relation � on Aut.'/ defined
by: g � h if and only if f ix.g�1h/ 2 '. We note also that Aut�.'/ can be considered as
a subgroup of Homeo. N'/: for each A 2 Aut�.'/, we pick g 2 A and put f .A/ D gˇ j N' ,
gˇ W ˇX �! ˇX: Then f is an embedding of Aut�.'/ into Homeo. N'/.

If N' is finite, we partition N' into subsets ˆ1; : : : ; ˆn of ultrafilters of the same type, and note
that Aut�.'/ is isomorphic to Sˆ1

� � � � � Sˆn
, Homeo. N'/ is a group of all permutations of N'.

Question 1. Given a set X and a group G (a subgroup of SX ), how can one detect whether G '

Aut�.'/ ( G D Aut.'/ ) for an appropriate filter ' on X?

Question 2. For which filter ' on X , one can guarantee that Aut�.'/ D Homeo. N'/ ?

We say that a filter ' on X is rigid if Aut.'/ D F ix.'/.

Remark 1. 1. If j
T
'j > 1 then ' is not rigid.

2. Each ultrafilter ' on X is rigid. Indeed, given a mapping g W X �! X , by the 4-set lemma
[2, p. 22], there is a partition

X D X0

[
X1

[
X2

[
X3

such that g jX0
� id , g.Xi/

T
Xi D ∅; i 2 f1; 2; 3g. Thus, if g … F ix.'/ then g … Aut.'/.

3. If all ultrafilters from N' are of distinct type, then ' is rigid.

4. Suppose that the set ˆ0 of all isolated points of N' is dense in N'. Then ' is rigid if and only
if all ultrafilters from ˆ0 are of distinct types.

5. We partition ! into infinite subsets ! D
S

i2! Wi . For each n > 0, we pick pn 2 !�

such that Wn 2 pn and all ultrafilters fpn W n > 0g are of distinct types. We choose
q 2 clfpn W n > 0g n fpn W n > 0g non-isomorphic to each pn, n > 0, and take p0 2 !�,
W0 2 p0 of type q. Let ' be a filter on ! such that N' D clfpn W n 2 !g. Then ' is rigid but
N' has two ultrafilters p0 and q of the same type. In this case N' is homeomorphic to ˇ!. It is
not hard to construct a rigid filter ' on ! such that N' is homeomorphic to !�.

6. For a filter ' on X , we set ı.'/ D minfjˆj W ˆ 2 'g and denote by �.'/ the minimal
cardinality of a base for '.
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Recall that ' 0 � ' is a base for ' if for every ˆ 2 ' there is ˆ0 2 ' 0 such that ˆ0 � ˆ.
We assume that ı.'/ � �.'/ � @0 and show that ' is not rigid. We choose a base fˆ˛ W ˛ < �g

of ' of cardinality � D �.'/. Since ı.'/ � �.'/ � @0, we can choose inductively elements
fx˛; y˛ W ˛ < �g of X such that x˛; y˛ 2 ˆ˛ and the subsets fx˛ W ˛ < �g, y˛ W ˛ < �g are
disjoint. We define a permutation g 2 SX by the rule: g.x˛/ D y˛; g.y˛/ D x˛; ˛ < �g and
g.x/ D x for each x 2 X n

S
fx˛; y˛ W ˛ < �g. By the construction, g 2 Aut.'/nF ix.'/ so ' is

not rigid.

Question 3. Given a filter ' on !, how can one recognize whether ' is rigid?

We say that a point x of a topological space X is rigid if the filter 'x of neighborhoods of x
is rigid. By Remark 1(6), a point x of a compact Hausdorff space X is rigid if and only if x is
isolated. We say that X is rigid if each point of X is rigid.

Recall that a Hausdorff topological space X with no isolated points is maximal if X has an
isolated point in any stronger topology on X . Equivalently, X is maximal if, for each x 2 X , there
is only one free ultrafilter converging to x. By Remark 1(2), each maximal space is rigid. It would
be interesting to clarify a relationship between rigid spaces and well-known “extremal” topological
spaces: submaximal, nodec, irresolvable, etc.

Let G be a group endowed with a topology in which the inversion x 7�! x�1 is continuous at
the identity e. If e is a rigid point then some member of 'e must contain only elements of order 2.
It follows that each rigid topological group contains an open Boolean subgroup. By [3, Theorem
11.3.4], an existence of a maximal topological group is consistent with ZFC.

Question 4. In ZFC, does there exist a non-discrete rigid topological group?

Question 5. Let .G; T / be a topological group such that T is maximal in the class of all non-
discrete regular topologies on G (see [3, Section 11.3]). Is .G; T / rigid?

3. Local automorphisms
For a discrete group G, the Stone- LC ech compactification G has a natural structure of a semi-

group (see [5, Chapter 4]). Given p; q 2 ˇG, the product pq is defined by

A 2 pq () fq 2 G W g�1A 2 qg 2 p:

The semigroup ˇG is right topological (for each q 2 ˇG, the shift x 7�! xq is continuous in
ˇG) and G� is a subsemigroup of ˇG.

By [7], each topological automorphism of G� is internal, i.e. there is an automorphism h of G
such that f D g�. See also [3, Section 8.2] for more simple proof of this statement.

If an infinite Abelian group G admits a compact group topology then there exists a discontinu-
ous automorphism of ˇG [6].

Question 6. Does there exist a discontinuous automorphism of ˇZ? of Z�?

A group G endowed with a topology T is called left topological if each left shift x 7�! gx,
g 2 G is continuous in T . Each left invariant topology T onG is uniquely determined by the filter
� of neighborhoods, of the identity e, and N� is a subsemigroup of ˇG.
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Let .G1; T1/, .G2; T2/ be left topological groups. A mapping f W T1 �! T2 is called a local
homomorphism if f .eG1

/ D eG2
and, for each x 2 G1, there exist U 2 �1 such that f .xy/ D

f .x/f .y/ for each y 2 U . If f is a bijection such that f and f �1 are local homomorphisms, f
is called a local isomorphism.

By [10, Corollary 8.12], any two countable non-discrete regular left topological groups with
countable bases of their topologies are locally isomorphic.

If f is a local automorphism of a left topological group .G; T / then f ˇ j N� is a topological
automorphism of the semigroup N� . On the other hand, if .G; T / is countable non-discrete regular
of countable weight and f W G �! G is a bijection such that f ˇ j N� is a topological automorphism
then f is a local automorphism.

The next question has been posed by the first author at the conference "Automorphism Groups
of Topological Structures"; Eilat, June 19-24, 2010.

Question 7. Let .G; T / be a countable non-discrete regular left topological group of countable
weight and let h be a topological automorphism of N� . Does there exist a local automorphism f of
.G; T / such that h D f ˇ j N� ?

4. Asymorphisms

For two metric spaces .X1; d1/ and .X2; d2/, a bijection f W X1 �! X2 is said to be an
asymorphism if there are two sequences .cn/n2! and .c0

n/n2! in ! such that for each n 2 ! and
x; y 2 X1,

d1.xy/ � n H) d2.f .x/; f .y// < cn;

d2.f .x/; f .y// � n H) d1.x; y/ < cn:

These morphisms arouse in General Asymptopogy, see [8], [9].
For a metric space .X; d/ we denote by Asy.X; d/ the group of all asymorphisms of .X; d/

onto itself. As to our knowledge, these groups have not been considered at all.
Following [1], by the Cantor macro-cube we mean the set

2<N
D f.xi/i2N 2 f0; 1gN

W 9 n 2 N 8m > n xm D 0g

endowed with the ultrametric

d..xi/i2N; .yi/i2N/ D maxfn 2 N W xn ¤ yng:

Question 8. Which groups are embeddable into Asy.2<N/? What about S! and Homeo.Q/?

Perhaps, instead of too large group Asy.X/ it is worth to define some its reduced version
similar to Aut�.'/.

A subset Y of a metric space .X; d/ is called bounded if Y � Bd .x0; r/ for some x0 2 X and
r 2 RC, where Bd .x0; r/ D fy 2 X W d.y; x0/ � rg.

Let .X; d/ be an unbounded metric space. Denote by X ] the subset of ˇX consisting of all
ultrafilters whose members are unbounded. Given two ultrafilters p; q 2 X ], we write p k q

if there exists r 2 RC such that Bd .P; r/ 2 q for each P 2 p. It is easy to see that k is an
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equivalence relation on X ]. Following [8, Chapter 81], we denote by � the smallest by inclusion
closed in X ] � X ] equivalence on X ] such that k � �. The quotient-space �.X; d/ D X ]= � is
called the corona of .X; d/ and coincides with the Higson’s corona if each bounded closed subset
of X is compact.

Let f be an asymorphism of .X; d/, p and q be two parallel ultrafilters from X ]. Since
f ˇ .p/ k f ˇ .q/, f induces a homeomorphism of �.X; d/.

For some open questions concerning homeomorphisms of a corona, see [2].
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