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The notion of generalized constant of Eiler are considered and investigated for general terms of series
which are determined by concrete function. Conditions of existing this constant. Two criterions of existing of
Eiler constant are founded. Method of using constant of Eiler for calculating numerical value of partial series.
It was proved existing of this constant for divergent series with bounded increasing of general term of series.

О. Чвартацький. Iнтегрування нелiнiйних рiвнянь теорiї солiтонiв методом проектування та пере-
твореннями типу Дарбу // Мат. вiсник НТШ. — 2013. — Т.10. — C. 193–202.

Проведено порiвняння методу iнтегрування нелiнiйних рiвнянь, запропонованого В.О. Марченком,
та пiдходу, що грунтується на використаннi перетворень типу Дарбу. Отримано в явнiй формi ма-
тричне перетворення Дарбу-Крама-Матвєєва другого типу за допомогою методу проектування В.О.
Марченка.

1. Introduction
In the modern theory of nonlinear integrable systems algebraic methods play an important role.

Among them there are the Zakharov-Shabat dressing method [1, 2], Marchenko’s method [3] and
an approach based on the Darboux-Crum-Matveev transformations [4, 5]. Algebraic methods allow
us to omit analytical difficulties that arise in the investigation of corresponding direct and inverse
scattering problems for nonlinear equations. In paper [6] a connection between V.O. Marchenko’s
projection method and an approach based on Darboux-Crum-Matveev transformations were inves-
tigated. In particular, the general matrix Darboux-Crum-Matveev transformation of the first type
was obtained via V.O. Marchenko’s ideas. The aim of this paper is to investigate the connections
between the projection method and the differential Darboux-Crum-Matveev transformations of the
second type.
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This work is organized as follows. In Section 2 we present a short description of the projection
method and its applications to the integration of nonlinear integrable systems. As an example we
consider the Heisenberg equation. In Section 3 we introduce the Darboux-Crum transformation
of the second type and demonstrate its application to the nonlinear equations of mathematical
physics. In this section (Subsection 3.1) we also construct the matrix Darboux-Crum-Matveev
transformation of the second type via V.O. Marchenko’s ideas. It is the main result of this paper
which is presented by Theorem 7. This theorem provides us with a possibility to construct solutions
of nonlinear equations (including Heisenberg and Ishimori equations) via invariant transformations
of the linear differential operators that are involved in Lax pairs. In the final section, we discuss
the obtained results and mention problems for further investigations.

2. A projection method and exact solutions of the Heisenberg system

Consider the linear system of the following form:(
˛2't2

C B'xx D 0;

B'x D 'A;
(1)

where ' is a .2N � 2N /-dimensional matrix of functions, ˛2 2 R [ iR; A; B are .2N � 2N /-
constant matrices, B2 D I2N (I2N denotes (2N �2N )-identity matrix). The following proposition
is proven in [3]:

Proposition 1. .2N � 2N /-dimensional matrix of functions

S D ˆ�1Bˆ; (2)

where ˆ D 'x'�1 and ' is a solution of system (1), satisfies the matrix equation:

�4˛2St2
D ŒS; Sxx�: (3)

In case N D 1, S D S� D S�1 equation (3) becomes the Heisenberg equation.
Now we shall consider the structure and properties of the matrix-valued function ˆ that arises

in formula (2):

ˆ D O'x O'�1; (4)

where O' is the .N k � N k/-dimensional Wronski matrix of the following form:

O' D

0B@ '1 : : : 'N

:::
:::

:::

'
.N �1/
1 : : : '

.N �1/
N

1CA ; (5)

where 'l D 'l.x/ D
�
'ij;l

�k
i;j D1

, l D 1; N are .k � k/-dimensional matrices of functions. Let us
recall a proposition from paper [6]:
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Proposition 2. Matrix-valued function ˆ D O'x O'�1, where O' is a Wronski matrix (5), has the
following form:

ˆ D

0BBB@
0 Ik : : : 0
:::

:::
:::

:::

0 0 : : : Ik

ˆ1 ˆ2 : : : ˆN

1CCCA ; (6)

where Ik is an identity matrix of dimension .k � k/; ˆj , j D 1; N are .k � k/-dimensional
matrix-valued functions. The inverse matrix ˆ�1 has the form:

ˆ�1
D

0BBBBB@
�ˆ�1

1 ˆ2 �ˆ�1
1 ˆ3 : : : �ˆ�1

1 ˆN ˆ�1
1

Ik 0 : : : 0 0

0 Ik : : : 0 0
:::

:::
:::

:::
:::

0 0 : : : Ik 0

1CCCCCA : (7)

In order to find the exact solutions of the Heisenberg equation we will need a Wronski matrix
that satisfies system (1) with some matrices A, B and ˛2 D �i . For this purpose we will consider
the .2 � 2/-dimensional matrix-valued solutions 'l , l D 1; N of the systems:

i'lt2
� �3'lxx D 0; 'lx D �3'lal ; (8)

where �3 D diag.1; �1/, al 2 Mat2�2.C/. Let us put

B D diag.�3; �3; : : : ; �3/ 2 Mat2N �2N .C/; A D diag.a1; : : : ; aN / 2 Mat2N �2N .C/: (9)

Then the Wronski matrix O' satisfies system (1) with matrices B and A, defined by formula (9) and
˛2 D �i : (

i O't2
� B O'xx D 0;

B O'x D O'A;

Using Proposition 1 (formula (2)) and exact form of functions ˆ (6), ˆ�1 (7) and matrix B (9),
we obtain that .2N � 2N /-dimensional function S has form:

S D ˆ�1Bˆ D

0BBBBB@
ˆ�1

1 �3ˆ1 ˆ�1
1 Œ�3; ˆ2� : : : ˆ�1

1 Œ�3; ˆN �

0 �3 : : : 0

0 0 : : : 0
:::

:::
:::

:::

0 0 : : : �3

1CCCCCA (10)

and satisfies equation (3) with ˛2 D �i . By substituting the exact form of matrix-valued function
S (10) into equation (3), we notice that its .2 � 2/-dimensional block

S1 WD ˆ�1
1 �3ˆ1 (11)

satisfies the Heisenberg equation:

4iS1;t2
D ŒS1; S1;xx�: (12)
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Let us put al D diag.�l ; �N�l/ in system (8). It is shown in [3] that the matrix-valued function S1

is Hermitian and regular in case of the following choice of the solution of (8):

'l D

 
'11;l '12;l

'21;l '22;l

!
; l D 1; N : (13)

where '11;l D e�l x�i�2
l
tC�1l , '12;l D e�N�l x�i N�2

l
tC�2l , '21;l D � N'12;l , '22;l D N'11;l , �1l ; �2l 2 C.

From the exact form of the matrix S1 (formula (11)) it follows that S1 is unitary: I2 D

ˆ1�3ˆ�1
1 ˆ1�3ˆ�1

1 D S1S1 D S1S�
1 , where I2 is .2 � 2/-dimensional identity matrix. If we

put N D 1 in formula (13), then we obtain the following solution of Heisenberg equation (12):

S1 D

 
s11 s12

Ns12 �s11

!
;

s11 D 1 �
cos2 
1

cosh2.2Re.�1//
;

s12 D
2 cos 
1 sinh.2Re.�1/ C i�1/ exp.�2iIm.�1//

cosh2.2Re.�1//
;

�1 D �1x C i�2
1t2 C ˛1; �1; ˛1 2 C; 
1 2 R:

(14)

In the following section we will consider solution generating technique for the Heisenberg equation
via differential Darboux-Crum-Matveev transformations of the second type that were investigated
in [7].

3. Darboux-Crum-Matveev transformations of
the second type

Consider the following pair of operators:

L1 D SD; M2 D i@t2
� SD2

�
1

2
SxD; (15)

with .2 � 2/-dimensional matrix-valued function S , which is unitary and Hermitian: S D S�,
S�1 D S�. Consider linear problems with operators L1 and M2 (15):

L1ff g D fƒ; M2ff g D 0; (16)

where f is a .2�2/-dimensional matrix-valued function and ƒ is a constant matrix with dimension
.2 � 2/. The compatibility condition for the system (16) fxt2

D ft2x results in the Heisenberg
equation for S :

4iSt2
D ŒS; Sxx�: (17)

Let .2 � 2/-dimensional matrix function '1 satisfies linear problems with operators L1, M2

(15):
L1f'1g D '1A; M2f'1g D 0: (18)

Consider the following transformation [7]:

QW11 D ˆ�1
1 '1D'�1

1 D ˆ�1
1 W11 D ˆ�1

1 D � I2; I2 D diag.1; 1/; ˆ1 D '1;x'�1
1 : (19)
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The operator W11 in formula (19) is the Darboux-Crum-Matveev transformation of the first type.
The following proposition holds:

Proposition 3. 1. Operators L1Œ2� and M2Œ2� defined by Lax pair L1, M2 (15) and operator QW

(19) via equalities L1Œ2� QW11 D QW11L1, M2Œ2� QW11 D QW11M2 have the form:

L1Œ2� D SŒ2�D; M2Œ2� D i@t2
� SŒ2�D2

�
1

2
SŒ2�xD; SŒ2� D ˆ�1

1 Sˆ1: (20)

2. (2 � 2)-dimensional matrix-valued function F D QW11ff g, where f is an arbitrary solution
of linear problem (16), satisfies the system:

L1Œ2�fF g D Fƒ; M2Œ2�fF g D 0: (21)

Proof. Let L1Œ2� D V1D C V0 and consider the equalities:

L1Œ2� QW11 � QW11L1 D .V1D C V0/.ˆ�1
1 D � I2/ � .ˆ�1

1 D � I2/SD D

D �V1ˆ�1
1 ˆ1;xˆ�1

1 D C V1ˆ�1
1 D2

� V1D C V0ˆ�1
1 D � V0 � ˆ�1

1 SD2
� ˆ�1

1 SxD C SD:

By setting coefficients near D2, D and D0 equal to zero we obtain the following equations:

V1ˆ�1
1 � ˆ�1

1 S D 0; �V1ˆ�1
1 ˆ1;xˆ�1

1 � V1 C V0ˆ�1
1 � ˆ�1

1 Sx C S D 0; V0 D 0: (22)

From (22) we get V1 D ˆ�1
1 Sˆ1, V0 D 0 and �ˆ�1

1 Sˆ1;xˆ�1
1 �ˆ�1

1 Sˆ1�ˆ�1
1 SxCS D 0. The

last equation can be rewritten as .Sˆ1/x D Œˆ1; S�ˆ1. Now we have to verify that the function
ˆ1 D '1;x'�1

1 satisfies it. For this purpose we will rewrite equation (18) for function '1 in the
exact form: S'1;x D '1A. By multiplying this equation by '�1

1 and differentiating it with respect
to x we obtain: .Sˆ1/x D .'1A'�1

1 /x D '1;xA'�1
1 � '1A'�1

1 '1;x'�1
1 . It remains to notice that

'1;xA'�1
1 D '1;x'�1

1 '1A'�1
1 D ˆ1Sˆ1 and '1A'�1

1 '1;x'�1
1 D Sˆ2

1. In a similar way the exact
form of M2Œ2� can be found. Finally we notice that L1Œ2�fF g D QW11L1ff g D QW11ff gƒ D Fƒ

and M2Œ2�fF g D QW11M2ff g D QW11f0g D 0.

We shall notice that under the choice S D �3 systems (18) and (8) coincide. In particular, by
putting A D diag.�1; �N�1/ and choosing a solution of system (18) according to (13) with S D �3,
we obtain that the .2 � 2/-dimensional matrix-valued function SŒ2� D ˆ�1

1 Sˆ1 D ˆ�1
1 �3ˆ1

coincides with the function S1 (14) and satisfies Heisenberg equation.

3.1. Construction of general matrix Darboux-Crum-Matveev
transformation of the second type via the projection method

In this section our aim is to obtain the differential Darboux-Crum-Matveev transformation of the
second type via Darboux-Matveev transformation of higher matrix dimension and the projection
method. For further purposes we will need the following proposition:

Proposition 4 ([5]). Let ' be a fixed .K � K/-dimensional matrix solution of equation

Lf'g WD

�
˛@t �

nX
iD0

UiD
i
�
f'g D 'ƒ1; (23)
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where Ui are .K�K/-dimensional matrix-valued functions; ƒ1 is a .K�K/-dimensional constant
matrix; f is an arbitrary .K � M/-dimensional solution of the equation: Lff g D fƒ, where ƒ

is a .M � M/-constant matrix. Then the function

F WD W ff g D 'Df'�1f g D fx � 'x'�1f (24)

satisfies matrix equation:

LŒ2�fF g WD

�
˛@t �

nX
iD0

Ui Œ2�Di
�
fF g D Fƒ; (25)

with UnŒ2� D Un, Un�1Œ2� D Un�1 C ŒA; 'x'�1�. The rest of coefficients Uj Œ2�, 0 � j � n � 2,
can be expressed via matrix-valued functions Ui , 0 � i < n, and the solution ' of (23).

Consider the evolution operator of the following form:

L WD ˛@t �

nX
iD1

UiD
i ; ˛ 2 C; (26)

where Ui are .K � K/-dimensional matrix-valued functions. It should be noticed that the special
cases of the operator (26) are operators from Lax pair for Heisenberg equation (15).

Proposition 5. Let ' be a fixed .K � K/-dimensional matrix-valued solution of the following
equation:

Lf'g D 'ƒ1; (27)

where ƒ1 is a .K � K/-dimensional constant matrix; f is an arbitrary .K � M/-dimensional
solution of equation Lff g D fƒ, where ƒ is .M � M/-constant matrix. Then the function

F WD QW ff g D ˆ�1W ff g D .'x'�1/�1W ff g D ''�1
x 'Df'�1f g (28)

satisfies matrix equation:

LŒ2�fF g WD

�
˛@t �

nX
iD1

Ui Œ2�Di
�
fF g D Fƒ; (29)

where UnŒ2� D ˆ�1Unˆ, Un�1Œ2� D ˆ�1Un;xˆ C nˆ�1Unˆx C ˆ�1ŒUn; ˆ�ˆ C ˆ�1Un�1ˆ,
and the rest of coefficients Uj Œ2� can be expressed via ' and matrix coefficients Ui , 1 � i � n.

Proof. Let us define the operator LŒ2� from equality: LŒ2� QW � QW L D 0, where the transformation
QW is defined by formula (28). By setting coefficients near Di , 1 � i � n, equal to zero we find

the exact form of Ui Œ2�, 1 � i � n. In order to show that the coefficient near D0 is equal to zero in
operator LŒ2�, it is sufficient to check thatLŒ2�fIkg D 0 where Ik is .k � k/-dimensional identity
matrix. It is evident that QW fIkg D Ik . Thus, 0 D LŒ2� QW fIkg � QW LfIkg D LŒ2�fIkg. Moreover,
the equality LŒ2� QW � QW L D 0 implies LŒ2� QW ff g D LŒ2�F D QW Lff g D Fƒ.
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It is evident that the Darboux-Crum-Matveev operator of the second type QW defined by (28)
provides us with an invariant transformation of operator L (26) into operator LŒ2� (29).

We will use the last proposition in order to construct Darboux-Crum-Matveev transformation
of the second type. Namely, let 'l , 1 � l � N , be .k � k/-dimensional matrix-valued functions
that are fixed solutions of the system:

Lf'lg D

�
˛@t �

nX
iD1

uiD
i
�
f'lg D 'lƒl ; l 2 f1; : : : ; N g; (30)

where coefficients ui are .k �k/-dimensional matrix-valued functions; ƒl are .k �k/-dimensional
constant matrices; f is an arbitrary .k � m/-dimensional matrix solution of the equation:

Lff g D

�
˛@t �

nX
iD1

uiD
i
�
ff g D fƒ: (31)

with .m � m/-dimensional constant matrix ƒ. Let us differentiate each equation of system (30)
N �1 times. As a result we obtain N �1 additional equations. Thus, we obtain .N �N / equations:

˛.'lt/
.s/

�

nX
iD1

sX
j D0

C j
s u

.j /
i '

.iCs�j /

l
D '

.s/

l
ƒl ; l 2 f1; : : : ; N g; s 2 f0; : : : ; N � 1g: (32)

Equations (32) can be rewritten in the following form:

QLf O'g WD

�
˛@t �

nX
iD1

UiD
i
�
f O'g D O' Oƒ; (33)

where O' and Ui are matrix .N k � N k/-dimensional functions defined by formulae:

O' D

0B@ '1 : : : 'N

:::
:::

:::

'
.N �1/
1 : : : '

.N �1/
N

1CA ; Ui D

0BBBBBB@
ui 0 0 : : : 0

u0
i ui 0 : : : 0

u00
i 2u0

i ui : : : 0
:::

:::
:::

:::
:::

u
.N �1/
i C 1

N �1u
.N �2/
i C 2

N �1u
.N �3/
i : : : ui

1CCCCCCA : (34)

In analogous form we can rewrite equation (31) and its N � 1 differential consequences:

QLf Of g WD

�
˛@t �

nX
iD1

UiD
i
�
f Of g D Of ƒ; (35)

where Of WD

0BBB@
f

f 0

:::

f .N �1/

1CCCA. By applying Proposition 5 we obtain that the function

F D QW f Of g D ˆ�1
O'Df O'�1 Of g D ˆ�1 Ofx � Of (36)
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satisfies the equation:

QLfF g WD ˛Ft �

nX
iD1

Ui Œ2�F .i/
D Fƒ: (37)

By using the exact form (7) of matrix-valued function ˆ�1 D O' O'�1
x (formula (36)) we obtain

that

O' O'�1
x D

0BBBBB@
�ˆ�1

1 ˆ2 �ˆ�1
1 ˆ3 : : : �ˆ�1

1 ˆN ˆ�1
1

Ik 0 : : : 0 0

0 Ik : : : 0 0
:::

:::
:::

:::
:::

0 0 : : : Ik 0

1CCCCCA ; (38)

where Ik is an identity matrix with dimension .k � k/; ˆl are .k � k/-dimensional matrix-valued
functions. A .N k � m/-dimensional matrix-valued function F has the form:

F D

0BBB@
F1

0
:::

0

1CCCA ; F1 D �f �

N �1X
sD1

ˆ�1
1 ˆsC1f .s/

C ˆ�1
1 f .N /

DW QWN ff g: (39)

By using the form of function F (39) we obtain that equation (37) reduces to the equation for
.k � m/-dimensional matrix block F1 of function F :

˛.F1/t �

nX
iD1

.Ui Œ2�/11F
.i/
1 D F1ƒ;

where .Ui Œ2�/11 are (k � k)-dimensional blocks of matrices Ui Œ2� that are situated in the left upper
corner.

Remark 6. The operator QWN that is defined by formula (39) has functions 'j , 1 � j � N , in its
kernel (it follows directly from formulae (36) and (38)). Thus QWN is a Darboux-Crum-Matveev
transformation of the second type:

QWN ff g D �f �

N �1X
sD1

ˆ�1
1 ˆsC1f .s/

C ˆ�1
1 f .N /

D �f C

NX
sD1

Qwsf
.s/: (40)

The previous remark shows that we obtained the exact form of all the coefficients of Darboux-
Crum-Matveev transformation operator of the second type in terms of functions ˆj C1, 0 � j < N ,
that belong to Hopf-Cole transformation (5), via Darboux-Matveev transformation (differential
operator of the first order) of the second type with a higher matrix dimension.

As a result of previous considerations in this section, we obtained the following generalization
of Proposition 5 using V.O. Marchenko’s projection method:

Theorem 7. Let function f be an arbitrary .k � m/-dimensional matrix solution of the equation
(31):

Lff g D

�
˛@t �

nX
iD1

uiD
i
�
ff g D fƒ; ˛ 2 C; (41)
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with .k � k/-dimensional matrix-valued functions ui D ui.x; t/ and .m � m/-constant matrix ƒ.
Let functions 'l be fixed .k � k/-dimensional matrix-valued solutions of equations

Lf'lg D 'lƒl (42)

with .k � k/-constant matrices ƒl . Assume that the operator QWN is defined by formulae (38)-(39),
where O' is a Wronski matrix constructed by functions 'l , l 2 f1; : : : ; N g. Then, the function
F1 WD QWN ff g satisfies the equation ˛.F1/t �

Pn
iD1 ui Œ2�F

.i/
1 D F1ƒ, with .k � k/-dimensional

matrix-valued functions ui Œ2� that can be expressed in the exact form via matrix-valued functions
uj , j 2 f1; : : : ; ng, and 'l , l 2 f1; : : : ; N g.

In case N D 1 the operator QWN D QW1 (which is constructed by one solution '1 of equation
(42)) becomes the differential operator of the first order and Theorem 7 coincides with Proposition
5.

4. Conclusions
In this paper we compared two methods of integration of nonlinear systems that were proposed

in [3, 4, 5, 7]. In particular, we investigated a connection between the Darboux-Matveev transfor-
mation of the second type that was introduced in [7], and V.O. Marchenko projection method [3].
By combining Darboux-Matveev transformation and the projection method we obtained dressing
method for the linear differential operator (41) via Darboux-Crum-Matveev transformations (see
Theorem 7). To the special cases of differential operator (41) belong the operators involved in
Lax pair for Heisenberg (see formulae (15) and (17)) and Ishimori equations. Thus, Theorem 7
provides us with a solution generating method for the above mentioned nonlinear equations and
their “higher” analogues. It should be noticed that the projection method can also be used for in-
tegration of the noncommutative generalizations of the famous nonlinear equations of the soliton
theory that were considered recently in [8, 9]. In particular, in [8] the noncommutative generaliza-
tion of the Davey-Stewartson equation was investigated via differential Darboux transformations.
The exact form of obtained solution of the latter system can be expressed via quasideterminants
that were investigated in [10, 11]. The connection between the theory of quasideterminants and
V.O. Marchenko’s method was also used for investigation of some noncommutative integrable
systems in [12]. The problem of generalization of the Marchenko method to the case of integro-
differential Lax pairs remains for further investigations. In particular, such operators arise as a
result of the symmetry reductions in the KP hierarchy [13, 14] and their (2+1)-dimensional exten-
sions [15, 16, 17, 18]. We shall also point out that the dressing methods for integro-differential
operators from those hierarchies via Darboux transformations were considered in [16, 19, 20].

The results of this paper were approved at conferences dedicated to the 120th anniversary of
Stefan Banach [21]
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