
Математичний Вiсник Mathematical Bulletin
Наукового товариства of the Shevchenko
iменi Шевченка Scientific Society
2013. — Т.10 2013. — V.10

SOME PROBLEMS OF PSEUDO-DIFFERENTIAL OPERATORS THEORY

VLADIMIR B. VASILYEV

Chair of Pure Mathematics, Lipetsk State Technical University, Moskovskaya 30, Lipetsk 398600,
Russia

V.B. Vasilyev, Some problems of pseudo-differential operators theory, Math. Bull. Shevchenko Sci. Soc. 10
(2013), 219–226.

We study the pseudo-differential equation .Au/.x/ D f .x/; x 2 D; in the Sobolev-Slobodetskii spaces
H s.D/, where A is a elliptic pseudo-differential operator, D is an m-dimensional piecewise smooth man-
ifold with boundary having singularity points. The singularity points of D are called the points breaking
smoothness property for the boundary @D. Using the wave factorization concept for elliptic symbols, it is
possible to describe solvability conditions for the equation with singularities of the “cone” as well as “wedge”
types. Most of author’s results on solvability were related to the planar case. Here we consider an essentially
multi-dimensional situation.

Б. В. Васiльєв. Деякi задачi теорiя псевдодиференцiальних операторiв // Мат. вiсник НТШ. — 2013.
— Т.10. — C. 219–226.

Ми вивчаємо псевдодиференцiальне рiвняння .Au/.x/ D f .x/; x 2 D; в просторах Соболєва-
Слободецького H s.D/, де A – елiптичний псевдодиференцiальний оператор, D – m-вимiрний кусково-
гладкий многовид з межею, що мiстить сингулярнi точки. Сингулярними ми називаємо точки много-
виду D, в яких немає гладкостi межi. За допомогою поняття хвильової факторизацiї для елiптичних
символiв вдалося описати умови iснування розв’язку для рiвнянь з сингулярностями типу “конуса” та
“ребра”. Бiльшiсть результатiв автора щодо розв’язностi стосувалися двовимiрного випадку. Тут ми
розглядаємо суттєво багатовимiрний випадок.

Introduction

Our main goal is to describe possible solvability conditions for the pseudo-differential equation

.Au/.x/ D f .x/; x 2 D;
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where D is a manifold with boundary, A is a pseudo-differential operator with symbol A.x; �/.
Such operators are defined locally by the formula

u.x/ 7�!

Z
Rm

Z
Rm

A.x; �/u.y/e�iy�� d�dy (1)

in the case of a smooth compact manifold D, since “the freezing coefficients principle” (or “the
local principle”) can be applied. For a manifold with smooth boundary we need a new local formula
for definition of A. In the inner points of D we use the formula (1), whereas we need to introduce
another formula in the boundary points:

u.x/ 7�!

Z
Rm

C

Z
Rm

A.x; �/u.y/e�iy��d�dy:

For invertibility of such an operator with symbol A.�; �/ that does not depend on the spatial
variable x one can apply theory of the classical Riemann boundary problem for upper and lower
complex half-planes with a parameter � 0. This approach was systematically studied in [4]. But if
the boundary @D has at least one conical point, this approach is not effective.

The conical point at boundary is a point having a neighborhood, diffeomorphic to the cone

C a
C D f.x1; : : : ; xm/ 2 Rm

W xm > ajx0
j; x0

D .x1; : : : ; xm�1/g; a > 0;

hence the local definition for a pseudo-differential operator near the conical point can be given by

u.x/ 7�!

Z
C a

C

Z
Rm

A.x; �/u.y/e�iy��d�dy: (2)

1. Spaces, operators, factorization
We consider the operator (1) in the Sobolev-Slobodetskii space H s.Rm/ with norm

kuk
2
s D

Z
Rm

j Qu.�/j2.1 C j�j/2sd�;

and introduce the following class of symbols non-depending on spatial variable x:

c1 � jA.�/.1 C j�j/�˛
j � c2; � 2 Rm; (3)

where c1; c2 are some positive constants. The number ˛ 2 R is called the order of the pseudo-
differential operator A. It is well-known that a pseudo-differential operator with symbol A.�/

satisfying (2) is a linear bounded operator acting from H s.Rm/ into H s�˛.Rm/ [4].
We are interested in studying the invertibility of operator (2) in the corresponding Sobolev-

Slobodetskii spaces. By definition, the space H s.C a
C/ consists of distributions from H s.Rm/

with support in C a
C. The norm in H s.C a

C/ is induced by the H s.Rm/-norm. Such an operator is
associated with the corresponding equation

.AuC/.x/ D f .x/; x 2 C a
C; (4)
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where the right-hand side f belongs to H s�˛
0 .C a

C/. Next, H s
0 .C a

C/ is the space of distributions
S 0.C a

C/, which admit a continuation on H s.Rm/. The norm in H s
0 .C a

C/ is defined by

kf k
C
s D inf klf ks;

the infimum taken over all possible continuations l of f .
From now on, we assume that symbols A.�/ satisfy the condition (3).

Definition 1.1. We say that a symbol A.�/ admits the wave factorization provided

A.�/ D A¤.�/ AD.�/;

where the factors A¤.�/, AD.�/ satisfy the following conditions:

� A¤.�/; AD.�/ are defined everywhere, except for points of the set
f� 2 Rm W j� 0j2 D a2�2

mgI

� A¤.�/; AD.�/ admit analytical continuations into the radial tube domains T .
�

C a
C/, T .

�

C a
�/

respectively, and these continuations satisfy the estimates

jA˙1
¤

.� C i�/j � c1.1Cj�jC j� j/˙κ; jA˙1
D .� � i�/j � c2.1Cj�jC j� j/˙.˛�κ/; � 2

�

C a
C :

The number κ is called the index of wave factorization.

Here
�

C a
C is the conjugate cone to C a

C, and
�

C a
�D �

�

C a
C.

Example 1.2. Let

A D �
@2

@x2
1

� � � � �
@2

@x2
m

C k2; k 2 R n f0g;

Then the symbol of this operator has form A.�/ D �2
1 C �2

2 C � � � C �2
m C k2; by properties of the

Fourier transform. The following equality is the wave factorization of the Helmholtz operator:

�2
m C j� 0

j
2

C k2
D

�p
a2 C 1 �m C

q
a2�2

m � j� 0j2 � k2

��p
a2 C 1 �m �

q
a2�2

m � j� 0j2 � k2

�
;

where the value
p

a2�2
m � j� 0j2 � k2 is treated as the boundary value

p
a2.�mCi0/2�j� 0j2�k2:

Remark 1.3. Two interesting applied problems from the diffraction and elasticity theory can be
solved by the wave factorization mentioned above [3, 5]. For these problems we have the two-
dimensional equation (4) with symbol

A.�1; �2/ D .�2
1 C �2

2 � k2/˙1=2:

The existence of the wave factorization permits to obtain a solution of certain analogue of the
multidimensional Riemann problem as follows

.Gmu/.x/ D lim
�!0C

Z
Rm

u.y 0; ym/dy 0dym

.jx0 � y 0j2 � a2.xm � ym C i�/2/
m=2

: (5)
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The integral is a multidimensional analogue of the Cauchy type integral, i.e. its limit case
corresponds to the boundary values. It looks as a convolution with the kernel which is the Fourier
image of C a

C-indicator. But this multiplier is a non-integrable function. Therefore we need to go
into the complex plane to destroy the divergence. The definition (5) is one of possible definitions
for the singular integral. Of course, it is very desirable to give this definition for real variables (as
the principal value type of the Cauchy integral like in the one-dimensional case), but it is worth
noting however that such definition was used in classical papers.

2. Solvability theorems
The concept of wave factorization permits to describe the full solvability cases for the equation

(4). For simplicity we assume m D 2. From now on we also suppose that the symbol admits the
wave factorization.

Theorem 2.1. Let κ � s D ı, jıj < 1=2. For any right-hand side f 2 H s�˛
0 .C a

C/ the equation (4)
admits a unique solution uC 2 Hs.C

a
C/ with the Fourier transform of the form

QuC D A�1
¤

G2A�1
D

Q̀f ;

where f̀ is an arbitrary continuation of f 2 H s�˛
0 .C a

C/ on H s�˛.R2/. In addition, the following
estimate holds

kuCks � ckf k
C
s�˛:

Theorem 2.2. Let κ � s D n C ı, n > 0 be an integer, jıj < 1=2. Then for any right-hand
side f 2 H s�˛

0 .C a
C/ there exists a solution uC 2 Hs.C

a
C/ of the equation (4) with the Fourier

transform

QuC.�/ D A�1
¤

QG2Q�1A�1
D

Q̀f

C A�1
¤

 
n�1X
kD0

�
Qck.�1 � a�2/k.�1 C a�2/k

C Qdk.�1 C a�2/.�1 � a�2/k
�

C

nıX
k1Ck2D0

ak1k2
.�1 � a�2/k1.�1 C a�2/k2

1A ;

where ck , dk are arbitrary functions from Hsk
.R�/, Hsk

.RC/ respectively, Q.�/ is an arbitrary
elliptic polynomial of order n satisfying the estimate (3) with ˛ D n, sk D s � κ C k C 1=2,
k D 0; 1; : : : ; n � 1, ak1k2

2 C,

nı D

(
n � 1; if ı > 0

n � 2; if ı � 0:

The latter formula describes all possible solutions of equation (4). Moreover, these solution satisfy
the a priori estimate

kuCks � c
�
kf k

C
s�˛ C

n�1X
kD0

�
Œck�sk

C Œdk�sk

�
C

nıX
k1Ck2D0

jak1k2
j

�
:
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Theorem 2.3. Let κ � s D n C ı, n 2 Z, n < 0, jıj < 1=2. The equation (4) admits a solution
uC from Hs.C

a
C/ if and only if the following conditions hold�

1

a

@

@y1

�
@

@y2

�ˇ1
�

1

a

@

@y1

C
@

@y2

�ˇ2

A�1
D f̀ .y/

ˇ̌̌̌
yD0

D 0;�
1

a

@

@y1

�
@

@y2

�ˇ1
�

1

a

@

@y1

C
@

@y2

�ˇ2

A�1
D f̀ .y/

ˇ̌̌̌
ay1 � y2 � 0

ay1 C y2 D 0

D 0;

�
1

a

@

@y1

�
@

@y2

�ˇ1
�

1

a

@

@y1

C
@

@y2

�ˇ2

A�1
D f̀ .y/

ˇ̌̌̌
ay1 � y2 D 0

ay1 C y2 � 0

D 0;

where jˇj 2 f0; 1; : : : ; jnj � 2g. Moreover, there exists a constant c such that kuCks � ckf kC
s�˛:

In particular, Theorem 2.2 helps us to state correct boundary value problems for identifying
the unknown functions ck , dk . For simplicity we assume that n D 1, a D 1, f � 0. In the case
of the Dirichlet or Neumann boundary conditions we have two unknown functions Qc0.�1 � �2/,
Qd0.�1 C �2/, and an application of the Mellin transform leads to the system of linear algebraic

equations with the matrix

R.�/ D

 
K.�/ I

I M.�/

!
;

where K.�/, M.�/, I are square matrices of the order 2.
The conditions detR.�/ ¤ 0, Re� D 1=2 are called the conical Shapiro-Lopatinsky condi-

tion.
If A is the Laplacian, then R.�/ can be calculated explicitly [3, 5].

3. Some distributions
If we will try to consider more complicated singularities like a cusp point at the boundary, we

need some additional investigation. Each singularity corresponds to a certain distribution and it is
useful to know what kind of distributions we will obtain in special limit cases. All results below in
this section are treated in the sense of distributions.

Let us denote by ˝ the direct product of distributions. Next, the distribution P
1

x
is introdused

in V. S. Vladimirov’s book [2].

Theorem 3.1. The following equality holds

lim
a!1

a

2�2

1

�2
1 � a2�2

2

D
i

2�
P

1

�1

˝ ı .�2/ ; (6)

where ı is the Dirac function.

The distribution (6) corresponds to a half-infinite crack with an adjoint mass.
If we find another asymptotic for distribution (6) as a ! 0, then we have

lim
a!0

a

2�2

1

�2
1 � a2�2

2

D
1

2 � i
ı .�1/ ˝ P

1

�2

;
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and it corresponds to half-plane case (see [4]).
Now we will speak on another asymptotics related to multi-wedge angle. The simplest variant

of such angle is fx 2 R3 W x3 > a jx1j C b j x2jg, where a; b are two parameters. If these
parameters tend to 0 or 1, then we obtain new types of thin singularities.

The distribution corresponding to such angle is [3, 5]

Ka;b .�1; �2; �3/ D
4iab

.2�/3

�3�
�2

1 � a2�2
3

� �
�2

2 � b2�2
3

� :
We consider different relations between a and b.

Theorem 3.2. lim
b!1

4iab�3

.2 �/3
�
�2

1 � a2�2
3

� �
�2

2 � b2�2
3

� D
i

2 �
ı .�1/ ˝ P

1

�2

˝ ı .�3/ :

Theorem 3.3. lim
a!1

4iab�3

.2�/3
�
�2

1 � a2�2
3

� �
�2

2 � b2�2
3

� D
i

2 �
P

1

�1

˝ ı .�2/ ˝ ı .�3/ :

Theorem 3.4. lim
b!0

4iab

.2�/3

�3�
�2

1 � a2�2
3

� �
�2

2 � b2�2
3

� D ı .�2/ ˝ Ka .�1; �3/ :

Theorem 3.5. lim
a!0

4iab

.2�/3

�3�
�2

1 � a2�2
3

� �
�2

2 � b2�2
3

� D ı .�1/ ˝ Kb .�2; �3/ :

Theorem 3.6. lim
a!0; b!0

4iab

.2�/3

�3�
�2

1 � a2�2
3

� �
�2

2 � b2�2
3

� D
1

2 � i
ı
�
� 0
�

˝ P
1

�3

; � 0
D .�1; �2/ :

The last result corresponds to the half-space case x3 > 0 [4].
In the case m D 2, a ! C1, the following formal representations are useful

Ka.�1; �2/ D

kX
nD0

.�1/n

nŠ an
P

1

�1

˝ ı.n/.�2/ C Rk.�1; �2/;

Ka.�1; �2/ D

C1X
nD0

.�1/n

nŠ an
P

1

�1

˝ ı.n/.�2/:

4. Quasi-elliptic case

Freezing coefficients yields symbols A.�; �/ � A.�/, which are homogeneous of order m in the
generalized sense:

A.t˛1�1; :::; t˛m�m/ D tmA.�/;

for all t > 0 and ˛1 C ˛2 C ::: C ˛m D m. The heat operator

A W u 7�!
@u

@t
� a2

�
@2u

@x2
1

C ::: C
@2u

@x2
m

�
with the symbol A.�/ D i�0 � a2.�2

1 C � � � C �2
m/ has the homogeneity order m C 1:

˛1 D ˛2 D � � � D ˛m, ˛0 D 2.
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One can adapt definition of the wave factorization for studying such operators (equations) by the
following way. According to above we separate one variable and introduce the following notation
.0 < 
 < C1/:

C a
C D fx 2 RmC1

W x D .x0; x1; : : : ; xm/; x0 > ajx0
j; x0

D .x1; : : : ; xm/g;

�

C a
C D fx 2 RmC1

W ax0 > jx0
jg:

Definition 4.1. By the wave factorization of a symbol A.�/ we understand its representation in the
form

A.�/ D A¤.�/AD.�/;

where the factors A¤.�/; AD.�/ satisfy the following conditions:

� A¤.�/; AD.�/ are defined everywhere without may be the points of the set
f� 2 RmC1 W j� 0j2 D a2�2

mg;

� A¤.�/; AD.�/ admit an analytical continuation into radial tube domains T .
�

C a
C/; T .

�

C a
�/ re-

spectively, satisfying the estimates jA˙1
¤

.� C i�/j � c1.1Cj� 0jCj�0j1=
 Cj� j/˙κ, jA˙1
D .� �

i�/j � c2.1 C j� 0j C j�0j1=
 C j� j/˙.˛�κ/ for every � 2
�

C a
C.

The number κ is called the index of wave factorization.

Furthermore, if we consider the equation (4) in the Sobolev–Slobodetskii space with the norm

kuk
2
s;
 D

Z
RmC1

j Qu.�/j2.1 C j� 0
j C j�0j

1=
/2sd�;

we can obtain the following simple result (m D 1).

Theorem 4.2. Let κ � s D ı, jı=
 j < 1=2. Then for any right-hand side f 2 H s�˛
0 .C a

C/ the
equation (4) has a unique solution uC 2 Hs.C

a
C/ for which the Fourier transform is given by

QuC D A�1
¤

G2A�1
D

Q̀f , where f̀ is an arbitrary continuation of f 2 H s�˛
0 .C a

C/ on Hs�˛.R2/.
Moreover, this solution satisfies the a priori estimate kuCks;
 � ckf kC

s�˛.

5. Future extensions
The author is going to study in the nearest future the following cases.

(i) The essentially multi-dimensional case with the distributionX
ak.P /ı.k/.P /;

on the boundary. Here P is the surface of cone (cf. [1]).

(ii) The asymptotical case (thin singularities) [7].

(iii) The discrete case, for which there are some interesting results related to the Calderon-
Zygmund operators [6].

(iv) The non-elliptic case, e.g. parabolic equations.
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