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1. Introduction

In this paper we continue investigation of projective differential invariants for curves in the
complex projective plane. Many of these results are classical and mainly they go back to Halphen’s
dissertation [2]. The case of real curves was considered in [5], here we analyze the case of complex
and algebraic.

Curves under consideration are smooth and complex but they possibly might have singularities
in a projective sense. For example, singular, from the projective point of view, are points on a
curve, where tangent line has second order contact, i.e. inflection or flex points. Another example
of singularities are provided by points, where osculating quadric has 5-th order contact, so-called
Monge points [5].

We give a detail description of SLj3 (C) -orbits of the projective action on the jets of plane
curves up to 5-th order and classify all possible projective singularities.

The level of 5-th jets taken for the only reason: starting from 6-jets regular orbits have trivial
stabilizers, and from the level of 7-jets first differential invariants come up. It worth to mention, that
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the orbit classification gives projective classification, or projective normal forms for plane curves,
up to 6-th order jets.

To find the full algebra of projective differential invariants we introduce the Study derivation.
As opposed to the real case, this derivation has order 7 in complex case (order 5 in the real case).

The Study derivation is a projective invariant and it allows to produce new projective invariants
from the known ones. Moreover, as it follows from the general result [6], the field of rational pro-
jective differential invariants is generated by the projective curvature [5] and the Study derivation.
This field separates regular orbits.

The rest of the paper is devoted to cubics and repeats the known result of Weierstrass that
projective classes of regular cubics can be described by one parameter. We give an explicit formula
to find this parameter.

2. Jet bundle structure

Let CP2 be the complex projective plane and let J* be the manifold of k-jets of non-parameterized
curves on the plane.

We shall denote by [L] € J the k-jet of curve L C CP? at the pointa € L. Let 7ty : J¥ — J/,
wky 2 [L]% = [L]L, k > [, be the natural projections.

The structure of jet-manifolds can be described as follows:

e JO = CP?;
e Fibres 7y o (a),a € CP?, of the projection 7y ¢ are projectivizations of the tangent planes
1
P (T,P?) = CP!, 7, : ' = CP?

e Fibres 7~ }c_l ([L]’;_l), when k > 2, are affine lines, and the vector spaces associated with
them are S¥7* ® v,, where t* = T*L is the cotangent space, and v, = T,P2/T,L is the
normal space to a curve at the pointa € L.

Let (x,u) be an affine chart on the plane. Denote by (x, u, uy, ...., ux) the natural coordinates
in the space of k-jets, where

d'h
(L) = 55 B,
ui (IL1E) = 55 )
if L =1Ly, o {u = h (x)} is a graph of function % in a neighborhood of point a = (b, h ()).
In these coordinates the affine action is given by translations along tensors

0 = %dxk ® 0, € Skr; R Vg,
and has the form (x, u, Uy, ..., ug—1, ux) > (x,u, uy, ...,uk_l,uk+)t),wher65u =49, mod T,L.
Finally, any curve L C CP? determines curves L® C J*, so-called k-th prolongations of L,
which are formed by points [L]’;, where point a runs over curve L.
The action of projective group SL3 (C) can be also prolonged in manifolds J* in the natural
way:
o® L] — [p (L)}

where ¢ € SL; (C) is a projective transformation.
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3. Special classes of plane curves

We use special classes of curves, model curves, to construct tensor invariants. The construction
is based on the following observation. Assume that we have a class 91 of plane curves which is
invariant under projective transformations and such that for any point x; € J¥ there is a unique
curve L = L (x;) € M with k-jet xg, i.e. such that x; = [L]¥, where a = my (xi).

Then (k + 1)-jets xx+1 = [L (xx)]¥*! can be taken as basic points in the affine line i1k (k)
and the corresponding section m :J¥ — J**1 we’ll consider as the zero section in the line bundle
Th+1,k - Jk+1 5 gk,

Let now L C CP? be an arbitrary curve. Then curves L&D c J¥*! and m (L®) c J*+!
differs on element ©; € Sk+! T} ®vr. The last tensor is a projective differential invariant of order
(k + 1) in the sense that ¢* (®<o( L)) = O for arbitrary projective transformation ¢.

Let’s now realize this scheme for different classes of projective curves.

3.1. Straight Lines

Let 901 be now the class of straight lines. Then, for any point x; € J! one can find a unique straight
line L (x1), such that x; = [L (x1)]}. The above construction gives projective differential invariant
of order 2

O,y € SZTLk R vyL.

It is easy to check, that, if L = Ly is the graph of function u = & (x) in the affine coordinates,
then the restriction of tensor ®, on this curve has the form: ®,; = h” (x dz_x!Z ® 0,. Let @, =

uz 47 ® 9. Then @31 = O3], 1. Denote by TT, C J2 a submanifold, where ©; = 0.

Then the points I, (L) = I1, N L@ are precisely inflection or flex points on the curve, i.e.
points where tangent lines have 2-rd order contact with the curve.

3.2. Quadrics

Let 91 be now the class of quadrics. Taking derivatives of a general quadric and eliminating its
coefficients we get the Monge equation: 9usu,? + 40u3> — 45u,u4us = 0, or

Suszug  40u3

Us = .
Ur 9 M%

Therefore, for any point x4 € J*\ 7, | (IT,) there is a unique quadric Q (x4) such that [Q (x4)]; =

Xq.
Follow the above observation, we get projective differential invariant Os; € S° T} ®vr, where

EOL® 40 (M) dx’ _ 5 4013\ dxS
®5L = (h(s)—S + —( ) i@au, or @5 = (Ms— kL +—ﬁ) al ®8u

h® 9 (h(z))2 5! Uz 9uz) 51

in the domain J° \ 75, (T15).

Denote by I1s C J° \ 75 (IT2) the submanifold, where ®5 = 0. Then the points ITs (L) =
ITs N L® will be called Monge points. In other words, the Monge points are exactly the points
where osculating quadrics have 5-th order contact with the curve.
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3.3. Cubics

Let 90t be now the class of cubics on the projective plane.

Taking derivatives of general cubic up to order 9 and eliminating its coefficients we arrive at
equation (see, for example, [8]): u, Pug + Pg = 0, where Pg is a polynomial of degree 10 and
order 8, P; = 7 (60)™3 det(M>) is a a polynomial of degree 8 and order 7, and

120 u5 30uy 6us Ug u7/7
360 u, 120 u3 30uy 6uUs Ug
M, = ||—180u,> 0 20 u5? 10 U3y 2usus + Suys’/4
0 180152 120usuy 30uquy + 20us? 6usuy + 10usuy
0 0 180 1,2 180 131, 60 u32 + 45u 4u,
more explicitly
P7 = — 33600 usufuy — 810 u5usugus + 1134 usususus — 756 uyuu + 13230 u)usujus—

— 2835 u5uguz—12600u;uusus — 189 usuZ—7875 uzusu,+720 usuiu, — 4725 ujui+
+ 11200 u$+1890 ujusue+6720 usuzus+31500 ususui—3150 uzususue+162 uSusus.

Therefore, ug = — . In other words, for any point xg € J8\ (753 (I15) U 75} (I17)),
where T1; = P;' (0) C J7, there is a unique cubic Q (xg) such that [Q (x;)]3 = xs.
Therefore, as above, for any curve L we have projective differential invariant

. Pg \ dx° -
O € S9TL ® vp, where Qg9 = (ug + u2;7) o ® 0y

in jet coordinates in the domain J° \ (n (Hz) U mg 7 (H7))
Denote by [Ty C J°\ (753 (I12) U 75 (I17)) the submanifold, where ®9 = 0.
Then the points
Mo (L) = Io N L®

will be called the Monge cubic points. Those are the points where osculating cubics have 9-th order
contact with the curve.

4. Projective orbits in jet spaces

4.1. Orbits in 2-jet space

At first, let’s remark that the action of the projective group on the manifold of 1-jets is transitive.
It is easy to check that the stabilizer St; C SL3 (C) of point (0, 0, 0) € J! is formed by matrices

apn az 0
A= 0 ann 0 with ai11dr2d33 = 1.

aszp dszx d4szs
The action of St; on the fibre of projection 75 ; : J 2 — J! has the form:

A@ :(0,0,0,u) —> (0,0,0,a;7 us).
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Therefore, there is the only one open regular orbit IT,y = J? \ I1, and the singular orbit IT,:
J2 = H20 U Hz.
Elements p,o = (0,0,0,1) € Iy, p> = (0,0,0,0) € II, can be taken as representatives of

these orbits.

4.2. Orbits in 3-jet space

Consider the action of the stabilizer of point (0, 0, 0, 1) from the regular orbit IT,, on the fibre of
projection 735 : J* — J2.
This stabilizer St  of the regular point p,¢ is formed by matrices

agl ain 0
_ 2 -1
A= |0 ataz; O

asy ass ass
Their action in the fibre of projection 5 ; : J*> — J? is affine :
A®:(0,0,0, 1,u3) —> (0,0,0, 1,04 us + Ba),

where a4 = aszajy, fa = 3 (a11as1 — arzass) ajf. Therefore, 39 = 735 (M) is the open
regular orbit.
The stabilizer St, of the singular point (0, 0, 0, 0) is formed by matrices

apn aiz 0
A= 0 [15%) 0

asy dszz dAsz

which act in the following way: AG) - (0,0,0,0,u3) — (0, 0,0,0, ‘;%m) Therefore, the
11

preimage 73 5 (TTy) of the singular orbit is a union of two orbits T3, = {(x,u,u;,0,0)} and
I13; = {(0,0,0,0,1),A # 0}.
Therefore, the space of 3-jets has the following decomposition of SL3 (C)-action:

J? = M3 U I3y U I3,
where [13 is the regular open orbit. The points
p30 = (O’O’ O’ 1’0) € H3O’ p31 = (0’ 0’ 07 0» 1) S 1_131, p32 = (0,0,0, O, 0) € H32

can be taken as representatives of these orbits.

4.3. Orbits in 4-jet space

At first, we consider the action of the stabilizer St; o of the regular point (0, 0,0, 1, 0) on the fibre
of the projection 74 3 : J* — J3. This stabilizer is formed by matrices

1
apn andasidsz 0
A=|0 a?ay; O

asy asa ass
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with the following affine action:
A® :(0,0,0,1,0,us) —> (0,0,0,1,0,a3,a;7 us + (6azsas, — 3a3;) ai?) .

Therefore, 149 = 7, 1 (T130) is the open regular orbit.
The stabilizer St ; of point (0,0, 0, 0, 1) from the singular orbit I13; is formed by matrices

ail ain 0
_ 2 -1
A=|0 ataz; O

asi asn ass

with the affine action A : (0,0,0,0, I,u4) > (0,0,0,0,1,assay] us + 8asiaj;). Therefore,
M4y = 73 (TT31) is an orbit.
Finally, the stabilizer Sts , of point (0, 0, 0, 0, 0) from orbit IT3, is formed by matrices

apy apz O
A= 0 ano 0
asz; dszz a4sz
with the action A® : (0,0,0,0,0,us) — (0,0,0,0,0,a3;axa7;" us). Therefore, the preimage
714_,; (IT3,) of the singular orbit I13; is a union of two orbits [T43 = {(x,u,u,,0,0,0)} and 14, =

Ty, ) (T131) \ M43. Summarizing, we see that there is the only one open regular orbit IT49 and three
singular orbits 147, [T4, and I143: J4 = TI40 U T4y U T4y U I43. The points

Pao = (0,0,0,1,0,0) € Tl49, pa1 = (0,0,0,0,1,0) € T4y,
P42 = (0,0,0,0,0,1) € 14z, pa3 = (0,0,0,0,0,0) € II43
can be taken as representatives of these orbits.

4.4. Orbits in 5-jet space

Let’s begin with preimage of regular orbit I14.
The stabilizer Sty ¢ of point (0, 0,0, 1,0, 0) is formed by matrices

—1
apn andasidsz 0

2 -1
A=|0 aj azs 0
2
as3,4a33
asy — ass

and has the following action on the fibre:
A® :(0,0,0,1,0,0,us) —> (0,0,0,1,0,0,a3,a;; us).

Therefore, the preimage 75 1 (IT49) of the regular orbit is a union two orbits: the singular one ITs
and the open regular orbit I159 = 75 3 (Ty) \ M.
The stabilizer St4 ; of point (0,0, 0,0, 1, 0) from the singular orbit I14; is formed by matrices

ap  dnz 0
A=10 a3a3?2 O
11933

0 aszy  asz
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and acts in the following way
A®:(0,0,0,0,1,0,us) —> (0,0,0,0,1,0,a3,a, % us — 10a;,a3,a;;) .

Therefore, ITs; = 75 (I141) is an orbit.
The stabilizer St4 , of point (0,0, 0,0, 0, 1) from the singular orbit I14, is formed by matrices

ap  dnz 0
_ 4 3
A= |0 afaz; O

asy asa ass

and acts as 4 : (0,0,0,0,0,1,us) — (0,0,0,0,0, 1, asszay} us+15asaj}). Therefore, I, =
54 (I42) is an orbit too.
Finally, the stabilizer St4 3 of point (0,0, 0, 0,0, 0) from the singular orbit I143 is formed by
matrices
a apz 0
A=(0 axp O
asp dsz dss
and acts as A® : (0,0,0,0,0,0,us5) — (0,0,0,0,0, 1,a§3a1_16 us). Therefore, the preimage
5 4 (T43) is a union of two orbits: ITsy = {(x,u,u1,0,0,0,0)} and Is3 = 75 (T143) \ Msa.
Summarizing, we conclude that SL3 (R)-action in J° has the orbit decomposition:

J° = Tlso U TIs U Tls5; U Tlsp U Ts3 U Ty,

where [15¢ is the unique regular open orbit.
The points

pso =(0,0,0,1,0,0,1) € Iso, ps =(0,0,0,1,0,0,0) € I,

ps1 = (0,0,0,0,1,0,0) € IIsy, ps2 =(0,0,0,0,0,1,0) € IIss,
ps3 = (0,0,0,0,0,0,1) € Is3, Ps4 = (0,0,0,0,0,0,0) € ITs4
can be taken as representatives of the orbits.

4.5. Orbits in 6-jet space

Let’s begin with preimage of the regular orbit I1s9. Then the stabilizer Sts o of the point psq is
formed by matrices
ass asy 0
A=10 ass 0| with a3, =1.
asg %6131613_31 ass

Its action in the fibre has the following form

3Cl31

A®:(0,0,0,1,0,0,1,u6) — (0,0,0,1,0,0, 1,uqs + ),

ass

and therefore T1gp = ¢ L (ITsp) is an open regular orbit.
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The stabilizer Sts of the point ps is formed by matrices

-1
a1l di11dszidss 0

— 2 -1 3 _
A= 0 aiazs 0 ||, where aj, =1,

1,2 —1
as1 5031433 433

which acts as: 4©® : (0,0,0,1,0,0,0,u¢) — (0,0,0,1,0,0,0,a%;a7us). Therefore, preimage
Tg. ; (IT5) is a union of three orbits 7 5 (I15) = I1¢; U Ils, with the following representatives

p61 = (0’0’0’1’070’0’ 1)7p62 = (O’O’Ov 17(),0’090)-

The stabilizer Sts ; of the point ps; = (0,0,0,0, 1,0,0) € I15; generates by matrices

al 0 0
_ 3 2
A=|0 ajaz; 0|,
0 as;  asz

where af, = a33. This groups acts in the fibre in the following way:
A®:(0,0,0,0,1,0,0,ug) — (0,0,0,1,0,0,0,a;,us + 40a3,as,) .

Therefore, the preimage [Te3 = 74 5 (ITs1) is an orbit.
The stabilizer Sts , of the point ps, = (0,0,0,0,0, 1,0) € I1s, formed by matrices

ai ain 0
_ 4 -3
A=|0 afazy 0|,
0 aszy  asz

where aj, = a3,, and acts in the following way
A®:(0,0,0,0,0,1,0,us) —> (0,0,0,1,0,0,0,a3,ue) -
Therefore, 74 ; (ITs5) is a union of orbits T, ; (IT55) = T4 U Igs with representatives
pes = (0,0,0,0,0,1,0,1), pes = (0,0,0,0,0,1,0,0) .
The stabilizer Sts 3 of the point ps3 = (0,0,0,0,0,0, 1) € I1s3 formed by matrices

ai a2 0
_ 5 —4
A= 0 ajaz; 0|,

a1z dszx  ds3
where a8, = a3,, and acts in the following way:
A® :(0,0,0,0,0,0,1,us) —> (0,0,0,0,0,0, 1,assaj;us + 24 asia}) .

Therefore, Igs = 4. ; (ITs3) is an orbit with representative pgg = (0,0,0,0,0,0, 1,0). Finally,
the stabilizer Sts 4 of the point ps4 = (0,0,0,0,0,0, 1) € 154 is formed by matrices

apn appz O
A= 0 arn 0 5
a1z dszz d4ss



ON PROJECTIVE CLASSIFICATION OF ALGEBRAIC CURVES 59

where a1a,2a33 = 1, and acts in the following way:
A©® :(0,0,0,0,0,0,0,u6) — (0,0,0,1,0,0,0,a%.al,ug).
Therefore, the preimage 74 ; (ITs4) is a union of two orbits I1¢7; and I1gg with representatives
pe7 = (0,0,0,0,0,0,0,1) and psg = (0,0,0,0,0,0,0,0)

respectively.
Summarizing, we get the following result.

Theorem 1. SL3 (C)-action in 3¢ splits into the following orbit decompo-
sition:
J® =Tlgo U Mgy U Mg U Tlg3 U Mgy U s U Tge U Mgy U Mg,

where ¢ is the only open regular orbit.
These orbits have the following representatives

p60 = (0,0,0,1,0,0,1,0), p61 = (0907091’0,0’0, 1), p62 = (0709()’1’0,0’090)7
p63 = (O’ 07090’ 1, O, Oa 0), p64 = (09 07 09 O’ O, 1’ 0, 1), p65 = (07 09 Oa O’ O, la 09 0)’
Pss = (0,0,0,0,0,0,1,0), pe; =(0,0,0,0,0,0,0,1), pes = (0,0,0,0,0,0,0,0).

As a corollary of this theorem we get the following SL3 (C)-classification of 6-jets of projective
curves.

Theorem 2. Let L C CP? be a projective curve. Then for any point a € L there are projective
coordinates (x,y) such that x (a) = y (a) = 0 and the curve can be written in the form y =
p (x) + € (x), where function & (x) has seventh order of smallness and polynomial p (x) has one
of the following form:

Peo(X) = x% + x>, pei(x) = x2 +x°,  per(x) = x2,
Pe3(x) = x7, Pea = x* + x5, Pes = x4,
Pes = X°, Pe7 = X°, Deg = 0,

where the polynomials p;; correspond to the orbits I1;;.

4.6. Stabilizers of regular orbit

The open orbit [Tgg = J® \ 762 (I15) \ 76,5 (IT5) as well as its elements will be called regular.

A point a € L on a projective curve we call regular if [L]$ € Tleo; in the opposite case it will
be called singular.

It worth to note that our definitions differ from the standard ones: both regular and singular
points belong to smooth complex curve, and their singularity has projective nature.

Remark also that the previous theorem states that the regular orbit is connected even though
singular orbits 1, and I15 have codimension 1.

Before to consider differential invariants of projective curves we’ll finish this section by de-
scription of stabilizers of regular point in J k whenk = 2.,3,4,5,6.
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Take 2-jet pro = (0,0,0,1). Then the stabilizer is a 4-dimensional group and consist of
matrices

1 o O
St, =3[0 B! O||:a,.6€C, BeC*
y & B

For 3-jet p3o = (0,0,0, 1, 0) the stabilizer is a 3 -dimensional group and consist of matrices

1 a 0
Sty = 0 B! O|l:a,yeC, BeC*
afp vy P
For 4-jet pyo = (0,0,0, 1,0, 0) the stabilizer is a 2 -dimensional group and consist of matrices
1 o 0
St4=1/0 B! 0f:aeC, BeC*
af 30°B B
For 5-jet pso = (0,0,0,1,0,0, 1) the stabilizer is a 1-dimensional group and consist of matri-
ces
I a O
Sts =310 1 O0)|:aeCy;,
a 1a? 1

and for the 6-jet pgo = (0,0,0,1,0,0, 1, 0) the stabilizer is trivial.

5. Projective Differential Invariants

5.1. Relative Invariants

Recall that a function f on the k-jet space J* is said to be a relative projective differential invariant
of order < k,if f o g® = C (g_l) £, for all element g € SL3 (C), and a 1-cocycle C on the
group.

An infinitesimal version of this states that Ly« (f) = ¢ (X) f for all vectors X € sl; (C),
and a 1-cocycle ¢ on the Lie algebra.

Here we denote by X® the prolongation of the vector field X to the space of k-jets, and by
Ly & the correspondent Lie derivative.

To find relative invariants, we remark that, as we have seen, zeroes of functions

5 40 u3
P2:M2 andP5=u5— H3ta ik

Uy 9 M%

determine singular orbits I1, and Ils. Therefore, these functions are relative invariants of the
SL; (C)-action. Indeed, it can be easily check that X ® (P,) = a, (X) - P,, where

2 2
X=Q2ay,1x+azx+au+a;3—a3 1 X" —az2xu)0x+ (a1, 1u+2a 2u~+as 1 X+az 3—az 1 Xu—az u~) 0y

is a general element of Lie algebra s(3 (C). Here v (X) = —3 (a1 —az x)u;—3 a1 +3as;1x
is the corresponding 1-cocycle.
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In the similar way, X® (Ps) = as (X) - Ps, where
Os (X) = —6 (al,z — 613’2)6) up + 303,21,{ — 9611,1 + 9613,1X — 302,2.

For the same reasons zeros of the function P, define cubics, and therefore this function is a
relative invariant. Indeed, X7 (P7) = a7 (X) - P7, where

(0% (X) = -32 (al’z — 613,2)C) uy — 4001,1 + 40613,1)6 — 802,2 + 8a3,2u.

Cocycles a5, a5 and o7 are not independent, and obey the relation 16a, + 8as — 37 = 0.
Another relative invariant we can get from the volume form 2 = dx A du, because

X(R2) = ao(X)L2,

where ag (X) = 3a;,1+3a»—3as,1x —3asu. This is not independent 1-cocycle, and we have
the relation o9 — 202 + a5 = 0.

The last relative invariant can be obtained from the contact form w = du — u;dx. In this case
XD (@) = a; (X) w, where 1-cocycle o has the form

o (X) = —(01,2 — Cl3,2X)M1 + ai + 2612,2 —asz X — 2a3,2u.

This cocycle is linearly dependent with the previous ones: 2y — 3a; + a, = 0.
These relations between 1-cocycles allow us to construct the following invariant tensors.

Theorem 3. The following tensors on jet spaces are SL3 (C)-invariants:

P}
Function = ——,
Q7 P58 P 216
. . P,
Differential 1-form ws = — 7 W,
P3P
. . Ps
Differential 2-form Qs = P2 Q.
2

5.2. Algebra of projective differential invariants

Let’s denote by 7 and vy the vector bundles on J* induced by projection 7%, from the canonical
bundles 7;, v; on J', where

7 ([L];) = T.L and v, ([L]}) = T.P*/T,L.

As we have seen symmetric differential forms

dx* -
©, = u2%®au € 52(z}) ®v, and O5 =600 - O,.
The form o will be referred to a the Study 3-form. This form is obviously SL; (C)-invariant and in
affine coordinates can be written by:
Ps

dx?3.
P,

o =
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In addition to the Study form we introduce a Study derivation as a total derivation V such that
o(V,V,V)=0,.

In affine coordinates this derivation has form

P d
P3Py dx’

\Y%

This is a SL3 (C)-invariant derivation.

It is easy to check that the invariant Q5 is an affine function in u having the form
P},
= —ZU5;+---.
07 = 32

Applying the Study derivation we get an 8-th differential invariant

Q8=V(Q7)=Q;,2qus+---, (1)
5
and
OQk+1 =V (0Qx),

for k > 7. All of these invariants are rational functions on the jet spaces which are defined on the
preimages of regular orbit ITgg.

Let us specify now the notion of a differential invariant.

First of all remark that all bundles mx x—; : J¥ — Jk=1 are affine, when k > 2, and J? is a total
space of the bundle over CP? with fibres CP!.

Therefore, all manifolds J* are algebraic and we can talk about functions which are rational.

We say that a rational function f on manifold k-jets J* is a SL3(C)-differential invariant (or
simply projective differential invariant) of order k if X® () = 0 for any vector field X € sl3(C).

Therefore, due to the Rosenlicht theorem (see, [9]) differential invariants Q7, ..., Qk, separate
regular SL3 (C)-orbits in J* and we arrive at the following result.

Theorem 4. 1. Any projective difterential invariant of order k is a rational function of invari-

ants Q7, ..., Qk.

2. The field of differential invariants of order < k separates regular orbits in J*.

6. Projective equivalence of algebraic plane curves

6.1. SL; (C)- action

Let L and L be an algebraic plane curves, and let L®), L® < J* be their prolongations. We say
that L and L are projectively equivalent if g (L) = L, for some element g € SL; (O).

All curves in this section are irreducible and not straight lines or quadrics. Then the values
O (L) = Qk|pw of invariants Q on the curve L are well defined.

The function Q5 (L) we will call projective curvature of the curve (cf. [5]).
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We will consider curves L such that the function Qg(L) # 0, i.e., because V(Q7) = QOs, L is
not is a curve of constant projective curvature. Functions Q-(L) and Qg(L) are rational functions
on L, and therefore they satisfy an algebraic relation

F(Q7(L), Qs (L)) = 0. 2

Denote by £; = F~!(0) C C? the curve defining by (2).

We call this curve defining curve, and the minimal F' (in 2) defining function.

It follows from the construction of the defining curve, that two projectively equivalent algebraic
curves have the same defining curve. Moreover, the following result holds.

Theorem S. Two irreducible algebraic plane curves L and L, which are not straight lines or
quadrics, are projectively equivalent if and only if their defining curves coincide.

Proof. Let’s prove the sufficiency. First of all, function Q7 (L) might be considered as local
coordinate on L in an open domain. Then, in this domain, relation 2 can be viewed as a relation
Qs(L) — ®(Q7(L)) = 0, for an analytical function ®.

Let’s consider now relation

Qs —®(Q7) =0 (3)

in jet space of the 8-th order as ordinary differential equation. Remark, that both curves L and
L are local solutions of this equation. Moreover, relation (1) shows that solutions of the above
differential equation are uniquely defined by their 8-jets.

Let us take points @ € L and @ € L from the corresponding domains, where the invariant Q-
is a local coordinate such that Q7(L)(a) = 0+(L)(@) .

Then there is a projective transformation ¢, which equalize 7-jets, o P ([L]]) = [Z]% It follows
from the fact that Q5 is the only projective invariant of the order < 7.

Relation (2) shows that ¢® ([L]3) = [Z]% Remark that, projective transformations are sym-
metries of differential equation (3). Hence, ¢(L) is a solution (3) too. But 8-jets of L and @ (L) at
point @ equal. Therefore, due to the uniqueness of solutions, L= @ (L). O

6.2. Cubics

As an example of application of the above theorem let’s consider cubic curves. As we have seen
these curves are solutions of equation

M2P7M9+P8:0.
The left hand side of the equation is an obviously relative invariant.
This invariant can be rewritten in terms of invariants as follows:
5ps
Py Ps
2
07

Therefore, if the cubic curves, which satisfy the above Theorem, are solutions of the 9-th order
differential equation

1, 7 206 . 49

1, 7 206 5 49,
LY S _20%03_ Y 2y, 4
0007 2 Og 72Q7Q8 33 07 21600Q7 4)
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Let ® be the defining function of a cubic. Then, applying the Study derivative to the relation

Qs = ®(Q7), we get Qg = @' (Q7) D (Q7).

Relation (4) can be rewritten now as a differential equation for defining function ® (7):

343
36 259200 73 — 12600 1 @ P + 14175 ®* + 1225 = 0.

Integrating this equation we get the following relation between invariants Q7 and Qg which de-
pends on arbitrary constant ¢ and has the following form F3 4+ ¢G Q,° = 0, where

49
F=—r—
147456

49 16807 s 343 s 343
* ( 25920 Q7 + 26873856000) Qs + (Q7 1036800) (Q7 9331200)

343 2401 7
04 + ; (

3 2
3317760 Qs + 199065600 + 192 Q7) Qs+

and

G =117649 — 6401203200 Q3 + 18151560 Q5 + 583443000 Q3 + 87071293440000 Q5—
— 493807104000 Q3 Qs + 3174474240000 03 Q3 + 7001316000 Q3 + 28934010000 Q.

In other words, regular cubics are projectively defined by constant c.

REFERENCES
1. J.L. Coolidge, A treatise on algebraic plane curves, Dover Publ. NY, (1959), 513 p.
G.H. Halphen, Sur les invariants différentiels, Paris: Gauthier-Villars, (1878), 60 p.
F. Klein, W. Blaschke, Vorlesungen iiber hohere Geometrie, Berlin, J. Springer, (1926), 405 p.

El

F. Klein, S. Lie, Uber diejenigen ebenen Curven, weiche aurch ein geschlossenes System von einfach unedlich
veilen vertauschbaren linearen Transformationen in sich ubergehen, Math. Annalen, 4 (1871), 50-85.

5. N. Konovenko, V. Lychagin, On projective classification of plane curves, Global and Stochastic Analysis, 1:2
(2011), 241-264.

6. B. Kruglikov, V. Lychagin, Global Lie-Tresse theorem, preprint (2011), 38 p.; avilable at
arXiv:1111.5480.

7. E.P. Lane, Projective difterential geometry of curves and surfaces, The University of Chicago press, Chicago-
Illinois, (1932).

8. A.Lascoux, The differential equation satisfied by plane curve of degree n, Bull. Sci. Math. 130:4 (2006), 354-359.
9. M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1958), 401-443.

10. E.J. Wilczynski, Interpretation of the symplest integral invariant of projective geometry, Proc. Nat. Acad. Sci.
USA, 2:4 (1916), 248-252.

Received 15.11.2012
Revised 11.07.2013

(©) Nadiia Konovenko, Valentin Lychagin, 2013



