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Algebra of projective differential invariants and description of projective classes of algebraic plane curves
are given.

Н. Коновенко, В.Личагiн. Про проективну класифiкацiю алгебраїчних кривих // Мат. вiсник НТШ. —
2013. — Т.10. — C. 51–64.

Дослiджено алгебру проективних диференцiальних iнварiантiв та описано деякi класи проективних
плоских кривих.

1. Introduction

In this paper we continue investigation of projective differential invariants for curves in the
complex projective plane. Many of these results are classical and mainly they go back to Halphen’s
dissertation [2]. The case of real curves was considered in [5], here we analyze the case of complex
and algebraic.

Curves under consideration are smooth and complex but they possibly might have singularities
in a projective sense. For example, singular, from the projective point of view, are points on a
curve, where tangent line has second order contact, i.e. inflection or flex points. Another example
of singularities are provided by points, where osculating quadric has 5-th order contact, so-called
Monge points [5].

We give a detail description of SL3 .C/ -orbits of the projective action on the jets of plane
curves up to 5-th order and classify all possible projective singularities.

The level of 5-th jets taken for the only reason: starting from 6-jets regular orbits have trivial
stabilizers, and from the level of 7-jets first differential invariants come up. It worth to mention, that
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the orbit classification gives projective classification, or projective normal forms for plane curves,
up to 6-th order jets.

To find the full algebra of projective differential invariants we introduce the Study derivation.
As opposed to the real case, this derivation has order 7 in complex case (order 5 in the real case).

The Study derivation is a projective invariant and it allows to produce new projective invariants
from the known ones. Moreover, as it follows from the general result [6], the field of rational pro-
jective differential invariants is generated by the projective curvature [5] and the Study derivation.
This field separates regular orbits.

The rest of the paper is devoted to cubics and repeats the known result of Weierstrass that
projective classes of regular cubics can be described by one parameter. We give an explicit formula
to find this parameter.

2. Jet bundle structure
Let CP2 be the complex projective plane and let Jk be the manifold of k-jets of non-parameterized

curves on the plane.
We shall denote by ŒL�ka 2 J the k-jet of curve L � CP2 at the point a 2 L. Let �k;l W Jk ! J

l ,
�k;l W ŒL�ka 7! ŒL�la, k > l , be the natural projections.

The structure of jet-manifolds can be described as follows:

� J
0 D CP2;

� Fibres ��1
1;0 .a/ ; a 2 CP2, of the projection �1;0 are projectivizations of the tangent planes

P
�
TaP

2
�

D CP1, �2;1 W J1
CP1

! CP2;

� Fibres ��1
k;k�1

�
ŒL�k�1

a

�
, when k � 2, are affine lines, and the vector spaces associated with

them are S
k��

a ˝ �a, where ��
a D T �

a L is the cotangent space, and �a D TaP
2=TaL is the

normal space to a curve at the point a 2 L.

Let .x; u/ be an affine chart on the plane. Denote by .x; u; u1; ::::; uk/ the natural coordinates
in the space of k-jets, where

ui

�
ŒL�ka

�
D

@ih

@xi
.b/ ;

if L D Lh
def
D fu D h .x/g is a graph of function h in a neighborhood of point a D .b; h .b//.

In these coordinates the affine action is given by translations along tensors

� D
�

kŠ
dxk

˝ @u 2 S
k��

a ˝ �a;

and has the form .x; u; u1; :::; uk�1; uk/ 7! .x; u; u1; :::; uk�1; ukC�/; where @u D @u mod TaL.
Finally, any curve L � CP2 determines curves L.k/ � J

k; so-called k-th prolongations of L,
which are formed by points ŒL�ka; where point a runs over curve L.

The action of projective group SL3 .C/ can be also prolonged in manifolds Jk in the natural
way:

'.k/
W ŒL�ka 7�! Œ' .L/k

a

where ' 2 SL3 .C/ is a projective transformation.
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3. Special classes of plane curves

We use special classes of curves, model curves, to construct tensor invariants. The construction
is based on the following observation. Assume that we have a class M of plane curves which is
invariant under projective transformations and such that for any point xk 2 J

k there is a unique
curve L D L .xk/ 2 M with k-jet xk , i.e. such that xk D ŒL�ka, where a D �k .xk/.

Then .k C 1/-jets xkC1 D ŒL .xk/�kC1
a can be taken as basic points in the affine line ��1

kC1;k
.xk/

and the corresponding section m WJk ! J
kC1 we’ll consider as the zero section in the line bundle

�kC1;k W JkC1 ! J
k .

Let now L � CP2 be an arbitrary curve. Then curves L.kC1/ � J
kC1 and m

�
L.k/

�
� J

kC1

differs on element ‚L 2 S
kC1T �

L ˝�L. The last tensor is a projective differential invariant of order
.k C 1/ in the sense that '�

�
‚'.L/

�
D ‚L;for arbitrary projective transformation '.

Let’s now realize this scheme for different classes of projective curves.

3.1. Straight Lines

Let M be now the class of straight lines. Then, for any point x1 2 J
1 one can find a unique straight

line L .x1/, such that x1 D ŒL .x1/�1a. The above construction gives projective differential invariant
of order 2

‚2L 2 S
2T �

L ˝ �L:

It is easy to check, that, if L D Lh is the graph of function u D h .x/ in the affine coordinates,
then the restriction of tensor ‚2 on this curve has the form: ‚2L D h00 .x/ dx2

2Š
˝ @u. Let ‚2 D

u2
dx2

2Š
˝ @u. Then ‚2L D ‚2j

L
.2/

h

. Denote by …2 � J
2 a submanifold, where ‚2 D 0.

Then the points …2 .L/ D …2 \ L.2/ are precisely inflection or flex points on the curve, i.e.
points where tangent lines have 2-rd order contact with the curve.

3.2. Quadrics

Let M be now the class of quadrics. Taking derivatives of a general quadric and eliminating its
coefficients we get the Monge equation: 9 u5u2

2 C 40 u3
3 � 45 u2u4u3 D 0, or

u5 D
5u3u4

u2

�
40

9

u3
3

u2
2

:

Therefore, for any point x4 2 J
4 n��1

4;1 .…2/ there is a unique quadric Q .x4/ such that ŒQ .x4/�4a D

x4.
Follow the above observation, we get projective differential invariant ‚5L 2 S

5T �
L ˝�L, where

‚5L D

 
h.5/

� 5
h.3/h.4/

h.2/
C

40

9

�
h.3/

�3�
h.2/

�2
!

dx5

5Š
˝@u; or ‚5 D

�
u5 �

5u3u4

u2

C
40

9

u3
3

u2
2

�
dx5

5Š
˝@u

in the domain J
5 n ��1

5;2 .…2/.
Denote by …5 � J

5 n ��1
5;2 .…2/ the submanifold, where ‚5 D 0. Then the points …5 .L/ D

…5 \ L.5/ will be called Monge points. In other words, the Monge points are exactly the points
where osculating quadrics have 5-th order contact with the curve.
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3.3. Cubics
Let M be now the class of cubics on the projective plane.

Taking derivatives of general cubic up to order 9 and eliminating its coefficients we arrive at
equation (see, for example, [8]): u2P7u9 C P8 D 0, where P8 is a polynomial of degree 10 and
order 8, P7 D 7 .60/�3

det.M7/ is a a polynomial of degree 8 and order 7, and

M7 D














120 u3 30 u4 6 u5 u6 u7=7

360 u2 120 u3 30 u4 6 u5 u6

�180 u2
2 0 20 u3

2 10 u3u4 2 u3u5 C 5u4
2=4

0 180 u2
2 120 u3u2 30 u4u2 C 20 u3

2 6 u5u2 C 10 u3u4

0 0 180 u2
2 180 u3u2 60 u3

2 C 45 u 4u2













more explicitly

P7 D � 33600 u2u6
3 u4 � 810 u5

2 u3u4u7 C 1134 u5
2 u3u5u6 � 756 u4

2 u2
3 u2

5 C 13230 u4
2 u3u2

4 u5�

� 2835 u5
2 u4u2

5 �12600 u3
2 u3

3 u4u5 � 189 u6
2 u2

6 �7875 u3
2u2

3u3
4C720 u4

2u3
3u7 � 4725 u4

2u4
4C

C 11200 u8
3C1890 u5

2u2
4u6C6720 u2

2u5
3u5C31500 u2

2u4
3u2

4�3150 u4
2u2

3u4u6C162 u6
2u5u7:

Therefore, u9 D �
P8

u2P7
for cubics. In other words, for any point x8 2 J

8n
�
��1

8;2 .…2/ [ ��1
8;7 .…7/

�
,

where …7 D P �1
7 .0/ � J

7, there is a unique cubic Q .x8/ such that ŒQ .xx/�8a D x8.
Therefore, as above, for any curve L we have projective differential invariant

‚9L 2 S
9T �

L ˝ �L; where ‚9 D

�
u9 C

P8

u2P7

�
dx9

9Š
˝ @u

in jet coordinates in the domain J
9 n
�
��1

9;2 .…2/ [ ��1
9;7 .…7/

�
.

Denote by …9 � J
9 n
�
��1

9;2 .…2/ [ ��1
9;7 .…7/

�
the submanifold, where ‚9 D 0.

Then the points
…9 .L/ D …9 \ L.9/

will be called the Monge cubic points. Those are the points where osculating cubics have 9-th order
contact with the curve.

4. Projective orbits in jet spaces
4.1. Orbits in 2-jet space
At first, let’s remark that the action of the projective group on the manifold of 1-jets is transitive.

It is easy to check that the stabilizer St1 � SL3 .C/ of point .0; 0; 0/ 2 J
1 is formed by matrices

A D








a11 a12 0

0 a22 0

a31 a32 a33







 with a11a22a33 D 1:

The action of St1 on the fibre of projection �2;1 W J2 ! J
1 has the form:

A.2/
W .0; 0; 0; u2/ 7�!

�
0; 0; 0; a�3

11 u2

�
:
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Therefore, there is the only one open regular orbit …20 D J
2 n …2 and the singular orbit …2:

J
2

D …20 [ …2:

Elements p20 D .0; 0; 0; 1/ 2 …20; p2 D .0; 0; 0; 0/ 2 …2 can be taken as representatives of
these orbits.

4.2. Orbits in 3-jet space
Consider the action of the stabilizer of point .0; 0; 0; 1/ from the regular orbit …20 on the fibre of
projection �3;2 W J3 ! J

2.
This stabilizer St2;0 of the regular point p20 is formed by matrices

A D








a11 a12 0

0 a2
11a�1

33 0

a31 a32 a33







 :

Their action in the fibre of projection �2;1 W J3 ! J
2 is affine :

A.3/
W .0; 0; 0; 1; u3/ 7�! .0; 0; 0; 1; ˛A u3 C ˇA/ ;

where ˛A D a33a�1
11 , ˇA D 3 .a11a31 � a12a33/ a�2

11 . Therefore, …30 D ��1
3;2 .…20/ is the open

regular orbit.
The stabilizer St2 of the singular point .0; 0; 0; 0/ is formed by matrices

A D








a11 a12 0

0 a22 0

a31 a32 a33








which act in the following way: A.3/ W .0; 0; 0; 0; u3/ 7!

�
0; 0; 0; 0; a33

a4
11

u3

�
. Therefore, the

preimage ��1
3;2 .…2/ of the singular orbit is a union of two orbits …32 D f.x; u; u1; 0; 0/g and

…31 D f.0; 0; 0; 0; �/ ; � ¤ 0g.
Therefore, the space of 3-jets has the following decomposition of SL3 .C/-action:

J
3

D …30 [ …31 [ …32;

where …30 is the regular open orbit. The points

p30 D .0; 0; 0; 1; 0/ 2 …30; p31 D .0; 0; 0; 0; 1/ 2 …31; p32 D .0; 0; 0; 0; 0/ 2 …32

can be taken as representatives of these orbits.

4.3. Orbits in 4-jet space
At first, we consider the action of the stabilizer St3;0 of the regular point .0; 0; 0; 1; 0/ on the fibre
of the projection �4;3 W J4 ! J

3. This stabilizer is formed by matrices

A D








a11 a11a31a�1

33 0

0 a2
11a�1

33 0

a31 a32 a33
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with the following affine action:

A.4/
W .0; 0; 0; 1; 0; u4/ 7�!

�
0; 0; 0; 1; 0; a2

33a�2
11 u4 C

�
6a33a32 � 3a2

31

�
a�2

11

�
:

Therefore, …40 D ��1
4;3 .…30/ is the open regular orbit.

The stabilizer St3;1 of point .0; 0; 0; 0; 1/ from the singular orbit …31 is formed by matrices

A D








a11 a12 0

0 a2
11a�1

33 0

a31 a32 a33








with the affine action A.4/ W .0; 0; 0; 0; 1; u4/ 7! .0; 0; 0; 0; 1; a33a�1

11 u4 C 8a31a�1
11 /: Therefore,

…41 D ��1
4;3 .…31/ is an orbit.

Finally, the stabilizer St3;2 of point .0; 0; 0; 0; 0/ from orbit …32 is formed by matrices

A D








a11 a12 0

0 a22 0

a31 a32 a33








with the action A.4/ W .0; 0; 0; 0; 0; u4/ 7! .0; 0; 0; 0; 0; a3

33a22a�4
11 u4/. Therefore, the preimage

��1
4;3 .…32/ of the singular orbit …32 is a union of two orbits …43 D f.x; u; u1; 0; 0; 0/g and …42 D

��1
4;3 .…31/ n …43. Summarizing, we see that there is the only one open regular orbit …40 and three

singular orbits …41, …42 and …43: J4 D …40 [ …41 [ …42 [ …43. The points

p40 D .0; 0; 0; 1; 0; 0/ 2 …40; p41 D .0; 0; 0; 0; 1; 0/ 2 …41;

p42 D .0; 0; 0; 0; 0; 1/ 2 …42; p43 D .0; 0; 0; 0; 0; 0/ 2 …43

can be taken as representatives of these orbits.

4.4. Orbits in 5-jet space
Let’s begin with preimage of regular orbit …40.

The stabilizer St4;0 of point .0; 0; 0; 1; 0; 0/ is formed by matrices

A D









a11 a11a31a�1

33 0

0 a2
11a�1

33 0

a31
a2

31a33

2
a33









and has the following action on the fibre:

A.5/
W .0; 0; 0; 1; 0; 0; u5/ 7�!

�
0; 0; 0; 1; 0; 0; a3

33a�3
11 u5

�
:

Therefore, the preimage ��1
5;4 .…40/ of the regular orbit is a union two orbits: the singular one …5

and the open regular orbit …50 D ��1
5;2 .…20/ n …5.

The stabilizer St4;1 of point .0; 0; 0; 0; 1; 0/ from the singular orbit …41 is formed by matrices

A D








a11 a12 0

0 a3
11a�2

33 0

0 a32 a33
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and acts in the following way

A.5/
W .0; 0; 0; 0; 1; 0; u5/ 7�!

�
0; 0; 0; 0; 1; 0; a2

33a�2
11 u5 � 10a12a2

33a�3
11

�
:

Therefore, …51 D ��1
5;4 .…41/ is an orbit.

The stabilizer St4;2 of point .0; 0; 0; 0; 0; 1/ from the singular orbit …42 is formed by matrices

A D








a11 a12 0

0 a4
11a�3

33 0

a31 a32 a33








and acts as A.5/ W .0; 0; 0; 0; 0; 1; u5/ 7! .0; 0; 0; 0; 0; 1; a33a�1

11 u5C15a31a�1
11 /. Therefore, …52 D

��1
5;4 .…42/ is an orbit too.

Finally, the stabilizer St4;3 of point .0; 0; 0; 0; 0; 0/ from the singular orbit …43 is formed by
matrices

A D








a11 a12 0

0 a22 0

a31 a32 a33








and acts as A.5/ W .0; 0; 0; 0; 0; 0; u5/ 7! .0; 0; 0; 0; 0; 1; a3

33a�6
11 u5/. Therefore, the preimage

��1
5;4 .…43/ is a union of two orbits: …54 D f.x; u; u1; 0; 0; 0; 0/g and …53 D ��1

5;4 .…43/ n …54.
Summarizing, we conclude that SL3 .R/-action in J

5 has the orbit decomposition:

J
5

D …50 [ …5 [ …51 [ …52 [ …53 [ …54;

where …50 is the unique regular open orbit.
The points

p50 D .0; 0; 0; 1; 0; 0; 1/ 2 …50; p5 D .0; 0; 0; 1; 0; 0; 0/ 2 …5;

p51 D .0; 0; 0; 0; 1; 0; 0/ 2 …51; p52 D .0; 0; 0; 0; 0; 1; 0/ 2 …52;

p53 D .0; 0; 0; 0; 0; 0; 1/ 2 …53; p54 D .0; 0; 0; 0; 0; 0; 0/ 2 …54

can be taken as representatives of the orbits.

4.5. Orbits in 6-jet space
Let’s begin with preimage of the regular orbit …50. Then the stabilizer St5;0 of the point p50 is
formed by matrices

A D








a33 a31 0

0 a33 0

a31
1
2
a31a�1

33 a33







 with a3
33 D 1:

Its action in the fibre has the following form

A.6/
W .0; 0; 0; 1; 0; 0; 1; u6/ 7! .0; 0; 0; 1; 0; 0; 1; u6 C

3a31

a33

/;

and therefore …60 D ��1
6;5 .…50/ is an open regular orbit.
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The stabilizer St5 of the point p5 is formed by matrices

A D








a11 a11a31a�1

33 0

0 a2
11a�1

33 0

a31
1
2
a2

31a�1
33 a33







 ; where a3
11 D 1;

which acts as: A.6/ W .0; 0; 0; 1; 0; 0; 0; u6/ 7! .0; 0; 0; 1; 0; 0; 0; a4
33a�1

11 u6/. Therefore, preimage
��1

6;5 .…5/ is a union of three orbits �6;5 .…5/ D …61 [ …62 with the following representatives

p61 D .0; 0; 0; 1; 0; 0; 0; 1/ ; p62 D .0; 0; 0; 1; 0; 0; 0; 0/ :

The stabilizer St5;1 of the point p51 D .0; 0; 0; 0; 1; 0; 0/ 2 …51 generates by matrices

A D








a11 0 0

0 a3
11a�2

33 0

0 a32 a33







 ;

where a4
11 D a33. This groups acts in the fibre in the following way:

A.6/
W .0; 0; 0; 0; 1; 0; 0; u6/ 7�!

�
0; 0; 0; 1; 0; 0; 0; a9

11u6 C 40a5
11a32

�
:

Therefore, the preimage …63 D ��1
6;5 .…51/ is an orbit.

The stabilizer St5;2 of the point p52 D .0; 0; 0; 0; 0; 1; 0/ 2 …52 formed by matrices

A D








a11 a12 0

0 a4
11a�3

33 0

0 a32 a33







 ;

where a5
11 D a2

33; and acts in the following way

A.6/
W .0; 0; 0; 0; 0; 1; 0; u6/ 7�!

�
0; 0; 0; 1; 0; 0; 0; a3

11u6

�
:

Therefore, ��1
6;5 .…52/ is a union of orbits ��1

6;5 .…52/ D …64 [ …65 with representatives

p64 D .0; 0; 0; 0; 0; 1; 0; 1/ ; p65 D .0; 0; 0; 0; 0; 1; 0; 0/ :

The stabilizer St5;3 of the point p53 D .0; 0; 0; 0; 0; 0; 1/ 2 …53 formed by matrices

A D








a11 a12 0

0 a5
11a�4

33 0

a13 a32 a33







 ;

where a6
11 D a3

33, and acts in the following way:

A.6/
W .0; 0; 0; 0; 0; 0; 1; u6/ 7�!

�
0; 0; 0; 0; 0; 0; 1; a33a�1

11 u6 C 24 a31a�1
11

�
:

Therefore, …66 D ��1
6;5 .…53/ is an orbit with representative p66 D .0; 0; 0; 0; 0; 0; 1; 0/. Finally,

the stabilizer St5;4 of the point p54 D .0; 0; 0; 0; 0; 0; 1/ 2 …54 is formed by matrices

A D








a11 a12 0

0 a22 0

a13 a32 a33







 ;
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where a11a22a33 D 1; and acts in the following way:

A.6/
W .0; 0; 0; 0; 0; 0; 0; u6/ 7�! .0; 0; 0; 1; 0; 0; 0; a4

33a7
11u6/:

Therefore, the preimage ��1
6;5 .…54/ is a union of two orbits …67 and …68 with representatives

p67 D .0; 0; 0; 0; 0; 0; 0; 1/ and p68 D .0; 0; 0; 0; 0; 0; 0; 0/

respectively.
Summarizing, we get the following result.

Theorem 1. SL3 .C/-action in J
6 splits into the following orbit decompo-

sition:
J

6
D …60 [ …61 [ …62 [ …63 [ …64 [ …65 [ …66 [ …67 [ …68;

where …60 is the only open regular orbit.
These orbits have the following representatives

p60 D .0; 0; 0; 1; 0; 0; 1; 0/; p61 D .0; 0; 0; 1; 0; 0; 0; 1/; p62 D .0; 0; 0; 1; 0; 0; 0; 0/;

p63 D .0; 0; 0; 0; 1; 0; 0; 0/; p64 D .0; 0; 0; 0; 0; 1; 0; 1/; p65 D .0; 0; 0; 0; 0; 1; 0; 0/;

p66 D .0; 0; 0; 0; 0; 0; 1; 0/; p67 D .0; 0; 0; 0; 0; 0; 0; 1/; p68 D .0; 0; 0; 0; 0; 0; 0; 0/:

As a corollary of this theorem we get the following SL3 .C/-classification of 6-jets of projective
curves.

Theorem 2. Let L � CP2 be a projective curve. Then for any point a 2 L there are projective
coordinates .x; y/ such that x .a/ D y .a/ D 0 and the curve can be written in the form y D

p .x/ C " .x/, where function " .x/ has seventh order of smallness and polynomial p .x/ has one
of the following form:

p60.x/ D x2 C x5; p61.x/ D x2 C x6; p62.x/ D x2;

p63.x/ D x3; p64 D x4 C x6; p65 D x4;

p66 D x5; p67 D x6; p68 D 0;

where the polynomials pij correspond to the orbits …ij .

4.6. Stabilizers of regular orbit
The open orbit …60 D J

6 n �6;2 .…2/ n �6;5 .…5/ as well as its elements will be called regular.
A point a 2 L on a projective curve we call regular if ŒL�6a 2 …60; in the opposite case it will

be called singular.
It worth to note that our definitions differ from the standard ones: both regular and singular

points belong to smooth complex curve, and their singularity has projective nature.
Remark also that the previous theorem states that the regular orbit is connected even though

singular orbits …2 and …5 have codimension 1.
Before to consider differential invariants of projective curves we’ll finish this section by de-

scription of stabilizers of regular point in J
k, when k D 2; 3; 4; 5; 6.
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Take 2-jet p20 D .0; 0; 0; 1/. Then the stabilizer is a 4-dimensional group and consist of
matrices

St2 D

8<:








1 ˛ 0

0 ˇ�1 0


 ı ˇ







 W ˛; 
; ı 2 C; ˇ 2 C�

9=; :

For 3-jet p30 D .0; 0; 0; 1; 0/ the stabilizer is a 3 -dimensional group and consist of matrices

St3 D

8<:








1 ˛ 0

0 ˇ�1 0

˛ˇ 
 ˇ







 W ˛; 
 2 C; ˇ 2 C�

9=; :

For 4-jet p40 D .0; 0; 0; 1; 0; 0/ the stabilizer is a 2 -dimensional group and consist of matrices

St4 D

8<:








1 ˛ 0

0 ˇ�1 0

˛ˇ 1
2
˛2ˇ ˇ







 W ˛ 2 C; ˇ 2 C�

9=; :

For 5-jet p50 D .0; 0; 0; 1; 0; 0; 1/ the stabilizer is a 1-dimensional group and consist of matri-
ces

St5 D

8<:








1 ˛ 0

0 1 0

˛ 1
2
˛2 1







 W ˛ 2 C

9=; ;

and for the 6-jet p60 D .0; 0; 0; 1; 0; 0; 1; 0/ the stabilizer is trivial.

5. Projective Differential Invariants

5.1. Relative Invariants
Recall that a function f on the k-jet space Jk is said to be a relative projective differential invariant
of order � k, if f ı g.k/ D C

�
g�1

�
f; for all element g 2 SL3 .C/, and a 1-cocycle C on the

group.
An infinitesimal version of this states that LX.k/ .f / D c .X/ f for all vectors X 2 sl3 .C/,

and a 1-cocycle c on the Lie algebra.
Here we denote by X .k/ the prolongation of the vector field X to the space of k-jets, and by

LX.k/ the correspondent Lie derivative.
To find relative invariants, we remark that, as we have seen, zeroes of functions

P2 D u2 and P5 D u5 �
5u3u4

u2

C
40

9

u3
3

u2
2

determine singular orbits …2 and …5. Therefore, these functions are relative invariants of the
SL3 .C/-action. Indeed, it can be easily check that X .2/ .P2/ D ˛2 .X/ � P2, where

XD.2a1;1xCa2;2xCa1;2uCa1;3�a3;1x2
�a3;2xu/@xC.a1;1uC2a2;2uCa2;1xCa2;3�a3;1xu�a3;2u2/@u

is a general element of Lie algebra sl3 .C/. Here ˛2 .X/ D �3 . a1;2 � a3;2x/ u1 �3 a1;1 C3 a3;1x

is the corresponding 1-cocycle.
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In the similar way, X .5/ .P5/ D ˛5 .X/ � P5, where

˛5 .X/ D �6 .a1;2 � a3;2x/ u1 C 3 a3;2u � 9 a1;1 C 9 a3;1x � 3 a2;2:

For the same reasons zeros of the function P7 define cubics, and therefore this function is a
relative invariant. Indeed, X .7/ .P7/ D ˛7 .X/ � P7, where

˛7 .X/ D �32 . a1;2 � a3;2x/ u1 � 40 a1;1 C 40 a3;1x � 8 a2;2 C 8 a3;2u:

Cocycles ˛2; ˛5 and ˛7 are not independent, and obey the relation 16˛2 C 8˛5 � 3˛7 D 0.
Another relative invariant we can get from the volume form � D dx ^ du, because

X.�/ D ˛0.X/�;

where ˛0 .X/ D 3 a1;1 C3 a2;2 �3 a3;1x �3 a3;2u: This is not independent 1-cocycle, and we have
the relation ˛0 � 2˛2 C ˛5 D 0.

The last relative invariant can be obtained from the contact form ! D du � u1dx. In this case
X .1/ .!/ D ˛1 .X/ !, where 1-cocycle ˛1 has the form

˛1 .X/ D �.a1;2 � a3;2x/u1 C a1;1 C 2 a2;2 � a3;1x � 2 a3;2u:

This cocycle is linearly dependent with the previous ones: 2˛0 � 3˛1 C ˛2 D 0.
These relations between 1-cocycles allow us to construct the following invariant tensors.

Theorem 3. The following tensors on jet spaces are SL3 .C/-invariants:

Function Q7 D
P 3

7

P 8
5 P 16

2

,

Differential 1-form !5 D
P7

P 2
5 P 7

2

!;

Differential 2-form �5 D
P5

P 2
2

�:

5.2. Algebra of projective differential invariants
Let’s denote by �k and �k the vector bundles on J

k induced by projection �k;1 from the canonical
bundles �1; �1 on J

1; where

�1

�
ŒL�1a

�
D TaL and �1

�
ŒL�1a

�
D TaP

2�TaL:

As we have seen symmetric differential forms

‚2 D u2

dx2

2Š
˝ @u 2 S2

�
��

2

�
˝ �2 and ‚5 D 60 � � ‚2:

The form � will be referred to a the Study 3-form. This form is obviously SL3 .C/-invariant and in
affine coordinates can be written by:

� D
P5

P2

dx3:
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In addition to the Study form we introduce a Study derivation as a total derivation r such that

� .r; r; r/ D Q7:

In affine coordinates this derivation has form

r D
P7

P 3
5 P 5

2

d

dx
:

This is a SL3 .C/-invariant derivation.
It is easy to check that the invariant Q7 is an affine function in u7 having the form

Q7 D
P 2

2

P 5
5

u3
7 C � � � :

Applying the Study derivation we get an 8-th differential invariant

Q8 D r .Q7/ D
Q7 P2

P 2
5

u8 C � � � ; (1)

and
QkC1 D r .Qk/ ;

for k � 7. All of these invariants are rational functions on the jet spaces which are defined on the
preimages of regular orbit …60.

Let us specify now the notion of a differential invariant.
First of all remark that all bundles �k;k�1 W Jk ! J

k�1 are affine, when k � 2, and J
2 is a total

space of the bundle over CP2 with fibres CP1.
Therefore, all manifolds Jk are algebraic and we can talk about functions which are rational.
We say that a rational function f on manifold k-jets Jk is a SL3.C/-differential invariant (or

simply projective differential invariant) of order k if X .k/ .f / D 0 for any vector field X 2 sl3.C/.
Therefore, due to the Rosenlicht theorem (see, [9]) differential invariants Q7; : : : ; Qk, separate

regular SL3 .C/-orbits in J
k and we arrive at the following result.

Theorem 4. 1. Any projective differential invariant of order k is a rational function of invari-
ants Q7; : : : ; Qk:

2. The field of differential invariants of order � k separates regular orbits in J
k.

6. Projective equivalence of algebraic plane curves

6.1. SL3 .C/- action
Let L and eL be an algebraic plane curves, and let L.k/;eL.k/ � J

k be their prolongations. We say
that L and eL are projectively equivalent if g .L/ D eL, for some element g 2 SL3 .C/.

All curves in this section are irreducible and not straight lines or quadrics. Then the values
Qk.L/ D QkjL.k/ of invariants Qk on the curve L are well defined.

The function Q7 .L/ we will call projective curvature of the curve (cf. [5]).
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We will consider curves L such that the function Q8.L/ ¤ 0, i.e., because r.Q7/ D Q8, L is
not is a curve of constant projective curvature. Functions Q7.L/ and Q8.L/ are rational functions
on L, and therefore they satisfy an algebraic relation

F.Q7 .L/ ; Q8 .L// D 0: (2)

Denote by †L D F �1.0/ � C2 the curve defining by (2).
We call this curve defining curve, and the minimal F (in 2) defining function.
It follows from the construction of the defining curve, that two projectively equivalent algebraic

curves have the same defining curve. Moreover, the following result holds.

Theorem 5. Two irreducible algebraic plane curves L and eL, which are not straight lines or
quadrics, are projectively equivalent if and only if their defining curves coincide.

Proof. Let’s prove the sufficiency. First of all, function Q7 .L/ might be considered as local
coordinate on L in an open domain. Then, in this domain, relation 2 can be viewed as a relation
Q8.L/ � ˆ.Q7.L// D 0, for an analytical function ˆ.

Let’s consider now relation
Q8 � ˆ.Q7/ D 0 (3)

in jet space of the 8-th order as ordinary differential equation. Remark, that both curves L andeL are local solutions of this equation. Moreover, relation (1) shows that solutions of the above
differential equation are uniquely defined by their 8-jets.

Let us take points a 2 L andea 2 eL from the corresponding domains, where the invariant Q7

is a local coordinate such that Q7.L/.a/ D Q7.eL/.ea/ .
Then there is a projective transformation ', which equalize 7-jets, '.7/.ŒL�7a/ D ŒeL�7ea. It follows

from the fact that Q7 is the only projective invariant of the order � 7.
Relation (2) shows that '.8/.ŒL�8a/ D ŒeL�8ea: Remark that, projective transformations are sym-

metries of differential equation (3). Hence, '.L/ is a solution (3) too. But 8-jets of eL and ' .L/ at
pointea equal. Therefore, due to the uniqueness of solutions, eL D ' .L/. 2

6.2. Cubics
As an example of application of the above theorem let’s consider cubic curves. As we have seen
these curves are solutions of equation

u2P7u9 C P8 D 0:

The left hand side of the equation is an obviously relative invariant.
This invariant can be rewritten in terms of invariants as follows:

P 5
2 P 5

5

Q2
7

�
Q9Q7 �

11

8
Q2

8 �
7

72
Q7Q8 �

216

35
Q3

7 �
49

21600
Q2

7

�
:

Therefore, if the cubic curves, which satisfy the above Theorem, are solutions of the 9-th order
differential equation

Q9Q7 �
11

8
Q2

8 �
7

72
Q7Q8 �

216

35
Q3

7 �
49

21600
Q2

7 D 0: (4)
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Let ˆ be the defining function of a cubic. Then, applying the Study derivative to the relation
Q8 D ˆ .Q7/, we get Q9 D ˆ0 .Q7/ ˆ .Q7/.

Relation (4) can be rewritten now as a differential equation for defining function ˆ .�/:

343

36
� 259200 �3

� 12600 �ˆˆ0
C 14175 ˆ2

C 1225 ˆ D 0:

Integrating this equation we get the following relation between invariants Q7 and Q8 which de-
pends on arbitrary constant c and has the following form F 3 C cGQ7

9
D 0, where

F D
49

147456
Q 4

8 C
343

3317760
Q 3

8 C

�
2401

199065600
C

7

192
Q3

7

�
Q 2

8 C

C

�
�

49

25920
Q 3

7 C
16807

26873856000

�
Q8 C

�
Q 3

7 �
343

1036800

��
Q 3

7 �
343

9331200

�
and

G D117649 � 6401203200 Q3
7 C 18151560 Q8 C 583443000 Q2

8 C 87071293440000 Q6
7�

� 493807104000 Q3
7Q8 C 3174474240000 Q3

7Q2
8 C 7001316000 Q3

8 C 28934010000 Q4
8:

In other words, regular cubics are projectively defined by constant c.
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