ON DERIVATIONS WITH REGULAR VALUES IN RINGS

Maria P. Lukashenko

Faculty of Mathematics and Informatics, PreCarpathian National University of Vasyl Stefanyk, Shevchenko St 57, Ivano-Frankivsk 76025 UKRAINE

Abstract

Maria P. Lukashenko, On derivations with regular values in rings, Math. Bull. T. Shevchenko Sci. Soc. 11 (2014), 5-11.

If a commutative ring R has a nonzero derivation d such that $d(x)=0$ or $d(x)$ is regular for every $x \in R$, then the classical ring of quotients Q is a field or $Q=$ $T[X] /\left(X^{2}\right)$, where the characteristic char $T=2, d(T)=0$ and $d(X)=1+a X$ for some $a \in Z(T)$. We also prove that if a right Goldie ring has a non-identity automorphism φ such that $x-\varphi(x)$ is zero or regular for any $x \in R$, then it is a semiprime ring with the classical right ring of quotients Q which is either

(1) a division ring T, or
(2) the ring direct sum $T \oplus T$, or
(3) the ring $M_{2}(T)$ of 2×2 matrices over a division ring T.

Лукашенко Марія. Про диференціювання з регуллрними значеннлмми в кілъи,лх // Мат. вісн. Наук. тов. ім. Т. Шевченка. - 2014. - Т.11. - С. 5-11.

Якщо комутативне кільце R має ненульове диференціювання d таке, що $d(x)=0$ або $d(x)$ регулярний для будь-якого $x \in R$, тоді класичне кільце дробів Q є полем або $Q=T[X] /\left(X^{2}\right)$, де характеристика $\operatorname{char} T=2, d(T)=0$ i $d(X)=1+a X$ для деякого $a \in Z(T)$. Також доведено, що якщо праве кільце Голді має неодиничний автоморфізм φ такий, що $x-\varphi(x) \in$ нульовим або регулярним для будь-якого $x \in R$, то R - напівпервинне кільце з класичним правим кільцем дробів Q, що є
(1) тілом T, або
(2) кільцевою прямою сумою $T \oplus T$, або
(3) кільцем матриць $M_{2}(T)$ розміру 2×2 над тілом T.

Introduction

Henceforth, R will be an associative ring with the identity element 1. J. Bergen, I. Herstein and C. Lanski [4] have proved that if R has a nonzero derivation d such that $d(x)=0$ or $d(x)$ is invertible for any $x \in R$, then either R is a division ring or a ring of 2×2 matrices over a division ring T or $R=T[X] /\left(X^{2}\right)$ is a quotient ring of a polynomial ring $T[X]$ by the ideal $\left(X^{2}\right)$ over a division ring T of characteristic $2, d(T)=0$ and $d(X)=a X+1$ for some $a \in Z(T)$. Some time ago J. Bergen and L. Carini [5] have obtained similar results in the case of invertible values on a Lie ideal. Results of these studies are summarized in [14], [9], [8], [12] and [15]. J. Bergen [7] has examined semiprime rings R possessing a nonzero derivation d such that $d(x)$ is nilpotent or invertible for all $x \in R$. Recently I. Kaygorodov and Y. Popov [13] have investigated alternative algebras with a derivation that takes invertible values.

If φ is an automorphism of R, then $1-\varphi$ is its φ-derivation (in the sense of [3, $\S 1.1])$. J. Bergen and I. Herstein [6] have characterized rings R in which $x=\varphi(x)$ or $x-\varphi(x)$ is invertible for every $x \in R$. In this paper we obtain some extensions of results from [4] and [6]. For this, recall that an element $x \in R$ is called left regular (respectively right regular) in R if, for every $r \in R$, the implication

$$
r x=0(\text { respectively } x r=0) \Rightarrow r=0
$$

is true. If $x \in R$ is both left and right regular in R, then it is regular. We say that R satisfies the condition $(*)$ if there is a nonzero derivation $d: R \rightarrow R$ such that, for every element $x \in R, d(x)=0$ or $d(x)$ is a regular element in R.

We prove the following
Proposition. Let R be a commutative ring. Then R has a nonzero derivation d satisfying the condition $(*)$ if and only if the classical ring of quotients $Q(R)$ is a field or $Q(R)=T[X] /\left(X^{2}\right)$, where the characteristic char $T=2, d(T)=0$ and $d(X)=1+a X$ for some $a \in Z(T)$.

A ring R is called a right Goldie ring if it contains no infinite direct sum of right ideals and satisfies the a.c.c. on right annihilators. We say that an automorphism φ of a ring R satisfies the condition $(* *)$ if, for the φ-derivation $1-\varphi$, the property $(*)$ is true. We obtain an extension of Theorem from [6].

Theorem. Let R be a right Goldie ring. If R has a non-identity automorphism φ such that $x-\varphi(x)$ is zero or regular for any $x \in R$, then it is a semiprime ring with the classical right ring of quotients Q which is either
(1) a division ring T, or
(2) is the ring direct sum $T \oplus T$, or
(3) the ring $M_{2}(T)$ of 2×2 matrices over a division ring T.

By [6], any automorphism $\Phi: Q \rightarrow Q$ extending an automorphism $\varphi: R \rightarrow R$ with the property $(* *)$ has the following propeties:
(i) an automorphism Φ is non-inner if and only if T has a non-inner automorphism ψ such that $\psi^{2}(x)=u^{-1} x u$ for every $x \in T$, where $\psi(u)=u$ and $u \neq y \psi(u)$ for any $y \in T$,
(ii) an automorphism Φ is inner if and only if T does not contains all quadratic extensions of $Z(T)$.

Any unexplained terminology is standard and follows [11] and [16].

1. Derivation with regular values

Lemma 1.1. Let R be a ring satisfying the condition (*) and $x \in R$. If $d(x)=0$, then $x=0$ or x is a regular element in R.

Proof. Suppose that $x \neq 0$. Since d is nonzero, we have $d(y) \neq 0$ for some element $y \in R$. By the condition $(*), d(y)$ is a regular element. Then

$$
d(x y)=x d(y) \neq 0 \text { and } d(y x)=d(y) x \neq 0,
$$

and hence $x d(y)$ and $d(y) x$ are regular. If $b \in R$ and $b x=0$ (respectively $x b=0$), then $b(x d(y))=(b x) d(y)=0$ (respectively, $(d(y) x) b=d(y)(x b)=0)$. By the above, $b=0$ and therefore x is regular in the ring R.

Lemma 1.2. Let d be a nonzero derivation of R that satisfies the condition (*). If L is a nonzero left ideal of R, then its image $d(L) \neq 0$ is nonzero.

Proof. Suppose that $L \neq R$ is a proper left ideal of R. Assume, by contrary, that $d(L)=0$. If $0 \neq a \in L$, then, by Lemma 1.1, we can conclude that a is regular in R. Since $r a \in L$ for every $r \in R$, we deduce that $0=d(r a)=d(r) a$. The regularity of $a \in R$ gives that $d(r)=0$, and so $d=0$. This contradiction shows that $d(L) \neq 0$.

The torsion part of a ring R is the set

$$
F(R)=\left\{r \in R \mid r \text { has a finite order in the additive group } R^{+} \text {of } R\right\} .
$$

If p is a prime, then the p-component of R is the set

$$
F_{p}(R)=\left\{r \in F(R) \mid r \text { is of order } p^{k} \text {, where } k \text { is a non-negative integer }\right\} .
$$

Lemma 1.3. If R is a ring satisfying the condition (*), then the characteristic char $R=p$ for some prime p or $F(R)=0$ (and therefore the additive group R^{+} is torsion-free).

Proof. Assume that $F(R) \neq 0$. Then the additive group $F(R)^{+}$has the nonzero p-component $F_{p}(R)$ for some prime p. Let $x \in F_{p}(R)$ be an element of order p^{k}. Suppose that $k \geq 2$. Then $p^{k} d(x)=d\left(p^{k} x\right)=0$, and therefore $(p d(x))^{k}=0$. If $p d(x) \neq 0$, then $p d(x)=d(p x)$ is a zero divisor in R, a contradiction with the
condition $(*)$. Therefore $d(p x)=0$ and, by Lemma $1.1, p x$ is a regular element in R (and we obtain a contradiction) or $p x=0$. Hence $k=1$.

Assume that the p-component $F_{p}(R)$ is proper in $F(R)$. Then there exists a prime q such that $q \neq p$ and $F_{q}(R)$ is nonzero. By Lemma $1.2, d\left(F_{q}(R)\right) \neq 0$ and $d\left(F_{p}(R)\right) \neq 0$. As a consequence $d\left(F_{q}(R)\right) d\left(F_{p}(R)\right)=0$, a contradiction with $(*)$. Thus $F(R)=F_{p}(R)$.

If $F_{p}(R)$ is proper in R, then $p R$ is nonzero and $F_{p}(R) \cdot p R=0$, a contradiction in view of $(*)$ and Lemma 1.2. Hence $F_{p}(R)=R$.

A ring without nonzero nilpotent elements is called reduced.
Corollary 1.4. Let d be a nonzero derivation of a ring R satisfying the condition $(*)$ and $e=e^{2} \in R$. If R is reduced (respectively commutative), then each idempotent e is trivial (that is $e \in\{0,1\}$).

Proof. It is clear that R contains two trivial idempotents 0,1 . Assume, by contrary, that in R there is an idempotent $e \notin\{0,1\}$. Then $e(1-e)=0=(1-e) e$, and therefore e is a zero divisor. Since $d(e)=d\left(e^{2}\right)=d(e) e+e d(e)$ and $d(e) e=d(e) e+e d(e) e$, we have $e d(e) e=0$ and $(d(e) e)^{2}=0$. But R is reduced (respectively commutative) and so $e d(e)=0=d(e) e$. By Lemma 1.1, $d(e) \neq 0$ and, by the condition $(*)$, an element $d(e)$ is regular. As a consequence, $e=0$, a contradiction.

By $\mathbb{P}(R)$ we denote the prime radical of a ring R that is the intersection of all prime ideals in R.

Lemma 1.5. If a ring R satisfies the condition $(*)$, then:
(i) $\mathbb{P}(R)^{2}=0$,
(ii) if R^{+}is torsion-free (respectively char $R>2$), then $\mathbb{P}(R)=0$ (and consequently the ring R is semiprime).

Proof. (i) If $\mathbb{P}(R)^{2} \neq 0$, then $0 \neq d\left(\mathbb{P}(R)^{2}\right)$ by Lemma 1.2. But $d\left(\mathbb{P}(R)^{2}\right) \subseteq \mathbb{P}(R)$ and we obtain a contradiction.
(ii) By Proposition 1.3 of [10] (respectively Theorem 8.16 of [2]), we have that $d(\mathbb{P}(R)) \subseteq \mathbb{P}(R)$. Then, in view of $(*)$ and Lemma 1.1 , we conclude that $\mathbb{P}(R)=0$.

Lemma 1.6. A semiprime ring R with the condition (*) is prime.
Proof. Assume that A, B are nonzero ideals of R such that $A B=0$. Then $B A=0$ and there exist nonzero elements $a \in A$ and $b \in B$ such that $a b=0=b a, d(b) \neq 0$ by Lemma 1.2 and $B \ni d(a) b=-a d(b) \in A, B \ni d(b) a=-b d(a) \in A$. Since $A \cap B=0$, we conclude that $a d(b)=0=d(b) a$ and this leads to a contradiction with $(*)$. Thus R is a prime ring.

Corollary 1.7. Let R be a commutative ring with the condition (*). If the torsion part $F(R)=0$ is zero (respectively R is of characteristic $n>0$ and the greatest common divisor $\operatorname{GCD}(n, 2)=1$ is trivial), then R is reduced (and consequently prime).

Proof. Assume that $x^{2}=0$ for some element $x \in R$. Then $0=d\left(x^{2}\right)=2 x d(x)$ and therefore $x d(x)=0$. By the condition $(*), d(x)=0$ and, by Lemma 1.1, $x=0$. Hence the ring R is reduced.

In a commutative ring R, for a set of all its regular elements S, there exist the ring of quotients $Q(R)=R S^{-1}$ (see [1]).
Proof of Proposition. If the ring R is prime (and consequently a domain), then $Q(R)$ is a field. Therefore we assume that R is not a domain. By Lemma 1.5, $\mathbb{P}(R)^{2}=0$ and char $R=2$. Let d be a nonzero derivation of R satisfying the property (*). Then we can extended d to a derivation D of $Q(R)$ (see [17]). Thus, by Theorem 1 of [4], $Q(R)=T[X] /\left(X^{2}\right)$, where the characteristic char $T=2$, $d(T)=0$ and $d(X)=1+a X$ for some $a \in Z(T)$.

2. Rings that have a φ-derivation with regular values

Lemma 2.1. Let R be a ring with a non-identity automorphism φ satisfying the condition ($* *$). If $\varphi(x)=x$ for some $x \in R$, then $x=0$ or x is regular in R.

Proof. Since $\varphi(r)-r \neq 0$ for some $r \in R, x(\varphi(r)-r)=\varphi(x r)-x r \neq 0$ and $\varphi(r)-r) x=\varphi(r x)-r x \neq 0$. Hence x is regular.

Corollary 2.2. Let R be a ring with a non-identity automorphism φ satisfying the condition ($* *$). Then:
(a) $\mathbb{P}(R)=0$ (and so R is semiprime),
(b) the additive group R^{+}is torsion-free or $p R=0$ for some prime p.

Proof. (a) If $0 \neq x \in \mathbb{P}(R)$, then, by Lemma 2.1 and the condition ($* *$),

$$
0 \neq \varphi(x)-x \in \mathbb{P}(R)
$$

is a regular element of R, a contradiction.
(b) Suppose that there exists a nonzero element $0 \neq x \in F_{p}(R)$ of order p^{k}, where k is some positive integer. Then $x-\varphi(x) \in F_{p}(R)$ and $\left(p^{k} \cdot 1\right)(x-\varphi(x))=0$. Lemma 2.1 and the condition ($* *$) imply that $k=1$ and $p R=0$.

If R is a semiprime right Goldie ring, then there exist its classical right ring of quotients $Q=Q(R)$ [11, Theorems 7.2.1-7.2.3]. Every regular element of R is invertible in Q.

Proof of Theorem. Assume that $\varphi \in \operatorname{Aut} R$ satisfies ($* *$) and $\Phi \in \operatorname{Aut} Q$ is its extension on the classical right ring of quotients Q of R. By Corollary 2.2, Q is semiprime. Preliminary we need to prove some properties.
(1°) If I is a proper left ideal of Q, then $I \cap \Phi(I)=0$. If $I \cap \Phi(I) \neq 0$, then $I=Q$, and we obtain a contradiction.
$\left(2^{\circ}\right)$ Every left ideal $I \neq 0$ of Q is minimal. Indeed, for a nonzero proper left ideal $I<Q$, the sum $M=I+\Phi(I)$ is also a left ideal in Q and $0 \neq \Phi(I) \leq M$. Therefore $M=Q$ and $Q=I \oplus \Phi(I)$ is a direct sum of left ideals. If S is a nonzero left ideal of Q and $S \leq I$, then, by the same reasons, $Q=S \oplus \Phi(S)$ is a direct sum of left ideals. Therefore, for every $0 \neq l \in I$, we have $l=n+\Phi(m)$ with some elements $n, m \in S$. Hence $\Phi(m)=l-n \in I \cap \Phi(I)$, and this implies that $l=n \in S, m=0$ and $I=S$ is a minimal left ideal of Q.
(3°) If Q is not simple, then $Q=I_{1} \oplus I_{2}$ is a direct sum of ideals I_{1}, I_{2} such that $I_{2}=\Phi\left(I_{1}\right)$ is a division ring. If I is a nonzero proper ideal of Q, then, by $\left(2^{\circ}\right), Q=I \oplus \Phi(I)$ is a direct sum of ideals. Moreover I is a minimal left ideal of Q. Therefore $I \cong \Phi(I)$ is a division ring.
(4) If Q is a simple ring, then Q is a division ring or $Q=M_{2}(T)$ is a ring of 2×2 matrices over a division ring T. If we suppose that Q is not a division ring, then, in view of $\left(2^{\circ}\right), Q$ is simple Artinian. It easily hold that $Q=M_{2}(T)$ over a division ring T.

The rest follows from the Theorem of [6].

REFERENCES

1. M.F. Atiyah, I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1969), 128p.
2. K.I. Beidar, A.V. Mikhalëv, Orthogonal completeness and algebraic systems, Uspekhi Mat. Nauk 40 (1985), 79-115 (Russian); English transl. in Russian Math. Surveys 40 (1985), 51-95.
3. K.I. Beidar, W.S. Martindale III, A.V. Mikhalëv, Rings with generalized identities, Marcel Dekker Inc., New York Basel Hong Kong (1996), 522p.
4. J. Bergen, I.N. Herstein, C. Lanski, Derivations with invertible values, Canad. J. Math. 35 (1983), 300-310.
5. J. Bergen, L. Carini, Derivations with invertible values on a Lie ideal, Can. Math. Bull. 31 (1988), 103-110.
6. J. Bergen, I.N. Herstein, Rings with a special kind of automorphism, Canad. Math. Bull. 26 (1983), 3-8.
7. J. Bergen, Lie ideals with regular and nilpotent elements and a result on derivations, Rend. Circolo Mar. Palermo Ser. II 33 (1984), 99-108.
8. J.C. Chang, α-Derivations with invertible values, Bull. Inst. Math. Acad. Sinica 13 (1985), 323-333.
9. A. Giambruno, P. Misso, P.C. Miles, Derivations with invertible values in rings with involution, Pacif. J. Math. 123 (1986), 47-54.
10. K.R. Goodearl, R.B. Warfield, Jr., Primitivity in differential operator rings, Math. Zeitschrift 180 (1982), 503-523.
11. I.N. Herstein, Noncommutative rings, The Carus Math. Monographs, No. 15, John Wiley and Sons Inc., New York (1968), 199p.
12. M. Hongan, H. Komatsu, (σ, τ)-derivations with invertible values, Bull. Inst. Math. Acad. Sinica 15 (1987), 411-415.
13. I. Kaygorodov, Y. Popov, Alternative algebras admiting derivations with invertible values and invertible derivations, arxiv:1212.0615v2 (31 Jul 2013).
14. H. Komatsu and A. Nakajima, Generalized derivations with invertible values, Comm. Algebra 32 (2004), 1937-1944.
15. T.-K. Lee, Derivations with invertible values on a multilinear polynomial, Proc. Amer. Math. Soc. 119 (1993), 1077-1083.
16. J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings, Pure and Appl. math. A Wiley-Intersci. Publ., John Wiley and Sons, Chichester New York Brisbone Toronto Singapore (1987), 596p.
17. L. Vaš, Extending ring derivations to right and symmetric rings and modules of quotients, Comm. Algebra 37 (2009), 794-810.
