Математичний Вісник Наукового Товариства ім. Тараса Шевченка 2014. — Т.11

Mathematical Bulletin of Taras Shevchenko Scientific Society 2014. — V.11

ON DERIVATIONS WITH REGULAR VALUES IN RINGS

Maria P. Lukashenko

Faculty of Mathematics and Informatics, PreCarpathian National University of Vasyl Stefanyk, Shevchenko St 57, Ivano-Frankivsk 76025 UKRAINE

Maria P. Lukashenko, On derivations with regular values in rings, Math. Bull. T. Shevchenko Sci. Soc. **11** (2014), 5–11.

If a commutative ring R has a nonzero derivation d such that d(x) = 0 or d(x) is regular for every $x \in R$, then the classical ring of quotients Q is a field or $Q = T[X]/(X^2)$, where the characteristic char T = 2, d(T) = 0 and d(X) = 1 + aX for some $a \in Z(T)$. We also prove that if a right Goldie ring has a non-identity automorphism φ such that $x - \varphi(x)$ is zero or regular for any $x \in R$, then it is a semiprime ring with the classical right ring of quotients Q which is either

- (1) a division ring T, or
- (2) the ring direct sum $T \oplus T$, or
- (3) the ring $M_2(T)$ of 2×2 matrices over a division ring T.

Лукашенко Марія. *Про диференціювання з регулярними значеннями в кільцях* // Мат. вісн. Наук. тов. ім. Т. Шевченка. — 2014. — Т.11. — С. 5–11.

Якщо комутативне кільце R має ненульове диференціювання d таке, що d(x) = 0або d(x) регулярний для будь-якого $x \in R$, тоді класичне кільце дробів Q є полем або $Q = T[X]/(X^2)$, де характеристика char T = 2, d(T) = 0 і d(X) = 1 + aX для деякого $a \in Z(T)$. Також доведено, що якщо праве кільце Голді має неодиничний автоморфізм φ такий, що $x - \varphi(x)$ є нульовим або регулярним для будь-якого $x \in R$, то R – напівпервинне кільце з класичним правим кільцем дробів Q, що є

(1) тілом T, або

E-mail: bilochka.90@mail.ru

- (2) кільцевою прямою сумою $T \oplus T$, або
- (3) кільцем матриць $M_2(T)$ розміру 2×2 над тілом T.

Key words and phrases: Semiprime ring, derivation, automorphism

УДК: 515.12+512.58

²⁰¹⁰ Mathematics Subject Classification: 18B30, 54B30

Introduction

Henceforth, R will be an associative ring with the identity element 1. J. Bergen, I. Herstein and C. Lanski [4] have proved that if R has a nonzero derivation dsuch that d(x) = 0 or d(x) is invertible for any $x \in R$, then either R is a division ring or a ring of 2×2 matrices over a division ring T or $R = T[X]/(X^2)$ is a quotient ring of a polynomial ring T[X] by the ideal (X^2) over a division ring T of characteristic 2, d(T) = 0 and d(X) = aX + 1 for some $a \in Z(T)$. Some time ago J. Bergen and L. Carini [5] have obtained similar results in the case of invertible values on a Lie ideal. Results of these studies are summarized in [14], [9], [8], [12] and [15]. J. Bergen [7] has examined semiprime rings R possessing a nonzero derivation d such that d(x) is nilpotent or invertible for all $x \in R$. Recently I. Kaygorodov and Y. Popov [13] have investigated alternative algebras with a derivation that takes invertible values.

If φ is an automorphism of R, then $1-\varphi$ is its φ -derivation (in the sense of [3, § 1.1]). J. Bergen and I. Herstein [6] have characterized rings R in which $x = \varphi(x)$ or $x - \varphi(x)$ is invertible for every $x \in R$. In this paper we obtain some extensions of results from [4] and [6]. For this, recall that an element $x \in R$ is called *left regular* (respectively *right regular*) in R if, for every $r \in R$, the implication

rx = 0 (respectively xr = 0) $\Rightarrow r = 0$

is true. If $x \in R$ is both left and right regular in R, then it is *regular*. We say that R satisfies the condition (*) if there is a nonzero derivation $d: R \to R$ such that, for every element $x \in R$, d(x) = 0 or d(x) is a regular element in R.

We prove the following

Proposition. Let R be a commutative ring. Then R has a nonzero derivation d satisfying the condition (*) if and only if the classical ring of quotients Q(R) is a field or $Q(R) = T[X]/(X^2)$, where the characteristic char T = 2, d(T) = 0 and d(X) = 1 + aX for some $a \in Z(T)$.

A ring R is called a right Goldie ring if it contains no infinite direct sum of right ideals and satisfies the a.c.c. on right annihilators. We say that an automorphism φ of a ring R satisfies the condition (**) if, for the φ -derivation $1-\varphi$, the property (*) is true. We obtain an extension of Theorem from [6].

Theorem. Let R be a right Goldie ring. If R has a non-identity automorphism φ such that $x - \varphi(x)$ is zero or regular for any $x \in R$, then it is a semiprime ring with the classical right ring of quotients Q which is either

- (1) a division ring T, or
- (2) is the ring direct sum $T \oplus T$, or
- (3) the ring $M_2(T)$ of 2×2 matrices over a division ring T.

By [6], any automorphism $\Phi: Q \to Q$ extending an automorphism $\varphi: R \to R$ with the property (**) has the following properties:

- (i) an automorphism Φ is non-inner if and only if T has a non-inner automorphism ψ such that $\psi^2(x) = u^{-1}xu$ for every $x \in T$, where $\psi(u) = u$ and $u \neq y\psi(u)$ for any $y \in T$,
- (*ii*) an automorphism Φ is inner if and only if T does not contains all quadratic extensions of Z(T).

Any unexplained terminology is standard and follows [11] and [16].

1. Derivation with regular values

Lemma 1.1. Let R be a ring satisfying the condition (*) and $x \in R$. If d(x) = 0, then x = 0 or x is a regular element in R.

Proof. Suppose that $x \neq 0$. Since d is nonzero, we have $d(y) \neq 0$ for some element $y \in R$. By the condition (*), d(y) is a regular element. Then

$$d(xy) = xd(y) \neq 0$$
 and $d(yx) = d(y)x \neq 0$,

and hence xd(y) and d(y)x are regular. If $b \in R$ and bx = 0 (respectively xb = 0), then b(xd(y)) = (bx)d(y) = 0 (respectively, (d(y)x)b = d(y)(xb) = 0). By the above, b = 0 and therefore x is regular in the ring R.

Lemma 1.2. Let d be a nonzero derivation of R that satisfies the condition (*). If L is a nonzero left ideal of R, then its image $d(L) \neq 0$ is nonzero.

Proof. Suppose that $L \neq R$ is a proper left ideal of R. Assume, by contrary, that d(L) = 0. If $0 \neq a \in L$, then, by Lemma 1.1, we can conclude that a is regular in R. Since $ra \in L$ for every $r \in R$, we deduce that 0 = d(ra) = d(r)a. The regularity of $a \in R$ gives that d(r) = 0, and so d = 0. This contradiction shows that $d(L) \neq 0$.

The torsion part of a ring R is the set

 $F(R) = \{r \in R \mid r \text{ has a finite order in the additive group } R^+ \text{ of } R\}.$

If p is a prime, then the *p*-component of R is the set

 $F_p(R) = \{r \in F(R) \mid r \text{ is of order } p^k, \text{ where } k \text{ is a non-negative integer}\}.$

Lemma 1.3. If R is a ring satisfying the condition (*), then the characteristic char R = p for some prime p or F(R) = 0 (and therefore the additive group R^+ is torsion-free).

Proof. Assume that $F(R) \neq 0$. Then the additive group $F(R)^+$ has the nonzero p-component $F_p(R)$ for some prime p. Let $x \in F_p(R)$ be an element of order p^k . Suppose that $k \geq 2$. Then $p^k d(x) = d(p^k x) = 0$, and therefore $(pd(x))^k = 0$. If $pd(x) \neq 0$, then pd(x) = d(px) is a zero divisor in R, a contradiction with the

condition (*). Therefore d(px) = 0 and, by Lemma 1.1, px is a regular element in R (and we obtain a contradiction) or px = 0. Hence k = 1.

Assume that the *p*-component $F_p(R)$ is proper in F(R). Then there exists a prime *q* such that $q \neq p$ and $F_q(R)$ is nonzero. By Lemma 1.2, $d(F_q(R)) \neq 0$ and $d(F_p(R)) \neq 0$. As a consequence $d(F_q(R))d(F_p(R)) = 0$, a contradiction with (*). Thus $F(R) = F_p(R)$.

If $F_p(R)$ is proper in R, then pR is nonzero and $F_p(R) \cdot pR = 0$, a contradiction in view of (*) and Lemma 1.2. Hence $F_p(R) = R$.

A ring without nonzero nilpotent elements is called *reduced*.

Corollary 1.4. Let d be a nonzero derivation of a ring R satisfying the condition (*) and $e = e^2 \in R$. If R is reduced (respectively commutative), then each idempotent e is trivial (that is $e \in \{0, 1\}$).

Proof. It is clear that R contains two trivial idempotents 0, 1. Assume, by contrary, that in R there is an idempotent $e \notin \{0,1\}$. Then e(1-e) = 0 = (1-e)e, and therefore e is a zero divisor. Since $d(e) = d(e^2) = d(e)e + ed(e)$ and d(e)e = d(e)e + ed(e)e, we have ed(e)e = 0 and $(d(e)e)^2 = 0$. But R is reduced (respectively commutative) and so ed(e) = 0 = d(e)e. By Lemma 1.1, $d(e) \neq 0$ and, by the condition (*), an element d(e) is regular. As a consequence, e = 0, a contradiction.

By $\mathbb{P}(R)$ we denote the prime radical of a ring R that is the intersection of all prime ideals in R.

Lemma 1.5. If a ring R satisfies the condition (*), then:

- (i) $\mathbb{P}(R)^2 = 0$,
- (ii) if R^+ is torsion-free (respectively char R > 2), then $\mathbb{P}(R) = 0$ (and consequently the ring R is semiprime).

Proof. (i) If $\mathbb{P}(R)^2 \neq 0$, then $0 \neq d(\mathbb{P}(R)^2)$ by Lemma 1.2. But $d(\mathbb{P}(R)^2) \subseteq \mathbb{P}(R)$ and we obtain a contradiction.

(*ii*) By Proposition 1.3 of [10] (respectively Theorem 8.16 of [2]), we have that $d(\mathbb{P}(R)) \subseteq \mathbb{P}(R)$. Then, in view of (*) and Lemma 1.1, we conclude that $\mathbb{P}(R) = 0$.

Lemma 1.6. A semiprime ring R with the condition (*) is prime.

Proof. Assume that A, B are nonzero ideals of R such that AB = 0. Then BA = 0 and there exist nonzero elements $a \in A$ and $b \in B$ such that $ab = 0 = ba, d(b) \neq 0$ by Lemma 1.2 and $B \ni d(a)b = -ad(b) \in A, B \ni d(b)a = -bd(a) \in A$. Since $A \cap B = 0$, we conclude that ad(b) = 0 = d(b)a and this leads to a contradiction with (*). Thus R is a prime ring. \Box

Corollary 1.7. Let R be a commutative ring with the condition (*). If the torsion part F(R) = 0 is zero (respectively R is of characteristic n > 0 and the greatest common divisor GCD(n, 2) = 1 is trivial), then R is reduced (and consequently prime).

Proof. Assume that $x^2 = 0$ for some element $x \in R$. Then $0 = d(x^2) = 2xd(x)$ and therefore xd(x) = 0. By the condition (*), d(x) = 0 and, by Lemma 1.1, x = 0. Hence the ring R is reduced.

In a commutative ring R, for a set of all its regular elements S, there exist the ring of quotients $Q(R) = RS^{-1}$ (see [1]).

Proof of Proposition. If the ring R is prime (and consequently a domain), then Q(R) is a field. Therefore we assume that R is not a domain. By Lemma 1.5, $\mathbb{P}(R)^2 = 0$ and char R = 2. Let d be a nonzero derivation of R satisfying the property (*). Then we can extended d to a derivation D of Q(R) (see [17]). Thus, by Theorem 1 of [4], $Q(R) = T[X]/(X^2)$, where the characteristic char T = 2, d(T) = 0 and d(X) = 1 + aX for some $a \in Z(T)$.

2. Rings that have a φ -derivation with regular values

Lemma 2.1. Let R be a ring with a non-identity automorphism φ satisfying the condition (**). If $\varphi(x) = x$ for some $x \in R$, then x = 0 or x is regular in R.

Proof. Since $\varphi(r) - r \neq 0$ for some $r \in R$, $x(\varphi(r) - r) = \varphi(xr) - xr \neq 0$ and $\varphi(r) - r x = \varphi(rx) - rx \neq 0$. Hence x is regular.

Corollary 2.2. Let R be a ring with a non-identity automorphism φ satisfying the condition (**). Then:

(a) $\mathbb{P}(R) = 0$ (and so R is semiprime),

(b) the additive group R^+ is torsion-free or pR = 0 for some prime p.

Proof. (a) If $0 \neq x \in \mathbb{P}(R)$, then, by Lemma 2.1 and the condition (**),

$$0 \neq \varphi(x) - x \in \mathbb{P}(R)$$

is a regular element of R, a contradiction.

(b) Suppose that there exists a nonzero element $0 \neq x \in F_p(R)$ of order p^k , where k is some positive integer. Then $x - \varphi(x) \in F_p(R)$ and $(p^k \cdot 1)(x - \varphi(x)) = 0$. Lemma 2.1 and the condition (**) imply that k = 1 and pR = 0.

If R is a semiprime right Goldie ring, then there exist its classical right ring of quotients Q = Q(R) [11, Theorems 7.2.1–7.2.3]. Every regular element of R is invertible in Q.

Proof of Theorem. Assume that $\varphi \in \operatorname{Aut} R$ satisfies (**) and $\Phi \in \operatorname{Aut} Q$ is its extension on the classical right ring of quotients Q of R. By Corollary 2.2, Q is semiprime. Preliminary we need to prove some properties.

(1°) If I is a proper left ideal of Q, then $I \cap \Phi(I) = 0$. If $I \cap \Phi(I) \neq 0$, then I = Q, and we obtain a contradiction.

(2°) Every left ideal $I \neq 0$ of Q is minimal. Indeed, for a nonzero proper left ideal I < Q, the sum $M = I + \Phi(I)$ is also a left ideal in Q and $0 \neq \Phi(I) \leq M$. Therefore M = Q and $Q = I \oplus \Phi(I)$ is a direct sum of left ideals. If S is a nonzero left ideal of Q and $S \leq I$, then, by the same reasons, $Q = S \oplus \Phi(S)$ is a direct sum of left ideals. Therefore, for every $0 \neq l \in I$, we have $l = n + \Phi(m)$ with some elements $n, m \in S$. Hence $\Phi(m) = l - n \in I \cap \Phi(I)$, and this implies that $l = n \in S, m = 0$ and I = S is a minimal left ideal of Q.

(3°) If Q is not simple, then $Q = I_1 \oplus I_2$ is a direct sum of ideals I_1, I_2 such that $I_2 = \Phi(I_1)$ is a division ring. If I is a nonzero proper ideal of Q, then, by (2°), $Q = I \oplus \Phi(I)$ is a direct sum of ideals. Moreover I is a minimal left ideal of Q. Therefore $I \cong \Phi(I)$ is a division ring.

(4°) If Q is a simple ring, then Q is a division ring or $Q = M_2(T)$ is a ring of 2×2 matrices over a division ring T. If we suppose that Q is not a division ring, then, in view of (2°), Q is simple Artinian. It easily hold that $Q = M_2(T)$ over a division ring T.

The rest follows from the Theorem of [6].

REFERENCES

- 1. M.F. Atiyah, I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1969), 128p.
- K.I. Beidar, A.V. Mikhalëv, Orthogonal completeness and algebraic systems, Uspekhi Mat. Nauk 40 (1985), 79-115 (Russian); English transl. in Russian Math. Surveys 40 (1985), 51-95.
- K.I. Beidar, W.S. Martindale III, A.V. Mikhalëv, Rings with generalized identities, Marcel Dekker Inc., New York Basel Hong Kong (1996), 522p.
- J. Bergen, I.N. Herstein, C. Lanski, Derivations with invertible values, Canad. J. Math. 35 (1983), 300-310.
- J. Bergen, L. Carini, Derivations with invertible values on a Lie ideal, Can. Math. Bull. 31 (1988), 103-110.
- J. Bergen, I.N. Herstein, Rings with a special kind of automorphism, Canad. Math. Bull. 26 (1983), 3-8.
- J. Bergen, Lie ideals with regular and nilpotent elements and a result on derivations, Rend. Circolo Mar. Palermo Ser. II 33 (1984), 99-108.
- J.C. Chang, α-Derivations with invertible values, Bull. Inst. Math. Acad. Sinica 13 (1985), 323-333.
- A. Giambruno, P. Misso, P.C. Miles, Derivations with invertible values in rings with involution, Pacif. J. Math. 123 (1986), 47-54.
- K.R. Goodearl, R.B. Warfield, Jr., Primitivity in differential operator rings, Math. Zeitschrift 180 (1982), 503-523.
- 11. I.N. Herstein, Noncommutative rings, The Carus Math. Monographs, No. 15, John Wiley and Sons Inc., New York (1968), 199p.
- M. Hongan, H. Komatsu, (σ, τ)-derivations with invertible values, Bull. Inst. Math. Acad. Sinica 15 (1987), 411–415.

- 13. I. Kaygorodov, Y. Popov, Alternative algebras admiting derivations with invertible values and invertible derivations, arxiv:1212.0615v2 (31 Jul 2013).
- H. Komatsu and A. Nakajima, Generalized derivations with invertible values, Comm. Algebra 32 (2004), 1937–1944.
- T.-K. Lee, Derivations with invertible values on a multilinear polynomial, Proc. Amer. Math. Soc. 119 (1993), 1077-1083.
- J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings, Pure and Appl. math. A Wiley-Intersci. Publ., John Wiley and Sons, Chichester New York Brisbone Toronto Singapore (1987), 596p.
- 17. L. Vaš, Extending ring derivations to right and symmetric rings and modules of quotients, Comm. Algebra **37** (2009), 794-810.

Received 16.11.2014