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In this note we collect some known information and prove new results about the small
uncountable cardinal q0. The cardinal q0 is defined as the smallest cardinality of a subset
A ⊂ R that is not a Q-set (a subspace A ⊂ R is a Q-set if each subset B ⊂ A is Fσ in A).
We present a simple proof of a folklore fact that p ≤ q0 ≤ min{b, non(N ), log(c+)}, and
also establish the consistency of a number of strict inequalities between the cardinal
q0 and other standard small uncountable cardinals. In particular, we establish the
consistency of p < lr < q0, where lr denotes the linear refinement number. We also
prove that q0 ≤ non(I) for any q0-flexible cccc σ-ideal I on R.
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1. Introduction and results in ZFC

A subset X of the real line is a Q-set if each subset A ⊂ X is relative Fσ-
set in A, see [32, �4]. The study of Q-sets was initiated by founders of Set-
Theoretic Topology: Hausdor� [20], Sierpi�nski [39] and Rothberger [38]. Q-Sets
are important as they appear naturally in problems related to (hereditary) normal
or σ-discrete spaces; see [1], [10], [15] � [19], [21], [22], [25], [36], [37], [40], [41].

We shall be interested in two critical cardinals related to Q-sets:

• q0 = min{|X| : X ⊂ R, X is not a Q-set};
• q = min{κ : no subset X ⊂ R of cardinality |X| ≥ κ is a Q-set}.

It is clear that q0 ≤ q. Since each countable subset of the real line is a Q-set
and no subset A ⊂ R of cardinality continuum is a Q-set, the cardinals q0 and
q are uncountable and lie in the interval [ω1, c]. So, these cardinals are another
examples of small uncountable cardinals considered in [14] and [45]. It seems
that for the �rst time the cardinals q0 and q appeared in the survey paper of
J. Vaughan [45], who referred to the paper [19], which was not published yet
at the moment of writing [45]. Unfortunately, the cardinal q0 disappeared in
the �nal version of the paper [19]. Our initial motivation was to collect known
information on the cardinal q0 in order to have a proper reference (in particular,
in the paper [1] exploiting this cardinal). Studying the subject we have found a lot
of interesting information on the cardinals q0 and q scattered in the literature. It
seems that a unique paper devoted exclusively to the cardinal q0 is [7] of Brendle
(who denotes this cardinal by q). Among many other results, in [7] Brendle found
a characterization of the cardinal q0 in terms of weakly separated families.

Two families A and B of in�nite subsets of a countable set X are

• orthogonal if A ∩B is �nite for every sets A ∈ A and B ∈ B;
• weakly separated if there is a subset D ⊂ X such that D ∩ A is in�nite for
every A ∈ A and D ∩B is �nite for every B ∈ B.

Let us recall that a family A of in�nite sets is almost disjoint if A∩B is �nite for
any distinct sets A,B ∈ A.

Theorem 1 (Brendle [7]). The cardinal q0 is equal to the smallest cardinality

of a subset A ⊂ 2ω such that the almost disjoint family A = {Bx : x ∈ A} of

branches Bx = {x|n : n ∈ ω} of the binary tree 2<ω contains a subfamily B ⊂ A
that cannot be weakly separated from its complement A \ B.

Having in mind this characterization, let us consider the following two cardi-
nals ([7]):

• ap, equal to the smallest cardinality of an almost disjoint family A ⊂ [ω]ω

containing a subfamily B ⊂ A that cannot be weakly separated from A\B;
• dp, equal to the smallest cardinality of the union A ∪ B of two orthogonal
families A,B ⊂ [ω]ω that cannot be weakly separated.
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The notation dp is an abbreviation of �Dow Principle� considered by Dow in [13].
It is clear that dp ≤ ap ≤ q0 ≤ q. In [7] Brendle observed that the cardinals dp,

ap, and q0 are in the interval [p, b]. Let us recall that b is the smallest cardinality
of a subset B of the Baire space ωω, that is not contained in a σ-compact subset
of ωω.

The cardinal p is the smallest cardinality of a family F of in�nite subsets of
ω such that

• F is centered, which means that for each �nite subfamily E ⊂ F the inter-
section ∩E is in�nite, but
• F has no in�nite pseudo-intersection I ⊂ ω (i.e., an in�nite set I ⊂ ω such
that I \ F is �nite for all F ∈ F).

For a cardinal κ its logarithm is de�ned as log(κ) = min{λ : 2λ ≥ κ}. It
is clear that log(c) = ω and log(c+) ∈ [ω1, c], so log(c+) is a small uncountable
cardinal. K�onig's Lemma implies that log(c+) ≤ cf(c). We refer the reader to [14],
[45] or [4] for the de�nitions and basic properties of small uncountable cardinals
discussed in this note.

The following theorem collects some known lower and upper bounds on the
cardinals dp, ap, q0 and q. For the lower bound p ≤ dp established in [7] (and
implicitly in [13]) we give an elementary proof, which does not involve Bell's
characterization [3] of p (as the smallest cardinal for which Martin's Axiom for
σ-centered posets fails). The inequality p ≤ q0 is often attributed to Rothberger
who actually proved in [38] that t > ω1 implies q0 > ω1. According to a recent
breakthrough result of Malliaris and Shelah [29], t = p.

Theorem 2. p ≤ dp ≤ ap ≤ q0 ≤ min{b, q} ≤ q ≤ log(c+).

Proof. The equality q ≤ log(c+) follows from the fact that each subset of a Q-set
is Borel, and that a second countable space contains at most c Borel subsets.

The inequality q0 ≤ q is trivial. To see that q0 ≤ b, choose any countable
dense subset Q in the Cantor cube 2ω and consider its complement 2ω \Q, which
is homeomorphic to the Baire space ωω by the Aleksandrov-Urysohn Theorem
[26, 7.7]. By the de�nition of the cardinal b, the space 2ω \Q contains a subset B
of cardinality |B| = b that is contained in no σ-compact subset of 2ω \Q. Then
the union A = B ∪ Q is not a Q-set as the subset B is not relative Fσ-set in A.
Consequently, q0 ≤ |B ∪Q| = |B| = b.

The inequality ad ≤ q0 follows from Theorem 1 and dp ≤ ap is trivial. Finally,
we prove the inequality p ≤ dp. We need to check that any two orthogonal families
A,B ⊂ [ω]ω with |A∪B| < p are weakly separated. By [ω]<ω we denote the family
of all �nite subsets of ω.

For every n ∈ ω and x ∈ A and y ∈ B consider the families

Ax = {F ∈ [ω]<ω : F ∩ x = ∅} and By,n = {F ∈ [ω]<ω : |F ∩ y| ≥ n}.

It is easy to check that the family F = {Ax : x ∈ A} ∪ {By,n : y ∈ B, n ∈ ω} ⊂
[[ω]<ω]ω is centered. Since |F| < p, this family has an in�nite pseudointersection
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I = {Fk}k∈ω. It follows that the union I =
⋃
k∈ω Fk has �nite intersection with

each set x ∈ A and in�nite intersection with each set y ∈ B. Hence A and B are
weakly separated.

According to [15], each Q-set A ⊂ R is meager and Lebesgue null and hence
belongs to the intersection M∩ N of the ideal M of meager subsets of R and
the ideal N of Lebesgue null sets in R. The idealM∩N contains the σ-ideal E
generated by closed null sets in R. Cardinal characteristics of the σ-ideal E have
been studied in [2, �2.6]. It turns out that each Q-set A ⊂ R belongs to the ideal
E , which implies that q0 ≤ non(E). More generally, q0 ≤ non(I) for any �exible
cccc σ-ideal I on R. Here non(I) stands for the smallest cardinality of a subset
A ⊂ X that does not belong to a σ-ideal I. It is clear that ω1 ≤ non(I) ≤ |X|.

Let I be a σ-ideal on a set X. A bijective function f : X → X will be an
automorphism of I if {f(A) : A ∈ I} = I. It is clear that automorphisms of
I form a subgroup Aut(I) in the group of all bijections of X endowed with the
operation of composition. The group Aut(I) will be called the automorphism

group of the ideal I. A σ-ideal I will be κ-�exible for a cardinal number κ if for
any subsets A,B ⊂ X with |A∪B| < κ there exists an automorphism f ∈ Aut(I)
such that f(A) ∩B = ∅. A σ-ideal I on a set X is �exible if it is |X|-�exible.

Proposition 3. Each σ-ideal I on any set X is non(I)-�exible.

Proof. Given any two subsets A,B ⊂ X with |A∪B| < non(I), we need to �nd an
automorphism f ∈ Aut(I) such that f(A)∩B = ∅. Since |A∪B| < non(I) ≤ |X|,
there is a subset C ⊂ X \ (A ∪B) of cardinality |C| = |A|. Choose any bijective
function f : X → X such that f(A) = C, f(C) = A and f is identity on the
set X \ (A ∪ C). It is easy to see that f is an automorphism of the σ-ideal I
witnessing that I is non(I)-�exible.

Example 4. Each left-invariant σ-ideal I on a group G is �exible.

Proof. First we observe that the group G /∈ I is uncountable. Then for any
subset A,B ⊂ G with |A ∪ B| < |G|, the set BA−1 = {ba−1 : b ∈ B, a ∈ A} has
cardinality |BA−1| < |G|. So we can �nd a point g ∈ G \BA−1 and observe that
gA ∩B = ∅.

We shall say that a σ-ideal I on a topological space X satis�es the compact

countable chain condition (brie�y, I is a cccc ideal) if for any uncountable disjoint
family C of compact subsets of X there is a set C ∈ C that belongs to the ideal
I. This is a bit weaker than the classical countable chain condition (brie�y, ccc)
saying that for any uncountable disjoint family C of Borel subsets of X there is a
set C ∈ C belonging to the ideal I. A simple example of a cccc σ-ideal that fails
to have ccc is the σ-ideal Kσ of subsets of σ-compact sets in the Baire space ωω.

A metrizable space X is analytic if it is a continuous image of a Polish space
(see [26]).
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Proposition 5. Each q0-�exible cccc σ-ideal I on an analytic space X has

non(I) ≥ q0.

Proof. We need to show that any subset A ⊂ X of cardinality |A| < q0 belongs
to the ideal I. This is trivial if |A| < ω1. So, we assume that ω1 ≤ |A| < q0.

Using the q0-�exibility of I, by trans�nite induction we can choose a trans�nite
sequence (fα)α∈ω1 of automorphisms of I such that for every α ∈ ω1 the set
Aα = fα(A) is disjoint with

⋃
β<α fβ(A). The set Aω1 =

⋃
α∈ω1

Aα has cardinality
|Aω1 | = max{ω1, |A|} < q0 and hence is a Q-set (here we use the fact Q-sets are
preserved by homeomorphisms and Aω1 being zero-dimensional, is homeomorphic
to a subspace of the real line). Consequently, for every α ∈ ω1 the subset Aα is
Fσ in Aω1 and we can �nd an Fσ-set Fα ⊂ X such that Fα∩Aω1 = Aα. It follows
that for every α ∈ ω1 the set Bα = Fα \

⋃
β<α Fβ is Borel in X, contains Aα, and

the family (Bα)α∈ω1 is disjoint. Each space Bα is analytic, being a Borel subset of
the analytic space X. Consequently, we can �nd a surjective map gα : ωω → Bα
and choose a subset A′α ⊂ ωω of cardinality |A′α| = |Aα| such that gα(A′α) = Aα.
Since |A′α| = |Aα| < q0 ≤ b, the set A′α is contained in a σ-compact set K ′α ⊂ ωω
according to the de�nition of the cardinal b. Then Kα = gα(K ′α) is a σ-compact
subset of Bα containing the set Aα. Since the family (Kα)α∈ω1 is disjoint and the
σ-ideal I satis�es cccc, the set {α ∈ ω1 : Kα /∈ I} is at most countable. So, for
some ordinal α ∈ ω1 the set Kα belongs to I and so does its subset Aα. Then
A = f−1α (Aα) ∈ I as fα ∈ Aut(I).

Let Ĩcccc be the intersection of all �exible cccc σ-ideals on the real line. Propo-
sition 5 implies that q0 ≤ non(Ĩcccc). So, any upper bound on the cardinal
non(Ĩcccc) yields an upper bound on q0.

In fact, in the de�nition of the cardinal non(Ĩcccc) we can replace the real line
by any uncountable zero-dimensional Polish space. Given a topological space X
denote by Ĩcccc(X) the intersection of all �exible cccc σ-ideals on X.

Proposition 6. Any uncountable Polish spaceX has non(Ĩcccc) ≤ non(Ĩcccc(X)).
If the space X is zero-dimensional, then non(Ĩcccc) = non(Ĩcccc(X)).

Proof. Choose a subset A ⊂ X of cardinality |A| = non(Ĩcccc(X)) that does not
belong to the ideal Ĩcccc(X) and hence does not belong to some c-�exible cccc
σ-ideal I on X. Let X ′ be the (closed) subset of X consisting of all points x ∈ X
that have no countable neighborhood in X. It follows that the space X ′ is perfect
(i.e., has no isolated points) and the complement X \X ′ is countable and hence
belongs to the ideal I. Fix any countable dense subset D ⊂ X ′ and observe the
space Z = X ′ \ D is Polish and nowhere locally compact. By [26, 7.7, 7.8], the
space Z is the image of the space of irrationals R\Q under an injective continuous
map f : R \ Q → Z. It can be shown that J = {A ⊂ R : f(A \ Q) ∈ I} is a
c-�exible cccc σ-ideal on R such that f−1(A) /∈ J . So, non(Ĩcccc) ≤ non(J ) ≤
|f−1(A)| ≤ |A| = non(Ĩcccc(X)).

If the space X is zero-dimensional, then by [26, 7.7] the space Z is homeo-
morphic to R \ Q and we can assume that f : R \ Q → Z is a homeomorphism.
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Since the complement X \Z is countable, for every c-�exible cccc σ-ideal I on R
the family f(I) = {A ⊂ X : f−1(A) ∈ I} is a c-�exible cccc σ-ideal on X, which
implies that non(Ĩcccc(X)) ≤ non(Ĩcccc).

For a Polish group G let Iccc(G) be the intersection of all invariant ccc σ-
ideals with Borel base on G. It is clear that Ĩcccc(G) ⊂ Iccc(G) and hence
non(Ĩcccc(G)) ≤ non(Iccc(G)). For the compact Polish group Zω2 = {0, 1}ω the
ideal Iccc(Zω2 ), denoted by Iccc, was introduced and studied by Zakrzewski [46],
[47] who proved that sω ≤ non(Iccc) ≤ min{non(M), non(N )}. Here sω is the
ω-splitting number introduced in [30] and studied in [11], [27]. It is clear that
splitting number s is not greater than sω. On the other hand, the consistency of
s < sω is an open problem (attributed to Steprans). By Theorems 3.3 and 6.9
[4], the cardinal s is localized in the interval [h, d], where h is the distributivity

number and d is the dominating number (it is equal to the smallest cardinality of
a cover of ωω by compact subsets). The proof of the inequality s ≤ d in Theorem
3.3 of [4] can be easily modi�ed to obtain sω ≤ d. In the following theorem by E
we denote the σ-ideal generated by closed Lebesgue null sets on the real line.

Theorem 7. The following inequalities hold:

q0 ≤ non(Ĩcccc) ≤ min{b, non(Iccc)} ≤ min{b,non(N )} = min{b, non(E)}.

Proof. The inequality q0 ≤ non(Ĩcccc) follows from Proposition 5. Since Ĩcccc(Zω2 ) ⊂
Iccc(Zω2 ) = Iccc, Proposition 6 guarantees that non(Ĩcccc) = non(Ĩcccc(Zω2 )) ≤
non(Iccc). Observe that the σ-ideal Kσ consisting of subsets of σ-compact sets
in the topological group Zω is a �exible cccc σ-ideal with non(Kσ) = b. Then
Proposition 6 implies that non(Ĩcccc) = non(Ĩcccc(Zω)) ≤ non(Kσ) = b. The in-
equality non(Iccc) ≤ min{non(M), non(N )} follows from the fact that the ideals
M and N are invariant ccc σ-ideals with Borel base. Taking into account that
b ≤ non(M), we conclude that min{b, non(Iccc)} ≤ min{b,non(M), non(N )} =
min{b,non(N )}. The equality min{b,non(N )} = min{b, non(E)} follows from
Theorem 2.6.8 [2].

2. Consistency results

In this section we establish some consistent inequalities between the cardinals
q0, q and some other known small uncountable cardinals. The de�nitions that are
not included in this paper and provable relations between small cardinals one can
be found in [4] and [45]. We consider also a relatively new cardinal lr, called the
linear re�nement number, that equals the minimal cardinality of a centered family
F ⊂ [ω]ω that has no linear re�nement. A family L ⊂ [ω]ω is a linear re�nement

of F if L is linearly ordered by the preorder ⊂∗ and for every F ∈ F there is
L ∈ L with L ⊂∗ F . Let us recall that A ⊂∗ B whenever A \ B is �nite. The
linear re�nement number lr was introduced by Tsaban in [44] (with the ad-hoc
name p∗) and has been thoroughly studied in [28].
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ZFC-inequalities between the cardinals dp, ap, q0, q and some other cardi-
nal characteristics of the continuum are described in the following diagram (the
inequality ap ≤ cov(M) was proved by Brendle in [7]):

d
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������������������������
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h

66666666666666666 ap

dp e

qqqqqqqqqqqqqqq

p add(N )

Theorem 8. Each of the following inequalities is consistent with ZFC:

1) ω1 = p = s = g = q0 = q = log(c+) < add(N ) = b = lr = c = ω2;

2) ω1 = q0 = q = log(c+) < h = lr = c = ω2;

3) ω1 = p = sω < dp = q = c = ω2;

4) ω1 = q0 = q = b < g = ω2;

5) ω1 = q0 = d = non(N ) < q = c = ω2;

6) ω1 = q0 = non(M) = a < q = d = cov(M) = c = ω2;

7) ω1 = dp < ap = c = ω2;

8) ω1 = ap < q0 = c = ω2;

9) ω1 = p < lr = ω2 < q0 = c = ω3.
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Proof. 1. The consistency of ω1 = s = p = log(c+) < add(N ) = b = c = ω2 is a
direct consequence of [23, Theorems 3.2 and 3.3], see [23, Lemma 3.16] for some
explanations. The equality ω1 = g follows from the well-known fact that g equals
ω1 after iterations with �nite supports of Suslin posets, see, e.g., [8]. The equality
lr = ω2 follows from Theorem 2.2 [28] (saying that lr = ω1 implies d = ω1).

2. To obtain a model of ω1 = q0 = log(c+) < h = ω2 let us consider an itera-
tion 〈Pα, Q̇β : β < α ≤ ω2〉 with countable supports such that Q0 is the countably
closed Cohen poset adding ω3-many subsets to ω1 with countable conditions. For
every 0 < α < ω2 let Q̇α be a Pα-name for the Mathias forcing, see [31] or [4,
p. 478]. It is standard to check that 2ω1 = ω3 > ω2 = 2ω holds in the �nal model,
and hence log(c+) = q0 = ω1 there. Also, h = ω2 = 2ω in this model simply by
the design of the Mathias poset, see the discussion on [4, p. 478]. The equality
lr = ω2 follows from Theorem 2.2 [28].

3. A model with ω1 = p < dp = q = ω2 = c was constructed by Alan Dow in
[13], see Theorem 2 there. Below we shall also show that sω = ω1 in that model.
Following [9] we say that a forcing notion P strongly preserves countable tallness

if for every sequence 〈τn : n ∈ ω〉 of P-names for in�nite subsets of ω there is
a sequence 〈Bn : n ∈ ω〉 of in�nite subsets of ω such that for any B ∈ [ω]ω, if
B∩Bn is in�nite for all n, then �P �B∩τn is in�nite for all n�. In [13, Theorem 2]
a poset P has been constructed such that q0 = b = c > ω1 holds in V P. By the
de�nition, P is an iteration with �nite supports of posets of the form QA, see [13,
Def. 2]. Observe that the notion of posets strongly preserving countable tallness
remains the same if we demand the existence of the sequence 〈Bn : n ∈ ω〉 with
the property stated there just for a single P-name τ for an in�nite subset of ω.
Therefore it follows from Lemmata 2,3 in [13] that the posets QA strongly preserve
countable tallness. Applying [9, Lemma 5] we conclude that P strongly preserves
countable tallness as well. The latter easily implies that the ground model reals
are splitting, and hence sω = ω1. Indeed, given a sequence of P-names 〈τn : n ∈ ω〉
for an in�nite subsets of ω �nd an appropriate sequence 〈Bn : n ∈ ω〉 of ground
model in�nite subsets of ω. Now let X ∈ [ω]ω ∩ V be such that X splits all the
Bn's. Then  �X splits every τn�.

4. The condition ω1 = b = q0 < g = ω2 = c holds, e.g., in the model of Blass
and Shelah constructed in [6], and in the Miller's model constructed in [33], see
[5] for the proof. If, as in item 2, these forcings are preceded by the countably
closed Cohen poset adding ω3-many subsets to ω1 with countable conditions, then
we get in addition 2ω1 = ω3 > ω2 = 2ω in the extension, and hence q equals ω1

as well.

5. The consistency of ω1 = q0 = d = non(N ) < q = c = ω2 was proved by
Judah and Shelah [24] (see also [34]).

6. A model with ω1 = q0 = non(M) = a < q = d = cov(M) = c = ω2 was
constructed by Miller [34].

7 and 8. For every regular cardinal κ > ω1 the consistency of the strict
inequalities ω1 = dp < κ = ap = c and ω1 = ap < κ = q0 = c was proved by
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Brendle [7].
9. The consistency of ω1 = p < lr = ω2 < q0 = c = ω3 follows from Theorem 9

below.

Theorem 9. Assume the Generalized Continuum Hypothesis and let κ and λ be

uncountable regular cardinal numbers such that κ < λ = λ<κ. There is a forcing

notion P such that in a generic extension V [G]: p = κ, lr = κ+, and q0 = λ = c.

Proof. A forcing notion we use is very similar to one in Theorem 3.9 from [28].
The di�erence is that we use Dow's forcings QA instead of Hechler forcing and a
length of iteration is the ordinal λ · λ.

More precisely the forcing P is given by an iteration:

1. 〈Pα, Q̇β : α ≤ λ · λ, β < λ · λ〉 is a �nite support iteration;

2. P = Pλ·λ;

3. P0 is the trivial forcing;

4. if α = λ · ξ where ξ > 0, then:

(a) Pα Q̇α is the Dow forcing QAξ
de�ned for a family Ȧξ;

(b) Ȧξ is a Pα-name for an ideal on ω generated by an almost disjoint
family of cardinality < λ;

(c) for each β if Pβ
Ȧ is an ideal on ω generated by an almost disjoint

family of cardinality < λ, then exists α > β such that α = λ · ξ and
Pα Ȧ = Ȧξ.

5. if α /∈ {λ · ξ : ξ > 0}, then

(a) Pα Q̇α is the Ḟα-Mathias forcing;

(b) Ḟα is a name for a �lter generated by a centered family {Ȧα,ι : ι < ια}
which contains co�nite sets, where ια is an ordinal < κ;

(c) ια = 0 for α < λ (thus Qα is isomorphic to Cohen's forcing for α < λ);

(d) Ȧα,ι is a Pα-name for a subset of ω;

(e) bα,ι : (2ω)ω → [ω]ω is a Borel function coded in the ground model;

(f) Pα Ȧα,ι = bα,ι(〈Ḃγ(α,ι,n) : n < ω〉), where Bα ⊂ [ω]ω denotes the α-th
generic real;

(g) If α = λ · ξ + ν, then γ(α, ι, n) < λ · ξ.
(h) For each ζ < λ and each sequence 〈 bι : ι < ι∗ 〉 of Borel functions

bι : (2ω)ω → [ω]ω of length ι∗ < κ, and all ordinal numbers δ(ι, n) < λ·ζ
such that P forces that the �lter generated by the co�nite sets together
with the family {bι(〈Bδ(ι,n) : n < ω 〉) : ι < ι∗}, is proper, there are
arbitrarily large α < λ · (ζ + 1) such that:
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i. ια = ι∗;

ii. bα,ι = bι for all ι < ι∗;

iii. γ(α, ι, n) = δ(ι, n) for all ι < ι∗ and all n.

A proof of equalities p = κ, lr = κ+ is essentially the same as in Lemmata
3.11 � 3.15 in [28]. The only di�erence is in the iteration Lemma 3.10. By Dow's
in Lemma 2 in [13], Dow's forcing notions cannot add a pseudointersection to
eventually narrow families and, in particular, to the family of the Cohen reals.
The usage of the Dow forcings instead of Hechler forcing give us an inequality
q0 ≥ λ instead of b ≥ λ.

The argument in the remark below is usually attributed to Devlin and Shelah
[12]. We have learned it from David Chodounsky.

Remark 10. We did not have to start with the countably closed Cohen poset
adding ω3-many subsets to ω1 in items 2 and 4 of Theorem 8 in order to guarantee
that q = ω1. However, the argument presented in the proof of Theorem 8 seems
to be easier and more direct, and hence we presented it for those readers who are
interested just in the consistency of corresponding constellations.

Following [35] we denote by 3(2,=) the following statement: For every Borel

F : ω<ω1 → 2 there exists g : ω1 → 2 such that for every f : ω1 → 2 the set

{α : F (g � α) = f(α)} is stationary . Here F : ω<ω1 → 2 is Borel i� f � ωα → 2
is Borel for all α ∈ ω1. 3(2,=) implies that q = ω1, which means that no
uncountable Q-set of reals exists. Indeed, suppose X = {xα : ω < α < ω1} is a
Q-set of reals. Choose some nice coding for Gδ sets of reals by elements of 2ω.
For each α ∈ (ω, ω1) de�ne Fα : 2α → 2 as follows: For x in 2α put Fα(x) = 1
i� xα is in the Gδ set coded by x � ω. Fα is Borel and thus F =

⋃
α∈ω1

Fα is
also Borel. Therefore there exists a guessing function g : ω1 → 2 for F . Put
Y = {xα : g(α) = 0}. Then Y is not a Gδ subset of X. In order to show this
choose a Gδ set G and any f : ω1 → 2 such that f � ω codes G. Then there is β
such that F (f � β) = g(β), and hence xβ is in G∆Y which means G ∩ X 6= Y .
Finally, it su�ces to note that 3(2,=) holds in any model considered in items 2,4
of Theorem 8, see [35, Theorem 6.6].

It would be nice to know more about the relation of the cardinals q0 and q to
the cardinals g, e, cov(M), and cov(N ). Here e is the evasion number considered
by A. Blass in [4, �10]. It follows from [4, 10.4] that q0 = b < e is consistent.

Problem 1. Is any of the inequalities q0 > cov(M), q0 > e, q0 > g, non(Ĩcccc) >
q0 consistent? In particular, what are the values of e and g in the model of Dow
(or its modi�cations)?

The question whether q0 > cov(M) is consistent seems the most intriguing
among those mentioned above. In [7] this question is attributed to A. Miller.
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