ON CRITICAL CARDINALITIES RELATED TO Q-SETS

Taras Banakh ${ }^{1}$, Micha乇 Machura ${ }^{2}$, Lyubomyr Zdomskyy ${ }^{3}$
${ }^{1}$ Faculty of Mechanics and Mathematics, Ivan Franko National University of Lviv, Universytetska 1, Lviv, Ukraine
${ }^{2}$ Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel; and Institute of Mathematics, University of Silesia, Bankowa 14, Katowice, Poland
${ }^{3}$ Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Straße 25, A-1090 Wien, Austria

Abstract

T. Banakh, M. Machura, L. Zdomskyy, On critical cardinalities related to Q-sets, Math. Bull. T. Shevchenko Sci. Soc. 11 (2014), 21-32.

In this note we collect some known information and prove new results about the small uncountable cardinal \mathfrak{q}_{0}. The cardinal \mathfrak{q}_{0} is defined as the smallest cardinality of a subset $A \subset \mathbb{R}$ that is not a Q-set (a subspace $A \subset \mathbb{R}$ is a Q-set if each subset $B \subset A$ is F_{σ} in A). We present a simple proof of a folklore fact that $\mathfrak{p} \leq \mathfrak{q}_{0} \leq \min \left\{\mathfrak{b}, \operatorname{non}(\mathcal{N}), \log \left(\mathfrak{c}^{+}\right)\right\}$, and also establish the consistency of a number of strict inequalities between the cardinal \mathfrak{q}_{0} and other standard small uncountable cardinals. In particular, we establish the consistency of $\mathfrak{p}<\mathfrak{r}<\mathfrak{q}_{0}$, where \mathfrak{r} denotes the linear refinement number. We also prove that $\mathfrak{q}_{0} \leq \operatorname{non}(\mathcal{I})$ for any \mathfrak{q}_{0}-flexible cccc σ-ideal \mathcal{I} on \mathbb{R}.

Т. Банах, М. Махура, Л. Здомський. Про критичні кардинали, пов'лзані з Q множинами // Мат. вісн. Наук. тов. ім. Т. Шевченка. - 2014. - Т.11. - С. 21-32.

Стаття є оглядом результатів, що стосуються малого незліченного кардинала \mathfrak{q}_{0}, рівного найменшій потужності підмножини $A \subset \mathbb{R}$, що не є Q-множиною (підпростір $A \subset \mathbb{R}$ називається Q-множиною, якщо кожна підмножина $B \subset A \epsilon$ F_{σ}-множиною в A).

2010 Mathematics Subject Classification: 03E17, 54H05
УДК: 510.22
Key words and phrases: Q-set, small uncountable cardinal
E-mail: t.o.banakh@gmail.com; machura@math.biu.ac.il; lzdomsky@gmail.com
The third author would like to thank the Austrian Academy of Sciences (APART Program) as well as the Austrian Science Fund FWF (Grant I 1209-N25) for generous support for this research. We are also grateful to the anonymous referee for the suggestion to include Theorem 9.

1. Introduction and results in ZFC

A subset X of the real line is a Q-set if each subset $A \subset X$ is relative F_{σ} set in A, see $[32, \S 4]$. The study of Q-sets was initiated by founders of SetTheoretic Topology: Hausdorff [20], Sierpiński [39] and Rothberger [38]. Q-Sets are important as they appear naturally in problems related to (hereditary) normal or σ-discrete spaces; see [1], [10], [15] - [19], [21], [22], [25], [36], [37], [40], [41].

We shall be interested in two critical cardinals related to Q-sets:

- $\mathfrak{q}_{0}=\min \{|X|: X \subset \mathbb{R}, X$ is not a Q-set $\}$;
- $\mathfrak{q}=\min \{\kappa$: no subset $X \subset \mathbb{R}$ of cardinality $|X| \geq \kappa$ is a Q-set $\}$.

It is clear that $\mathfrak{q}_{0} \leq \mathfrak{q}$. Since each countable subset of the real line is a Q-set and no subset $A \subset \mathbb{R}$ of cardinality continuum is a Q-set, the cardinals \mathfrak{q}_{0} and \mathfrak{q} are uncountable and lie in the interval $\left[\omega_{1}, \mathfrak{c}\right]$. So, these cardinals are another examples of small uncountable cardinals considered in [14] and [45]. It seems that for the first time the cardinals \mathfrak{q}_{0} and \mathfrak{q} appeared in the survey paper of J. Vaughan [45], who referred to the paper [19], which was not published yet at the moment of writing [45]. Unfortunately, the cardinal \mathfrak{q}_{0} disappeared in the final version of the paper [19]. Our initial motivation was to collect known information on the cardinal \mathfrak{q}_{0} in order to have a proper reference (in particular, in the paper [1] exploiting this cardinal). Studying the subject we have found a lot of interesting information on the cardinals \mathfrak{q}_{0} and \mathfrak{q} scattered in the literature. It seems that a unique paper devoted exclusively to the cardinal \mathfrak{q}_{0} is $[7]$ of Brendle (who denotes this cardinal by \mathfrak{q}). Among many other results, in [7] Brendle found a characterization of the cardinal \mathfrak{q}_{0} in terms of weakly separated families.

Two families \mathcal{A} and \mathcal{B} of infinite subsets of a countable set X are

- orthogonal if $A \cap B$ is finite for every sets $A \in \mathcal{A}$ and $B \in \mathcal{B}$;
- weakly separated if there is a subset $D \subset X$ such that $D \cap A$ is infinite for every $A \in \mathcal{A}$ and $D \cap B$ is finite for every $B \in \mathcal{B}$.

Let us recall that a family \mathcal{A} of infinite sets is almost disjoint if $A \cap B$ is finite for any distinct sets $A, B \in \mathcal{A}$.

Theorem 1 (Brendle [7]). The cardinal \mathfrak{q}_{0} is equal to the smallest cardinality of a subset $A \subset 2^{\omega}$ such that the almost disjoint family $\mathcal{A}=\left\{B_{x}: x \in A\right\}$ of branches $B_{x}=\{x \mid n: n \in \omega\}$ of the binary tree $2^{<\omega}$ contains a subfamily $\mathcal{B} \subset \mathcal{A}$ that cannot be weakly separated from its complement $\mathcal{A} \backslash \mathcal{B}$.

Having in mind this characterization, let us consider the following two cardinals ([7]):

- ap, equal to the smallest cardinality of an almost disjoint family $\mathcal{A} \subset[\omega]^{\omega}$ containing a subfamily $\mathcal{B} \subset \mathcal{A}$ that cannot be weakly separated from $\mathcal{A} \backslash \mathcal{B}$;
- $\mathfrak{d p}$, equal to the smallest cardinality of the union $A \cup B$ of two orthogonal families $\mathcal{A}, \mathcal{B} \subset[\omega]^{\omega}$ that cannot be weakly separated.

The notation $\mathfrak{d p}$ is an abbreviation of "Dow Principle" considered by Dow in [13].
It is clear that $\mathfrak{d p} \leq \mathfrak{a p} \leq \mathfrak{q}_{0} \leq \mathfrak{q}$. In [7] Brendle observed that the cardinals $\mathfrak{d p}$, $\mathfrak{a p}$, and \mathfrak{q}_{0} are in the interval $[\mathfrak{p}, \mathfrak{b}]$. Let us recall that \mathfrak{b} is the smallest cardinality of a subset B of the Baire space ω^{ω}, that is not contained in a σ-compact subset of ω^{ω}.

The cardinal \mathfrak{p} is the smallest cardinality of a family \mathcal{F} of infinite subsets of ω such that

- \mathcal{F} is centered, which means that for each finite subfamily $\mathcal{E} \subset \mathcal{F}$ the intersection $\cap \mathcal{E}$ is infinite, but
- \mathcal{F} has no infinite pseudo-intersection $I \subset \omega$ (i.e., an infinite set $I \subset \omega$ such that $I \backslash F$ is finite for all $F \in \mathcal{F}$).
For a cardinal κ its \log arithm is defined as $\log (\kappa)=\min \left\{\lambda: 2^{\lambda} \geq \kappa\right\}$. It is clear that $\log (\mathfrak{c})=\omega$ and $\log \left(\mathfrak{c}^{+}\right) \in\left[\omega_{1}, \mathfrak{c}\right]$, so $\log \left(\mathfrak{c}^{+}\right)$is a small uncountable cardinal. König's Lemma implies that $\log \left(\mathfrak{c}^{+}\right) \leq \operatorname{cf}(\mathfrak{c})$. We refer the reader to [14], [45] or [4] for the definitions and basic properties of small uncountable cardinals discussed in this note.

The following theorem collects some known lower and upper bounds on the cardinals $\mathfrak{d p}, \mathfrak{a p}, \mathfrak{q}_{0}$ and \mathfrak{q}. For the lower bound $\mathfrak{p} \leq \mathfrak{d p}$ established in [7] (and implicitly in [13]) we give an elementary proof, which does not involve Bell's characterization [3] of \mathfrak{p} (as the smallest cardinal for which Martin's Axiom for σ-centered posets fails). The inequality $\mathfrak{p} \leq \mathfrak{q}_{0}$ is often attributed to Rothberger who actually proved in [38] that $\mathfrak{t}>\omega_{1}$ implies $\mathfrak{q}_{0}>\omega_{1}$. According to a recent breakthrough result of Malliaris and Shelah [29], $\mathfrak{t}=\mathfrak{p}$.

Theorem 2. $\mathfrak{p} \leq \mathfrak{d p} \leq \mathfrak{a p} \leq \mathfrak{q}_{0} \leq \min \{\mathfrak{b}, \mathfrak{q}\} \leq \mathfrak{q} \leq \log \left(\mathfrak{c}^{+}\right)$.
Proof. The equality $\mathfrak{q} \leq \log \left(\mathfrak{c}^{+}\right)$follows from the fact that each subset of a Q-set is Borel, and that a second countable space contains at most \mathfrak{c} Borel subsets.

The inequality $\mathfrak{q}_{0} \leq \mathfrak{q}$ is trivial. To see that $\mathfrak{q}_{0} \leq \mathfrak{b}$, choose any countable dense subset Q in the Cantor cube 2^{ω} and consider its complement $2^{\omega} \backslash Q$, which is homeomorphic to the Baire space ω^{ω} by the Aleksandrov-Urysohn Theorem [26, 7.7]. By the definition of the cardinal \mathfrak{b}, the space $2^{\omega} \backslash Q$ contains a subset B of cardinality $|B|=\mathfrak{b}$ that is contained in no σ-compact subset of $2^{\omega} \backslash Q$. Then the union $A=B \cup Q$ is not a Q-set as the subset B is not relative F_{σ}-set in A. Consequently, $\mathfrak{q}_{0} \leq|B \cup Q|=|B|=\mathfrak{b}$.

The inequality $\mathfrak{a d} \leq \mathfrak{q}_{0}$ follows from Theorem 1 and $\mathfrak{d p} \leq \mathfrak{a p}$ is trivial. Finally, we prove the inequality $\mathfrak{p} \leq \mathfrak{d} \mathfrak{p}$. We need to check that any two orthogonal families $\mathcal{A}, \mathcal{B} \subset[\omega]^{\omega}$ with $|\mathcal{A} \cup \mathcal{B}|<\mathfrak{p}$ are weakly separated. By $[\omega]^{<\omega}$ we denote the family of all finite subsets of ω.

For every $n \in \omega$ and $x \in \mathcal{A}$ and $y \in \mathcal{B}$ consider the families

$$
\mathcal{A}_{x}=\left\{F \in[\omega]^{<\omega}: F \cap x=\varnothing\right\} \text { and } \mathcal{B}_{y, n}=\left\{F \in[\omega]^{<\omega}:|F \cap y| \geq n\right\} .
$$

It is easy to check that the family $\mathcal{F}=\left\{\mathcal{A}_{x}: x \in \mathcal{A}\right\} \cup\left\{\mathcal{B}_{y, n}: y \in \mathcal{B}, n \in \omega\right\} \subset$ $\left[[\omega]^{<\omega}\right]^{\omega}$ is centered. Since $|\mathcal{F}|<\mathfrak{p}$, this family has an infinite pseudointersection
$\mathcal{I}=\left\{F_{k}\right\}_{k \in \omega}$. It follows that the union $I=\bigcup_{k \in \omega} F_{k}$ has finite intersection with each set $x \in \mathcal{A}$ and infinite intersection with each set $y \in \mathcal{B}$. Hence \mathcal{A} and \mathcal{B} are weakly separated.

According to [15], each Q-set $A \subset \mathbb{R}$ is meager and Lebesgue null and hence belongs to the intersection $\mathcal{M} \cap \mathcal{N}$ of the ideal \mathcal{M} of meager subsets of \mathbb{R} and the ideal \mathcal{N} of Lebesgue null sets in \mathbb{R}. The ideal $\mathcal{M} \cap \mathcal{N}$ contains the σ-ideal \mathcal{E} generated by closed null sets in \mathbb{R}. Cardinal characteristics of the σ-ideal \mathcal{E} have been studied in $[2, \S 2.6]$. It turns out that each Q-set $A \subset \mathbb{R}$ belongs to the ideal \mathcal{E}, which implies that $\mathfrak{q}_{0} \leq \operatorname{non}(\mathcal{E})$. More generally, $\mathfrak{q}_{0} \leq \operatorname{non}(\mathcal{I})$ for any flexible $\operatorname{cccc} \sigma$-ideal \mathcal{I} on \mathbb{R}. Here $\operatorname{non}(\mathcal{I})$ stands for the smallest cardinality of a subset $A \subset X$ that does not belong to a σ-ideal \mathcal{I}. It is clear that $\omega_{1} \leq \operatorname{non}(\mathcal{I}) \leq|X|$.

Let \mathcal{I} be a σ-ideal on a set X. A bijective function $f: X \rightarrow X$ will be an automorphism of \mathcal{I} if $\{f(A): A \in \mathcal{I}\}=\mathcal{I}$. It is clear that automorphisms of \mathcal{I} form a subgroup $\operatorname{Aut}(\mathcal{I})$ in the group of all bijections of X endowed with the operation of composition. The group $\operatorname{Aut}(\mathcal{I})$ will be called the automorphism group of the ideal \mathcal{I}. A σ-ideal \mathcal{I} will be κ-flexible for a cardinal number κ if for any subsets $A, B \subset X$ with $|A \cup B|<\kappa$ there exists an automorphism $f \in \operatorname{Aut}(\mathcal{I})$ such that $f(A) \cap B=\varnothing$. A σ-ideal \mathcal{I} on a set X is flexible if it is $|X|$-flexible.

Proposition 3. Each σ-ideal \mathcal{I} on any set X is non (\mathcal{I})-flexible.
Proof. Given any two subsets $A, B \subset X$ with $|A \cup B|<\operatorname{non}(\mathcal{I})$, we need to find an automorphism $f \in \operatorname{Aut}(\mathcal{I})$ such that $f(A) \cap B=\varnothing$. Since $|A \cup B|<\operatorname{non}(\mathcal{I}) \leq|X|$, there is a subset $C \subset X \backslash(A \cup B)$ of cardinality $|C|=|A|$. Choose any bijective function $f: X \rightarrow X$ such that $f(A)=C, f(C)=A$ and f is identity on the set $X \backslash(A \cup C)$. It is easy to see that f is an automorphism of the σ-ideal \mathcal{I} witnessing that \mathcal{I} is $\operatorname{non}(\mathcal{I})$-flexible.

Example 4. Each left-invariant σ-ideal \mathcal{I} on a group G is flexible.
Proof. First we observe that the group $G \notin \mathcal{I}$ is uncountable. Then for any subset $A, B \subset G$ with $|A \cup B|<|G|$, the set $B A^{-1}=\left\{b a^{-1}: b \in B, a \in A\right\}$ has cardinality $\left|B A^{-1}\right|<|G|$. So we can find a point $g \in G \backslash B A^{-1}$ and observe that $g A \cap B=\varnothing$.

We shall say that a σ-ideal \mathcal{I} on a topological space X satisfies the compact countable chain condition (briefly, \mathcal{I} is a cccc ideal) if for any uncountable disjoint family \mathcal{C} of compact subsets of X there is a set $C \in \mathcal{C}$ that belongs to the ideal \mathcal{I}. This is a bit weaker than the classical countable chain condition (briefly, ccc) saying that for any uncountable disjoint family \mathcal{C} of Borel subsets of X there is a set $C \in \mathcal{C}$ belonging to the ideal \mathcal{I}. A simple example of a cccc σ-ideal that fails to have ccc is the σ-ideal \mathcal{K}_{σ} of subsets of σ-compact sets in the Baire space ω^{ω}.

A metrizable space X is analytic if it is a continuous image of a Polish space (see [26]).

Proposition 5. Each \mathfrak{q}_{0}-flexible cccc σ-ideal \mathcal{I} on an analytic space X has $\operatorname{non}(\mathcal{I}) \geq \mathfrak{q}_{0}$.

Proof. We need to show that any subset $A \subset X$ of cardinality $|A|<\mathfrak{q}_{0}$ belongs to the ideal \mathcal{I}. This is trivial if $|A|<\omega_{1}$. So, we assume that $\omega_{1} \leq|A|<\mathfrak{q}_{0}$.

Using the \mathfrak{q}_{0}-flexibility of \mathcal{I}, by transfinite induction we can choose a transfinite sequence $\left(f_{\alpha}\right)_{\alpha \in \omega_{1}}$ of automorphisms of \mathcal{I} such that for every $\alpha \in \omega_{1}$ the set $A_{\alpha}=f_{\alpha}(A)$ is disjoint with $\bigcup_{\beta<\alpha} f_{\beta}(A)$. The set $A_{\omega_{1}}=\bigcup_{\alpha \in \omega_{1}} A_{\alpha}$ has cardinality $\left|A_{\omega_{1}}\right|=\max \left\{\omega_{1},|A|\right\}<\mathfrak{q}_{0}$ and hence is a Q-set (here we use the fact Q-sets are preserved by homeomorphisms and $A_{\omega_{1}}$ being zero-dimensional, is homeomorphic to a subspace of the real line). Consequently, for every $\alpha \in \omega_{1}$ the subset A_{α} is F_{σ} in $A_{\omega_{1}}$ and we can find an F_{σ}-set $F_{\alpha} \subset X$ such that $F_{\alpha} \cap A_{\omega_{1}}=A_{\alpha}$. It follows that for every $\alpha \in \omega_{1}$ the set $B_{\alpha}=F_{\alpha} \backslash \bigcup_{\beta<\alpha} F_{\beta}$ is Borel in X, contains A_{α}, and the family $\left(B_{\alpha}\right)_{\alpha \in \omega_{1}}$ is disjoint. Each space B_{α} is analytic, being a Borel subset of the analytic space X. Consequently, we can find a surjective map $g_{\alpha}: \omega^{\omega} \rightarrow B_{\alpha}$ and choose a subset $A_{\alpha}^{\prime} \subset \omega^{\omega}$ of cardinality $\left|A_{\alpha}^{\prime}\right|=\left|A_{\alpha}\right|$ such that $g_{\alpha}\left(A_{\alpha}^{\prime}\right)=A_{\alpha}$. Since $\left|A_{\alpha}^{\prime}\right|=\left|A_{\alpha}\right|<\mathfrak{q}_{0} \leq \mathfrak{b}$, the set A_{α}^{\prime} is contained in a σ-compact set $K_{\alpha}^{\prime} \subset \omega^{\omega}$ according to the definition of the cardinal \mathfrak{b}. Then $K_{\alpha}=g_{\alpha}\left(K_{\alpha}^{\prime}\right)$ is a σ-compact subset of B_{α} containing the set A_{α}. Since the family $\left(K_{\alpha}\right)_{\alpha \in \omega_{1}}$ is disjoint and the σ-ideal \mathcal{I} satisfies cccc, the set $\left\{\alpha \in \omega_{1}: K_{\alpha} \notin \mathcal{I}\right\}$ is at most countable. So, for some ordinal $\alpha \in \omega_{1}$ the set K_{α} belongs to \mathcal{I} and so does its subset A_{α}. Then $A=f_{\alpha}^{-1}\left(A_{\alpha}\right) \in \mathcal{I}$ as $f_{\alpha} \in \operatorname{Aut}(\mathcal{I})$.

Let $\widetilde{\mathcal{I}}_{\text {cccc }}$ be the intersection of all flexible cccc σ-ideals on the real line. Proposition 5 implies that $\mathfrak{q}_{0} \leq \operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}\right)$. So, any upper bound on the cardinal non $\left(\widetilde{\mathcal{I}}_{\text {cccc }}\right)$ yields an upper bound on \mathfrak{q}_{0}.

In fact, in the definition of the cardinal non $\left(\widetilde{\mathcal{I}}_{\text {cccc }}\right)$ we can replace the real line by any uncountable zero-dimensional Polish space. Given a topological space X denote by $\widetilde{\mathcal{I}}_{\text {cccc }}(X)$ the intersection of all flexible cccc σ-ideals on X.
Proposition 6. Any uncountable Polish space X has $\operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}\right) \leq \operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}(X)\right)$. If the space X is zero-dimensional, then $\operatorname{non}\left(\widetilde{\mathcal{I}}_{\text {cccc }}\right)=\operatorname{non}\left(\widetilde{\mathcal{I}}_{\text {cccc }}(X)\right)$.
Proof. Choose a subset $A \subset X$ of cardinality $|A|=\operatorname{non}\left(\widetilde{\mathcal{I}}_{\text {cccc }}(X)\right)$ that does not belong to the ideal $\widetilde{\mathcal{I}}_{\text {cccc }}(X)$ and hence does not belong to some \mathfrak{c}-flexible cccc σ-ideal \mathcal{I} on X. Let X^{\prime} be the (closed) subset of X consisting of all points $x \in X$ that have no countable neighborhood in X. It follows that the space X^{\prime} is perfect (i.e., has no isolated points) and the complement $X \backslash X^{\prime}$ is countable and hence belongs to the ideal \mathcal{I}. Fix any countable dense subset $D \subset X^{\prime}$ and observe the space $Z=X^{\prime} \backslash D$ is Polish and nowhere locally compact. By [26, 7.7, 7.8], the space Z is the image of the space of irrationals $\mathbb{R} \backslash \mathbb{Q}$ under an injective continuous $\operatorname{map} f: \mathbb{R} \backslash \mathbb{Q} \rightarrow Z$. It can be shown that $\mathcal{J}=\{A \subset \mathbb{R}: f(A \backslash \mathbb{Q}) \in \mathcal{I}\}$ is a c-flexible cccc σ-ideal on \mathbb{R} such that $f^{-1}(A) \notin \mathcal{J}$. So, $\operatorname{non}\left(\widetilde{\mathcal{I}}_{\text {cccc }}\right) \leq \operatorname{non}(\mathcal{J}) \leq$ $\left|f^{-1}(A)\right| \leq|A|=\operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}(X)\right)$.

If the space X is zero-dimensional, then by $[26,7.7]$ the space Z is homeomorphic to $\mathbb{R} \backslash \mathbb{Q}$ and we can assume that $f: \mathbb{R} \backslash \mathbb{Q} \rightarrow Z$ is a homeomorphism.

Since the complement $X \backslash Z$ is countable, for every \mathfrak{c}-flexible cccc σ-ideal \mathcal{I} on \mathbb{R} the family $f(\mathcal{I})=\left\{A \subset X: f^{-1}(A) \in \mathcal{I}\right\}$ is a \mathfrak{c}-flexible cccc σ-ideal on X, which implies that $\operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}(X)\right) \leq \operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}\right)$.

For a Polish group G let $\mathcal{I}_{c c c}(G)$ be the intersection of all invariant ccc σ ideals with Borel base on G. It is clear that $\widetilde{\mathcal{I}}_{c c c c}(G) \subset \mathcal{I}_{c c c}(G)$ and hence $\operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}(G)\right) \leq \operatorname{non}\left(\mathcal{I}_{c c c}(G)\right)$. For the compact Polish group $\mathbb{Z}_{2}^{\omega}=\{0,1\}^{\omega}$ the ideal $\mathcal{I}_{c c c}\left(\mathbb{Z}_{2}^{\omega}\right)$, denoted by $\mathcal{I}_{c c c}$, was introduced and studied by Zakrzewski [46], [47] who proved that $\mathfrak{s}_{\omega} \leq \operatorname{non}\left(\mathcal{I}_{c c c}\right) \leq \min \{\operatorname{non}(\mathcal{M})$, $\operatorname{non}(\mathcal{N})\}$. Here \mathfrak{s}_{ω} is the ω-splitting number introduced in [30] and studied in [11], [27]. It is clear that splitting number \mathfrak{s} is not greater than \mathfrak{s}_{ω}. On the other hand, the consistency of $\mathfrak{s}<\mathfrak{s}_{\omega}$ is an open problem (attributed to Steprans). By Theorems 3.3 and 6.9 [4], the cardinal \mathfrak{s} is localized in the interval $[\mathfrak{h}, \mathfrak{d}]$, where \mathfrak{h} is the distributivity number and \mathfrak{d} is the dominating number (it is equal to the smallest cardinality of a cover of ω^{ω} by compact subsets). The proof of the inequality $\mathfrak{s} \leq \mathfrak{d}$ in Theorem 3.3 of [4] can be easily modified to obtain $\mathfrak{s}_{\omega} \leq \mathfrak{d}$. In the following theorem by \mathcal{E} we denote the σ-ideal generated by closed Lebesgue null sets on the real line.

Theorem 7. The following inequalities hold:
$\mathfrak{q}_{0} \leq \operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}\right) \leq \min \left\{\mathfrak{b}, \operatorname{non}\left(\mathcal{I}_{c c c}\right)\right\} \leq \min \{\mathfrak{b}, \operatorname{non}(\mathcal{N})\}=\min \{\mathfrak{b}, \operatorname{non}(\mathcal{E})\}$.
Proof. The inequality $\mathfrak{q}_{0} \leq \operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}\right)$ follows from Proposition 5. Since $\widetilde{\mathcal{I}}_{c c c c}\left(\mathbb{Z}_{2}^{\omega}\right) \subset$ $\mathcal{I}_{c c c}\left(\mathbb{Z}_{2}^{\omega}\right)=\mathcal{I}_{c c c}$, Proposition 6 guarantees that $\operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}\right)=\operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}\left(\mathbb{Z}_{2}^{\omega}\right)\right) \leq$ $\operatorname{non}\left(\mathcal{I}_{c c c}\right)$. Observe that the σ-ideal \mathcal{K}_{σ} consisting of subsets of σ-compact sets in the topological group \mathbb{Z}^{ω} is a flexible $\operatorname{cccc} \sigma$-ideal with $\operatorname{non}\left(\mathcal{K}_{\sigma}\right)=\mathfrak{b}$. Then Proposition 6 implies that $\operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}\right)=\operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}\left(\mathbb{Z}^{\omega}\right)\right) \leq \operatorname{non}\left(\mathcal{K}_{\sigma}\right)=\mathfrak{b}$. The inequality $\operatorname{non}\left(\mathcal{I}_{c c c}\right) \leq \min \{\operatorname{non}(\mathcal{M})$, non $(\mathcal{N})\}$ follows from the fact that the ideals \mathcal{M} and \mathcal{N} are invariant ccc σ-ideals with Borel base. Taking into account that $\mathfrak{b} \leq \operatorname{non}(\mathcal{M})$, we conclude that $\min \left\{\mathfrak{b}, \operatorname{non}\left(\mathcal{I}_{c c c}\right)\right\} \leq \min \{\mathfrak{b}, \operatorname{non}(\mathcal{M}), \operatorname{non}(\mathcal{N})\}=$ $\min \{\mathfrak{b}, \operatorname{non}(\mathcal{N})\}$. The equality $\min \{\mathfrak{b}, \operatorname{non}(\mathcal{N})\}=\min \{\mathfrak{b}, \operatorname{non}(\mathcal{E})\}$ follows from Theorem 2.6.8 [2].

2. Consistency results

In this section we establish some consistent inequalities between the cardinals $\mathfrak{q}_{0}, \mathfrak{q}$ and some other known small uncountable cardinals. The definitions that are not included in this paper and provable relations between small cardinals one can be found in [4] and [45]. We consider also a relatively new cardinal $\mathfrak{r r}$, called the linear refinement number, that equals the minimal cardinality of a centered family $\mathcal{F} \subset[\omega]^{\omega}$ that has no linear refinement. A family $\mathcal{L} \subset[\omega]^{\omega}$ is a linear refinement of \mathcal{F} if \mathcal{L} is linearly ordered by the preorder \subset^{*} and for every $F \in \mathcal{F}$ there is $L \in \mathcal{L}$ with $L \subset^{*} F$. Let us recall that $A \subset^{*} B$ whenever $A \backslash B$ is finite. The linear refinement number $\mathfrak{l r}$ was introduced by Tsaban in [44] (with the ad-hoc name \mathfrak{p}^{*}) and has been thoroughly studied in [28].

ZFC-inequalities between the cardinals $\mathfrak{d p}, \mathfrak{a p}, \mathfrak{q}_{0}, \mathfrak{q}$ and some other cardinal characteristics of the continuum are described in the following diagram (the inequality $\mathfrak{a p} \leq \operatorname{cov}(\mathcal{M})$ was proved by Brendle in [7]):

Theorem 8. Each of the following inequalities is consistent with ZFC:

1) $\omega_{1}=\mathfrak{p}=\mathfrak{s}=\mathfrak{g}=\mathfrak{q}_{0}=\mathfrak{q}=\log \left(\mathfrak{c}^{+}\right)<\operatorname{add}(\mathcal{N})=\mathfrak{b}=\mathfrak{l}=\mathfrak{c}=\omega_{2}$;
2) $\omega_{1}=\mathfrak{q}_{0}=\mathfrak{q}=\log \left(\mathfrak{c}^{+}\right)<\mathfrak{h}=\mathfrak{r}=\mathfrak{c}=\omega_{2}$;
3) $\omega_{1}=\mathfrak{p}=\mathfrak{s}_{\omega}<\mathfrak{d p}=\mathfrak{q}=\mathfrak{c}=\omega_{2}$;
4) $\omega_{1}=\mathfrak{q}_{0}=\mathfrak{q}=\mathfrak{b}<\mathfrak{g}=\omega_{2}$;
5) $\omega_{1}=\mathfrak{q}_{0}=\mathfrak{d}=\operatorname{non}(\mathcal{N})<\mathfrak{q}=\mathfrak{c}=\omega_{2}$;
6) $\omega_{1}=\mathfrak{q}_{0}=\operatorname{non}(\mathcal{M})=\mathfrak{a}<\mathfrak{q}=\mathfrak{d}=\operatorname{cov}(\mathcal{M})=\mathfrak{c}=\omega_{2}$;
7) $\omega_{1}=\mathfrak{o p}<\mathfrak{a p}=\mathfrak{c}=\omega_{2}$;
8) $\omega_{1}=\mathfrak{a p}<\mathfrak{q}_{0}=\mathfrak{c}=\omega_{2}$;
9) $\omega_{1}=\mathfrak{p}<\mathfrak{l r}=\omega_{2}<\mathfrak{q}_{0}=\mathfrak{c}=\omega_{3}$.

Proof. 1. The consistency of $\omega_{1}=\mathfrak{s}=\mathfrak{p}=\log \left(\mathfrak{c}^{+}\right)<\operatorname{add}(\mathcal{N})=\mathfrak{b}=\mathfrak{c}=\omega_{2}$ is a direct consequence of [23, Theorems 3.2 and 3.3], see [23, Lemma 3.16] for some explanations. The equality $\omega_{1}=\mathfrak{g}$ follows from the well-known fact that \mathfrak{g} equals ω_{1} after iterations with finite supports of Suslin posets, see, e.g., [8]. The equality $\mathfrak{l r}=\omega_{2}$ follows from Theorem $2.2[28]$ (saying that $\mathfrak{l r}=\omega_{1}$ implies $\mathfrak{d}=\omega_{1}$).
2. To obtain a model of $\omega_{1}=\mathfrak{q}_{0}=\log \left(\mathfrak{c}^{+}\right)<\mathfrak{h}=\omega_{2}$ let us consider an iteration $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta}: \beta<\alpha \leq \omega_{2}\right\rangle$ with countable supports such that \mathbb{Q}_{0} is the countably closed Cohen poset adding ω_{3}-many subsets to ω_{1} with countable conditions. For every $0<\alpha<\omega_{2}$ let $\dot{\mathbb{Q}}_{\alpha}$ be a \mathbb{P}_{α}-name for the Mathias forcing, see [31] or [4, p. 478]. It is standard to check that $2^{\omega_{1}}=\omega_{3}>\omega_{2}=2^{\omega}$ holds in the final model, and hence $\log \left(\mathfrak{c}^{+}\right)=\mathfrak{q}_{0}=\omega_{1}$ there. Also, $\mathfrak{h}=\omega_{2}=2^{\omega}$ in this model simply by the design of the Mathias poset, see the discussion on [4, p. 478]. The equality $\mathfrak{r r}=\omega_{2}$ follows from Theorem 2.2 [28].
3. A model with $\omega_{1}=\mathfrak{p}<\mathfrak{d p}=\mathfrak{q}=\omega_{2}=\mathfrak{c}$ was constructed by Alan Dow in [13], see Theorem 2 there. Below we shall also show that $\mathfrak{s}_{\omega}=\omega_{1}$ in that model. Following [9] we say that a forcing notion \mathbb{P} strongly preserves countable tallness if for every sequence $\left\langle\tau_{n}: n \in \omega\right\rangle$ of \mathbb{P}-names for infinite subsets of ω there is a sequence $\left\langle B_{n}: n \in \omega\right\rangle$ of infinite subsets of ω such that for any $B \in[\omega]^{\omega}$, if $B \cap B_{n}$ is infinite for all n, then $\vDash_{\mathbb{P}}$ " $B \cap \tau_{n}$ is infinite for all n ". In [13, Theorem 2] a poset \mathbb{P} has been constructed such that $\mathfrak{q}_{0}=\mathfrak{b}=\mathfrak{c}>\omega_{1}$ holds in $V^{\mathbb{P}}$. By the definition, \mathbb{P} is an iteration with finite supports of posets of the form $\mathbb{Q}_{\mathcal{A}}$, see $[13$, Def. 2]. Observe that the notion of posets strongly preserving countable tallness remains the same if we demand the existence of the sequence $\left\langle B_{n}: n \in \omega\right\rangle$ with the property stated there just for a single \mathbb{P}-name τ for an infinite subset of ω. Therefore it follows from Lemmata 2,3 in [13] that the posets $\mathbb{Q}_{\mathcal{A}}$ strongly preserve countable tallness. Applying [9, Lemma 5] we conclude that \mathbb{P} strongly preserves countable tallness as well. The latter easily implies that the ground model reals are splitting, and hence $\mathfrak{s}_{\omega}=\omega_{1}$. Indeed, given a sequence of \mathbb{P}-names $\left\langle\tau_{n}: n \in \omega\right\rangle$ for an infinite subsets of ω find an appropriate sequence $\left\langle B_{n}: n \in \omega\right\rangle$ of ground model infinite subsets of ω. Now let $X \in[\omega]^{\omega} \cap V$ be such that X splits all the B_{n} 's. Then \Vdash " X splits every τ_{n} ".
4. The condition $\omega_{1}=\mathfrak{b}=\mathfrak{q}_{0}<\mathfrak{g}=\omega_{2}=\mathfrak{c}$ holds, e.g., in the model of Blass and Shelah constructed in [6], and in the Miller's model constructed in [33], see [5] for the proof. If, as in item 2, these forcings are preceded by the countably closed Cohen poset adding ω_{3}-many subsets to ω_{1} with countable conditions, then we get in addition $2^{\omega_{1}}=\omega_{3}>\omega_{2}=2^{\omega}$ in the extension, and hence \mathfrak{q} equals ω_{1} as well.
5. The consistency of $\omega_{1}=\mathfrak{q}_{0}=\mathfrak{d}=\operatorname{non}(\mathcal{N})<\mathfrak{q}=\mathfrak{c}=\omega_{2}$ was proved by Judah and Shelah [24] (see also [34]).
6. A model with $\omega_{1}=\mathfrak{q}_{0}=\operatorname{non}(\mathcal{M})=\mathfrak{a}<\mathfrak{q}=\mathfrak{d}=\operatorname{cov}(\mathcal{M})=\mathfrak{c}=\omega_{2}$ was constructed by Miller [34].

7 and 8. For every regular cardinal $\kappa>\omega_{1}$ the consistency of the strict inequalities $\omega_{1}=\mathfrak{d p}<\kappa=\mathfrak{a p}=\mathfrak{c}$ and $\omega_{1}=\mathfrak{a p}<\kappa=\mathfrak{q}_{0}=\mathfrak{c}$ was proved by

Brendle [7].
9. The consistency of $\omega_{1}=\mathfrak{p}<\mathfrak{l r}=\omega_{2}<\mathfrak{q}_{0}=\mathfrak{c}=\omega_{3}$ follows from Theorem 9 below.

Theorem 9. Assume the Generalized Continuum Hypothesis and let κ and λ be uncountable regular cardinal numbers such that $\kappa<\lambda=\lambda^{<\kappa}$. There is a forcing notion \mathbb{P} such that in a generic extension $V[G]: \mathfrak{p}=\kappa, \mathfrak{l} \mathfrak{r}=\kappa^{+}$, and $\mathfrak{q}_{0}=\lambda=\mathfrak{c}$.

Proof. A forcing notion we use is very similar to one in Theorem 3.9 from [28]. The difference is that we use Dow's forcings $\mathbb{Q}_{\mathcal{A}}$ instead of Hechler forcing and a length of iteration is the ordinal $\lambda \cdot \lambda$.

More precisely the forcing \mathbb{P} is given by an iteration:

1. $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta}: \alpha \leq \lambda \cdot \lambda, \beta<\lambda \cdot \lambda\right\rangle$ is a finite support iteration;
2. $\mathbb{P}=\mathbb{P}_{\lambda \cdot \lambda}$;
3. \mathbb{P}_{0} is the trivial forcing;
4. if $\alpha=\lambda \cdot \xi$ where $\xi>0$, then:
(a) $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha}$ is the Dow forcing $\mathbb{Q}_{\mathcal{A}_{\xi}}$ defined for a family $\dot{\mathcal{A}}_{\xi}$;
(b) $\dot{\mathcal{A}}_{\xi}$ is a \mathbb{P}_{α}-name for an ideal on ω generated by an almost disjoint family of cardinality $<\lambda$;
(c) for each β if $\Vdash_{\mathbb{P}_{\beta}} \dot{\mathcal{A}}$ is an ideal on ω generated by an almost disjoint family of cardinality $<\lambda$, then exists $\alpha>\beta$ such that $\alpha=\lambda \cdot \xi$ and $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathcal{A}}=\dot{\mathcal{A}}_{\xi}$.
5. if $\alpha \notin\{\lambda \cdot \xi: \xi>0\}$, then
(a) $\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha}$ is the $\dot{\mathcal{F}}_{\alpha}$-Mathias forcing;
(b) $\dot{\mathcal{F}}_{\alpha}$ is a name for a filter generated by a centered family $\left\{\dot{A}_{\alpha, \iota}: \iota<\iota_{\alpha}\right\}$ which contains cofinite sets, where ι_{α} is an ordinal $<\kappa$;
(c) $\iota_{\alpha}=0$ for $\alpha<\lambda$ (thus \mathbb{Q}_{α} is isomorphic to Cohen's forcing for $\alpha<\lambda$);
(d) $\dot{A}_{\alpha, \iota}$ is a \mathbb{P}_{α}-name for a subset of ω;
(e) $b_{\alpha, \iota}:\left(2^{\omega}\right)^{\omega} \rightarrow[\omega]^{\omega}$ is a Borel function coded in the ground model;
(f) $\Vdash_{\mathbb{P}_{\alpha}} \dot{A}_{\alpha, \iota}=b_{\alpha, \iota}\left(\left\langle\dot{B}_{\gamma(\alpha, \iota, n)}: n<\omega\right\rangle\right)$, where $B_{\alpha} \subset[\omega]^{\omega}$ denotes the α-th generic real;
(g) If $\alpha=\lambda \cdot \xi+\nu$, then $\gamma(\alpha, \iota, n)<\lambda \cdot \xi$.
(h) For each $\zeta<\lambda$ and each sequence $\left\langle b_{\iota}: \iota<\iota_{*}\right\rangle$ of Borel functions $b_{\iota}:\left(2^{\omega}\right)^{\omega} \rightarrow[\omega]^{\omega}$ of length $\iota_{*}<\kappa$, and all ordinal numbers $\delta(\iota, n)<\lambda \cdot \zeta$ such that \mathbb{P} forces that the filter generated by the cofinite sets together with the family $\left\{b_{\iota}\left(\left\langle B_{\delta(\iota, n)}: n<\omega\right\rangle\right): \iota<\iota_{*}\right\}$, is proper, there are arbitrarily large $\alpha<\lambda \cdot(\zeta+1)$ such that:

$$
\begin{aligned}
& \text { i. } \iota_{\alpha}=\iota_{*} \text {; } \\
& \text { ii. } b_{\alpha, \iota}=b_{\iota} \text { for all } \iota<\iota_{*} \text {; } \\
& \text { iii. } \gamma(\alpha, \iota, n)=\delta(\iota, n) \text { for all } \iota<\iota_{*} \text { and all } n \text {. }
\end{aligned}
$$

A proof of equalities $\mathfrak{p}=\kappa, \mathfrak{r}=\kappa^{+}$is essentially the same as in Lemmata $3.11-3.15$ in [28]. The only difference is in the iteration Lemma 3.10. By Dow's in Lemma 2 in [13], Dow's forcing notions cannot add a pseudointersection to eventually narrow families and, in particular, to the family of the Cohen reals. The usage of the Dow forcings instead of Hechler forcing give us an inequality $\mathfrak{q}_{0} \geq \lambda$ instead of $\mathfrak{b} \geq \lambda$.

The argument in the remark below is usually attributed to Devlin and Shelah [12]. We have learned it from David Chodounsky.

Remark 10. We did not have to start with the countably closed Cohen poset adding ω_{3}-many subsets to ω_{1} in items 2 and 4 of Theorem 8 in order to guarantee that $\mathfrak{q}=\omega_{1}$. However, the argument presented in the proof of Theorem 8 seems to be easier and more direct, and hence we presented it for those readers who are interested just in the consistency of corresponding constellations.

Following [35] we denote by $\diamond(2,=)$ the following statement: For every Borel $F: \omega^{<\omega_{1}} \rightarrow 2$ there exists $g: \omega_{1} \rightarrow 2$ such that for every $f: \omega_{1} \rightarrow 2$ the set $\{\alpha: F(g \upharpoonright \alpha)=f(\alpha)\}$ is stationary. Here $F: \omega^{<\omega_{1}} \rightarrow 2$ is Borel iff $f \upharpoonright \omega^{\alpha} \rightarrow 2$ is Borel for all $\alpha \in \omega_{1} . \diamond(2,=)$ implies that $\mathfrak{q}=\omega_{1}$, which means that no uncountable Q-set of reals exists. Indeed, suppose $X=\left\{x_{\alpha}: \omega<\alpha<\omega_{1}\right\}$ is a Q-set of reals. Choose some nice coding for G_{δ} sets of reals by elements of 2^{ω}. For each $\alpha \in\left(\omega, \omega_{1}\right)$ define $F_{\alpha}: 2^{\alpha} \rightarrow 2$ as follows: For x in 2^{α} put $F_{\alpha}(x)=1$ iff x_{α} is in the G_{δ} set coded by $x \upharpoonright \omega . F_{\alpha}$ is Borel and thus $F=\bigcup_{\alpha \in \omega_{1}} F_{\alpha}$ is also Borel. Therefore there exists a guessing function $g: \omega_{1} \rightarrow 2$ for F. Put $Y=\left\{x_{\alpha}: g(\alpha)=0\right\}$. Then Y is not a G_{δ} subset of X. In order to show this choose a G_{δ} set G and any $f: \omega_{1} \rightarrow 2$ such that $f \upharpoonright \omega \operatorname{codes} G$. Then there is β such that $F(f \upharpoonright \beta)=g(\beta)$, and hence x_{β} is in $G \Delta Y$ which means $G \cap X \neq Y$. Finally, it suffices to note that $\diamond(2,=)$ holds in any model considered in items 2,4 of Theorem 8, see [35, Theorem 6.6].

It would be nice to know more about the relation of the cardinals \mathfrak{q}_{0} and \mathfrak{q} to the cardinals $\mathfrak{g}, \mathfrak{e}, \operatorname{cov}(\mathcal{M})$, and $\operatorname{cov}(\mathcal{N})$. Here \mathfrak{e} is the evasion number considered by A. Blass in [4, §10]. It follows from [4, 10.4] that $\mathfrak{q}_{0}=\mathfrak{b}<\mathfrak{e}$ is consistent.

Problem 1. Is any of the inequalities $\mathfrak{q}_{0}>\operatorname{cov}(\mathcal{M}), \mathfrak{q}_{0}>\mathfrak{e}, \mathfrak{q}_{0}>\mathfrak{g}, \operatorname{non}\left(\widetilde{\mathcal{I}}_{c c c c}\right)>$ \mathfrak{q}_{0} consistent? In particular, what are the values of \mathfrak{e} and \mathfrak{g} in the model of Dow (or its modifications)?

The question whether $\mathfrak{q}_{0}>\operatorname{cov}(\mathcal{M})$ is consistent seems the most intriguing among those mentioned above. In [7] this question is attributed to A. Miller.

REFERENCES

1. T. Banakh, Z. Kosztolowicz, S. Turek, Hereditarily supercompact spaces, Topology Appl. 161 (2014), 263-278.
2. T. Bartoszynski, H. Judah, Set theory. On the structure of the real line, A K Peters, Ltd., Wellesley, MA, 1995.
3. M. Bell, On the combinatorial principle $P(\mathfrak{c})$, Fund. Math. 114:2 (1981), 149-157.
4. A. Blass, Combinatorial cardinal characteristics of the continuum, in: Handbook of Set Theory (M. Foreman, A. Kanamori, and M. Magidor, eds.), Springer, 2010, pp. 395-491.
5. A. Blass, C. Laflamme, Consistency results about filters and the number of inequivalent growth types, J. Symbolic Logic 54 (1989), 50-56.
6. A. Blass, S. Shelah, There may be simple $P_{\aleph_{1}}$ - and $P_{\aleph_{2}}$-points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic 33 (1987), 213-243.
7. J. Brendle, Dow's Principle and Q-Sets, Canad. Math. Bull. 42 (1999), 13-24.
8. J. Brendle, Aspects of iterated forcing, Winter School in Abstract Analysis, Heinice, 2010. http://www.winterschool.eu/files/11-Aspects_of_iterated_forcing_I.pdf
9. J. Brendle, M. Hrušák, Countable Fréchet Boolean groups: an independence result, J. Symbolic Logic 74 (2009), 1061-1068.
10. D. Burke, The normal Moore space problem, Visiting scholars' lectures-1987 (Lubbock, TX), Texas Tech Univ. Math. Ser., 15, Texas Tech Univ., Lubbock, TX, 1988.
11. J. Cichon, J. Kraszewski, On some new ideals on the Cantor and Baire spaces, Proc. Amer. Math. Soc. 126:5 (1998), 1549-1555.
12. K. Devlin, S. Shelah, A weak version of \diamond which follows from $2^{\aleph_{0}}<2^{\aleph_{1}}$, Israel J. Math. 29 (1978), 239-247.
13. E. van Douwen, The integers and Topology, in: Handbook of Set-Theoretic Topology (K. Kunen, J.E. Vaughan, eds.), North Holland, Amsterdam, 1984, 111-167.
14. A. Dow, On compact separable radial spaces, Canad. Math. Bull. 40:4 (1997), 422-432.
15. W. Fleissner, Current research on Q sets, Topology, Vol. I (Proc. Fourth Colloq., Budapest, 1978), pp. 413пïS-431, Colloq. Math. Soc. JпïSnos Bolyai, 23, North-Holland, Amsterdam-New York, 1980
16. W. Fleissner, Squares of Q sets, Fund. Math. 118:3 (1983), 223-231.
17. W. Fleissner, A. Miller, On Q sets, Proc. Amer. Math. Soc. 78:2 (1980), 280-284.
18. P. Gartside, J. Lo, A. Marsh, Sequential density, Topology Appl. 130:1 (2003), 75-86.
19. G. Gruenhage, P. Nyikos, Normality in X^{2} for compact X, Trans. Amer. Math. Soc. 340:2 (1993), 563-586.
20. F. Hausdorff, Problème 58, Fund. Math. 20 (1933), 286.
21. R. Heath, Screenability, pointwise paracompactness and metrization of Moore spaces, Canad. J. Math. 16 (1964), 763-770.
22. F. Hernández-Hernández, M. Hrušák, Q-sets and normality of Ψ-spaces, Spring Topology and Dynamical Systems Conference. Topology Proc. 29:1 (2005), 155-165.
23. J. Ihoda, S. Shelah, Souslin forcing, J. Symbolic Logic 53 (1988), 1188-1207.
24. H. Judah, S. Shelah, Q-sets, Sierpiński sets, and rapid filters, Proc. Amer. Math. Soc. 111:3 (1991) 821-832.
25. H. Junnila, On σ-spaces and pseudometrizable spaces, Topology Proc. 4:1 (1979), 121-132.
26. A. Kechris, Classical descriptive set theory, Springer-Verlag, New York, 1995.
27. J. Kraszewski, On invariant CCC σ-ideals, Acta Univ. Carolin. Math. Phys. 46:2 (2005), 47-49.
28. M. Machura, S. Shelah, B. Tsaban, The linear refinement number and selection theory, arXiv eprint 1404.2239.
29. M. Malliaris, S. Shelah, General topology meets model theory, on \mathfrak{p} and \mathfrak{t}, Proc. Natl. Acad. Sci. USA 110:33 (2013), 13300-13305.
30. V. Malykhin, Topological properties of Cohen generic extensions, Trudy Moskov. Mat. Obshch. 52 (1989), 3-33 (in Russian).
31. A. Mathias, Happy families, Ann. Math. Logic 12 (1977), 59-111.
32. A. Miller, Special subsets of the real line, Handbook of set-theoretic topology, 201-233, North-Holland, Amsterdam, 1984.
33. A. Miller, Rational perfect set forcing, in: Axiomatic Set Theory (J. Baumgartner, D. A. Martin, S. Shelah, eds.), Contemporary Mathematics 31, American Mathematical Society, Providence, Rhode Island, 1984, pp.143-159.
34. A. Miller, A MAD Q-set, Fund. Math. 178:3 (2003), 271-281.
35. J. Moore, M. Hrušák, M. Džamonja, Parametrized \diamond principles, Trans. Amer. Math. Soc. 356 (2004), 2281-2306.
36. T. Przymusiński, The existence of Q-sets is equivalent to the existence of strong Q-sets, Proc. Amer. Math. Soc. 79:4 (1980), 626-628.
37. M. Rudin, Pixley-Roy and the Souslin line, Proc. Amer. Math. Soc. 74:1 (1979), 128-134.
38. F. Rothberger, On some problems of Hausdorff and Sierpiński, Fund. Math. 35 (1948), 24-46.
39. W. Sierpiński, Sur une problème de M. Hausdorff, Fund. Math. 30 (1938), 1-7.
40. F. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Dissert. Math. 148 (1977), 1-53.
41. F. Tall, Normality versus collectionwise normality, Handbook of set-theoretic topology (Eds. K. Kunen and J. E. Vaughan), North-Holland, Amsterdam, 1984, 685-732.
42. H. Tanaka, Normality and hereditary countable paracompactness of Pixley-Roy hyperspaces, Fund. Math. 126:3 (1986), 201-208.
43. H. Tanaka, Countable paracompactness of Pixley-Roy hyperspaces, Proc. Amer. Math. Soc. 108:4 (1990), 1115-1120.
44. B. Tsaban, Selection principles and the minimal tower problem, Note di Matematica 22 (2003), 53-81.
45. J. Vaughan, Small uncountable cardinals and topology. With an appendix by S. Shelah, in: Open problems in topology (Jan van Mill and George M. Reed, ed.), North-Holland, Amsterdam, 1990, pp. 195-218.
46. P. Zakrzewski, On Borel sets belonging to every invariant $c c c \sigma$-ideal on $2^{\mathbb{N}}$, Proc. Amer. Math. Soc. 141:3 (2013), 1055-1065.
47. P. Zakrzewski, On invariant ccc sigma-ideals on $2^{\mathbb{N}}$, Acta Math. Hungar. 143:2 (2014), 367-377.

Received 11.03.2014
Revised 04.06.2014

