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particles and related physical aspects are reviewed. Based on the geometry-free approach of
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¥V nepuiit yacTuHI npaui NOJaHO OIS HOBUX KJIACUYHHX MOJEJIel B3aEMOAIIOUNX 3apsi-
JKEHUX TOUKOBMX YACTHHOK Ta JEsKi MOBsI3aHl 3 HUMU (bi3HuHi acneKTH. ['pyHTyouuch Ha
po3pobIIeHOMY aBTOPOM HEreOMETPUYHOMY BAaKyYMHO-TIOJBOBOMY ITiJXOMi, 3aIPOIIOHOBaHI
sk Jlarpankese Tak i ['aMinbTOHOBE nepedopMyJIOBaHHS aJbTEPHATUBHUX €JIEKTPOJUHAMI-
YHUX MOJEJIEN.

1. Classical relativistic electrodynamics models revisiting:
Lagrangian and Hamiltonian analysis

1.1. Introductory setting

It is nowadays considered [30, 41, 42, 45, 50] that classical electrodynamics is the
most fundamental physical theory largely owing to the depth of its theoretical foun-

2010 Mathematics Subject Classification: 70H03, 70H05, 70H40 Y IIK: 515.124512.58

Key words and phrases: the Amper law, Lorentz type force, Lorenz constraint, Maxwell electromagnetic
equations, Jefimenko equations, Lagrangian and Hamiltonian formalisms

E-mail: pryk.anat@cybergal.com, pryk.anat@ua.fm



THE CLASSICAL ABRAHAM-LORENTZ ELECTRON MASS THEORY LEGACY, I 73

dations and wealth of experimental verifications. In the review we describe a new
aspects of the classical Maxwell theory, based on a vacuum field medium model,
and reanalyze some of the modern classical electrodynamics problems related with
the description of a charged point particle dynamics under external electromagnetic
field. We remark here that under “a charged point particle” we as usually under-
stand an elementary material charged particle whose internal spatial structure is as-
sumed to be unimportant and is not taken into account, if the contrary is not specified.
The Maxwell’s equations serve as foundational to the whole modern electromagnetic
theory. They are the cornerstone of a myriad of technologies and are basic to the
understanding of innumerable effects. Yet there are a few effects or physical phe-
nomena that cannot be explained [7, 8, 46, 55, 56, 62, 63, 82] within the conventional
Maxwell theory. It is important to note here that in [43, 46, 44, 76] there is argued that
the Maxwell equations as themselves do not determine causal related to each other
electric and magnetic fields, which prove, in reality, to be generated independently
by an external charge and current distributions: “There is a widespread interpreta-
tion of Maxwell’s equations indicating that spatially varying electric and magnetic
fields can cause each other to change in time, thus giving rise to a propagating elec-
tromagnetic wave...” However, Jefimenko’s equations show an alternative point of
view [45]. Jefimenko writes: *
dicate an existence of causal links between electric and magnetic fields. Therefore,
we must conclude that an electromagnetic field is a dual entity always having an
electric and a magnetic component simultaneously created by their common sources:
time-variable electric charges and currents.” Essential features of these equations are
easily observed which are that the right hand sides involve “retarded” time which re-

‘...neither Maxwell’s equations nor their solutions in-

flects the “causality” of the expressions. In other words, the left side of each equation
is actually “caused” by the right side, unlike the normal differential expressions for
Maxwell’s equations, where both sides take place simultaneously. In the typical ex-
pressions for Maxwell’s equations there is no doubt that both sides are equal to each
other, but as Jefimenko notes [45], “... since each of these equations connects quan-
tities simultaneous in time, none of these equations can represent a causal relation.”
The second feature is that the expression for (electric field) E does not depend upon
(magnetic field) B and vice versa. Hence, it is impossible for £ and B fields to be
“creating” each other. Charge density and current density are creating them both. As
the Efimenko’s equations for the electric field £ and the magnetic field B directly
follow from the classical retarded Lienard—Wiechert potentials, generated by phys-
ically real external charge and current distributions, one naturally infers that these
potentials also present suitably interpreted physical field entities mutually related to
their sources. This way of thinking proved to be, from the physical point of view, very
fruitful, having brought about a new vacuum field theory approach [68, 69, 70, 11] to
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alternative explaining the nature of the fundamental Maxwell equations and related
electrodynamic phenomena.

We start from detailed revisiting the classical Ampere law in electrodynamics
and show that main inferences suggested by physicists of the former centuries can be
strongly extended to agree more exactly with many modern theoretical achievements
and experimental results concerning the fundamental relationship of electrodynamic
phenomena with the physical structure of vacuum as their principal carrier.

The important theoretical physical principles, characterizing the related electro-
dynamical vacuum field structure and based on the least action principle we discuss
subject to different charged point particle dynamics, based on the fundamental least
action principle. In particular, the main classical relativistic relationships, character-
izing the charge point particle dynamics, are obtained by means of the least action
principle within the Feynman’s approach to the Maxwell electromagnetic equations
and the Lorentz type force derivation. Moreover, for each least action principle con-
structed in the work, we describe the corresponding Hamiltonian pictures and present
the related energy conservation laws.

1.2. The Ampere law in electrodynamics -
the classical and modified Lorentz forces derivations

The classical ingenious Andre-Marie Ampere’s analysis of magnetically interacting
to each other two electric currents in thin conductors, as is well known, was based
[30, 50, 64, 83] on the following experimental fact: the force between two electric
currents depends on the distance between conductors, their mutual spatial orientation
and the quantitive values of currents. Having additionally accepted the infinitesimal
superposition principle for this force A.M. Ampere had derived a general analytical
force expression for the force between two infinitesimal elements of currents under
regard:
/ l (}’ —r /) / /
df(r,ry=11"——=ua(s,s;n)dl dl’, (1)
|r —r’|?

where vectors r, ' € E3 point at infinitesimal currents dr = s d[, dr’ = s’ dI’ with
normalized orientation vectors s, s’ € E3 of two closed conductors / and [’ carrying
currents I € Rand I’ € R, respectively, the unit vector n := (r —r’)/|r —r’, | which
fixes the local spatial orientation of these conductors, the function « : (S?)2xS? — R
is some real-valued smooth mapping. Taking further into account the mutual symme-
try between the infinitesimal elements of currents d/ and d!’, belonging respectively
to these two electric conductors, the infinitesimal force (1) was assumed by A.M.
Ampere to satisfy locally the third Newton’s law:

df(r.r') = =df(r'.r) 2)
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with the mapping

B Gie(s.n)(s'.n) + ka (s.57)). 3)

1oy —
a(s,s’;n) yp

where (-,-) is the natural scalar product in E3 and k{,k, € R are some still unde-
termined real and dimensionless parameters. The assumption (2) is evidently look-
ing very restrictive and can be considered as reasonable only subject to a stationary
system of conductors under regard, when the mutual action at a distance principle
[30, 50] can be applied. Citing J.C. Maxwell [19]: “...we may draw the conclusions,
first, that action and reaction are not always equal and opposite, and second, that ap-
paratus may be constructed to generate any amount of work from its own resources.
For let two oppositely electrified bodies A and B travel along the line joining them
with equal velocities in the direction A B, then if either the potential or the attraction
of the bodies at a given time is that due to their position at some former time (as these
authors suppose), B, the foremost body, will attract A forwards more than B attracts
A backwards. Now let A and B be kept asunder by a rigid rod. The combined system,
if set in motion in the direction A B, will pull in that direction with a force which may
either continually augment the velocity, or may be used as an inexhaustible source of
energy.”

Based on the fact that there is no possibility to measure the force between two
infinitesimal current elements, A.M. Ampere took into account (2), (3) and calculated
the corresponding force exerted by the whole conductor /” on an infinitesimal current
element of the other conductor:

dF(r) := 9?/ df(r,r’) =

= —II/MO¢ r—r’ [3k1(d1’ r—r. )(dl’/ ) +k2|r r’|<dr dr >] =

4 7 lr—r'|2
B ’{JOgS Ve (Ir r’\)[3k1<d” r—r'\{dr',r —r') + ka(dr,dr")],
which can be equivalently transformed as

dF(r) = V, (| ,|)[3k1(dr r—r\dr',r —r')y + ka(dr, dr )]

- Iﬁ;“o 9; Vr/(m)[kl(S(dr, r—r'"\dr',r—r'y = {dr,dr'))+ 4)

+ (ky+ha)(dr. dr')]=—ky 2L (dr, Vﬁ, 'y (k1+kz)V9§ (ar, L4z,

=

owing to the integral identity

1 o I ’ r’
fé/vr (Ir_r,l)[S(dr,r r'Wdr’ r =71y = (dr,dr")] = (dr, V>9§/ T
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which can be easily checked by means of integration by parts. Introducing the vector

potential
I’ dr’
aw="0
4 Ji lr — 7'

generated by the conductor [’ at point r € E3 that belongs to the infinitesimal ele-
ment d/ of the conductor /, we can write the resulting infinitesimal force (4) in the
following form:

dF(r) = ki[—1 (dr,VYA(r) + 1 V{dr, A(r))] — Qk1+k2)I V{dr, A(r)) =
=kildr x (V x A(r)) — k1 + k2)I V{dr, A(r)) = (5)
=kiJ(r)d>3r x B(r) — 2k, + k2)V{Jd3r, A(r)),

where we have taken into account the standard magnetic field definition B(r) :=
V x A(r) and the corresponding current density relationship J(r)d3r := Idr. There
are, evidently, many different possibilities to choose the dimensionless parameters
k1,k> € R. In his analysis A.M. Ampere had chosen the case whenk; = 1,k = —2
and obtained the well known nowadays magnetic force expression

dF(r) = J(r)d>r x B(r),
which easily reduces to the classical Lorentz expression

dfp(r) = §u x B(r)

for a force exerted by an external magnetic field on a moving with a constant velocity
u € T(R3) point particle with an electric charge £ € R.

If to take an alternative choice and put ky = 1,k = —1, the expression (5)
yields a modified magnetic Lorentz type force, exerted by an external magnetic field
generated by a moving charged particle with a velocity ' € T (R?) on a point parti-
cle, endowed with the electric charge § € R and moving with a velocity u € T(R?) :

dF(r) = J(r)d3r x B(r) — V{J(r)d>r, A(r)), (6)

which was before occasionally discussed in different works [55, 56, 62, 67, 74] and
recently obtained and analyzed in details from the Lagrangian point of view in works
[13, 68, 69, 70] in the following equivalent infinitesimal form:

8fL(r) = §u x (V x §8A(r)) =&V {u —u s, 8A(r)), ™)

where 84(r) € T*(R3) denotes the magnetic potential generated by an external
charged point particle moving with velocity u r € T(R3) and exerting the mag-
netic force §f7 (r) on the charged particle located at point r € R3 and moving with
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velocity u € T(R3) with respect to a common reference system &. We also need to
mention here that the modified Lorentz force expression (6) does not take naturally
into account the resulting pure electric force as the conductors [ and [’ are considered
to be electrically neutral. Simultaneously, we see that the magnetic potential has a
physical significance in its own right [13, 21, 55, 62, 74] and has meaning in a way
that extends beyond the calculation of force fields.

Really, to obtain the Lorentz type force (6) exerted by the external magnetic field
generated by the whole conductor I’ on an infinitesimal current element d/ of the

conductor /, it is necessary to integrate the expression (7) along this conductor loop
l:

dF(r) := 9?/ Sfr(r) =
= J(r)dr x (Vx 9% 8A(r)) — V{(J(r)dr, ﬁ/ SA(r)) + V¢ (u', E8A(r)) =

1’

= J(r)dr x (V x A(r)) — V{J(r)dr, fé SA(r))V §é (dr',€8A(r)/dt) =

= J(r)dr x B(r) — V{J(r)dr, é/ SA(r)) + V/S(l/)(dS(l/), V x E8A(r)/dt) =

= J(r)dr x B(r) — v<J(r)dr,9§ SA(r)) + V 9§ (dS(l"), €8B(r)/dt) =
4 1k

= J(r)dr x B(r) = V{J(r)dr, 9§ SA(r)) + EV(dP(r)/dt) =

= J(r)dr x B(r) — V{J(r)dr, A(r)) — p(r)d3rVW =

= J(r)dr x B(r) — V{J(r)dr, 9§ SA(r)) + p(r)d3r(=VW — 3A(r)/dt) =
= J(r)dr x B(r) —V{J(r)dr, 9§ SA(r)) + p(r)d3rE(r),
and obtain the equality
dF(r) = p(r)d>rE(r) + J(r)d>r x B(r) — V(J(r)d>r, A(r)), (8)

where, by definition, the electric field E(r) := —VW — dA(r)/dt. Now one can eas-
ily derive from (8) the Lorentz type force expression

dF(r) = J(r)d3r x B(r) =V (J(r)d>r, A(r)),

taking into account that the whole electric field E(r) = 0, owing to the facts that the
conductors are neutral and that the electric potential W (r) is a constant function of
the spatial variable r € E3.
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The presented above analysis of the A.M. Ampere’s derivation of the magnetic
force expression (5), as well as its consequences (6) and (7) make it possible to sup-
pose that the missed modified Lorentz type force expression (6) could also be em-
bedded into the classical relativistic Lagrangian and related Hamiltonian formalisms,
giving rise to eventually new aspects and interpretations of many observed during the
past centuries “strangely” looking experimental phenomena.

In our investigation, we were in part inspired by works [18, 20, 26, 87] and
especially by [33, 34, 73] to solving the classical problem of reconciling gravita-
tional and electrodynamic charges within the Feynman proper time and zero energy
point paradigms. First, we will revisit the classical Mach-Einstein relativistic elec-
trodynamics of a moving charged point particle, and second, we study the resulting
electrodynamic theories associated with our vacuum potential field dynamical equa-
tions (29) and (30), making use of the fundamental Lagrangian and Hamiltonian
formalisms which were specially devised in [12, 70].

1.3. Classical Maxwell equations and their electromagnetic potentials revised

As the classical Lorentz force expression with respect to an arbitrary inertial refer-
ence frame is related with many theoretical and experimental controversies, such
as the relativistic potential energy impact into the charged point particle mass, the
Aharonov-Bohm effect [2] and the Abraham-Lorentz-Dirac radiation force [21, 41,
50] expression, the analysis of its structure subject to the assumed vacuum field
medium structure is a very interesting and important problem, which was discussed
by many physicists including E. Fermi, G. Schott, R. Feynman, F. Dyson [27, 28, 29,
30, 35, 79] and many others. To describe the essence of the electrodynamic problems
related with the description of a charged point particle dynamics under external elec-
tromagnetic field, let us begin with analyzing the classical Lorentz force expression
d—szL:=§E+EuxB, 9)
dt
where £ € R is a particle electric charge, u € T(R?) is its velocity vector [1, 10],
expressed here in the light speed ¢ units,

E :=—04/dt — Vg 10)
is the corresponding external electric field and
B:=VxA (1)

is the corresponding external magnetic field, acting on the charged particle, expressed
in terms of suitable vector A : M* — E3 and scalar ¢ : M* — R potentials. Here,
as before, the sign “V” is the standard gradient operator with respect to the spatial
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variable r € E3, “x” is the usual vector product in three-dimensional Euclidean
vector space E3 := (R3, (-,+)), which is naturally endowed with the classical scalar
product (-, -). These potentials are defined on the Minkowski space M* ~ R x 3,
which models a chosen laboratory reference frame XC. Now, it is a well known fact
[30, 50, 64, 83] that the force expression (9) does not take into account the dual
influence of the charged particle on the electromagnetic field and should be consid-
ered valid only if the particle charge £ — 0. This also means that expression (9)
cannot be used for studying the interaction between two different moving charged
point particles, as was pedagogically demonstrated in classical manuals [30, 50]. As
the classical Lorentz force expression (9) is a natural consequence of the interaction
of a charged point particle with an ambient electromagnetic field, its correspond-
ing derivation based on the general principles of dynamics, was deeply analyzed by
R. Feynman and F. Dyson [27, 28, 30].

Taking this into account, it is natural to reanalyze this classical problem taking
into account the Maxwell-Faraday wave theory aspect and specifying the correspond-
ing vacuum field medium. Other questionable inferences from the classical electro-
dynamics theory, which strongly motivated the analysis in this work, are related both
with an alternative interpretation of the well-known Lorenz condition, imposed on
the four-vector of electromagnetic observable potentials (¢, A) : M* — T*(M*%)
and the classical Lagrangian formulation [50] of charged particle dynamics under ex-
ternal electromagnetic field. The Lagrangian approach is strongly dependent on an
important Einsteinian notion of the proper reference frame X, and the related least
action principle, so before explaining it in more detail, we first to analyze the classical
Maxwell electromagnetic theory from a strictly dynamical point of view.

Let us consider with respect to a laboratory reference frame K an additional
Lorenz condition

0
=+ (V.4) =0, (12)
a priori assumed the Lorentz invariant wave scalar field equation
R
-V =0p (13)

and the charge continuity equation

g—f+ (V.J) =0, (14)

where p: M* — Rand J : M* — E3 are, respectively, the charge and current den-

sities of the ambient matter. Then one can derive [68, 70] that the Lorentz invariant

wave equation
924
V4= 15
92 (15)
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and the classical electromagnetic Maxwell field equations [30, 41, 50, 64, 83]

VxE+0dB/dt =0, (V,E)=np,

(16)
VxB—3E/dt=J, (V,B)=0,

hold for all (¢,7) € M* with respect to the chosen laboratory reference frame /.
As shown by O.D. Jefimenko [42, 45], the corresponding solutions to (16) for the
electric E : M* — E3 and magnetic B : M* — E? fields can be represented by
means of the following causally independent to each other field expressions

. Aty ,r’ 0T (tr,r’
E(t,r) = ﬁ/}; [(p(t r’) 4 1 o(t r))(r_r/)_lr_lr/|2 (gtr)]aﬁr/’

lr—r’|3 lr—r’|2¢ 0t

7)

_ 1 J(@tr,r") 1 aJ(tr,r") 3
B(t,r) = E/Rz[ ") L G

lr—r’]3

where (¢,7) € M*and t, =t — |r_c—r/| is the retarded time. The result (17) was based

on direct derivation from the classical Lienard-Wiechert potentials [41, 45] solving
the field equations (13) and (15), causally depending on the corresponding charge and
current distributions. Based strongly on this fact in [42, 45] there was argued from
physical point of view that related with equations (13) and (15) electric and magnetic
potentials really constitute some suitably interpreted physical entities, in contrast to
the usual statements [41, 30, 50] about their pure mathematical origin.

It is worth to notice here that, inversely, Maxwell’s equations (16) do not directly
reduce, via definitions (10) and (11), to the wave field equations (13) and (15) without
the Lorenz condition (12). This fact and reasonings presented above are very impor-
tant: they suggest that, when it comes to choose main governing equations, it proves
to be natural replacing the Maxwell’s equations (16) with the electric potential field
equation (13), the Lorenz condition (12) and the charge continuity equation (14). To
make the equivalence statement, claimed above, more transparent we formulate it as
the following proposition.

Proposition 1.1. The Lorentz invariant wave equation (13) together with the Lorenz
condition (12) for the observable potentials (¢, A) : M* — T*(M*) and the charge
continuity relationship (14) are completely equivalent to the Maxwell field equations

(16).
Proof. Substituting (12), into (13), one easily obtains
9%
t?

which implies the gradient expression

= —(V,04/0dt) = (V,Ve)+p,

(V,—04/dt — Vo) = p. (18)
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Taking into account the electric field definition (10), expression (18) reduces to
(V, E) = p, which is the second of the first pair of Maxwell’s equations (16).
Now upon applying Vx to definition (10), we find, owing to definition (11), that

V x E + dB/dt =0,

which is the first pair of the Maxwell equations (16). Differenting the equation (13)
by the temporal variable # € R and taken into account the charge continuity equation
(14), one finds that (V, 324 /3t2—V2A—J) = 0. The latter is equivalent to the wave
equation (15), which follows from the observation that the current vector J : M* —
IE3 is defined by means of the charge continuity equation (14) up to a vector function
VxS : M* — E3. Now applying operation Vx to the definition (11), owing to the
wave equation (15) one obtains the equation

VxB=Vx(VxA)=V(V,A)—V?4 =
= —V(d¢/dt) — 3%A/0t> + (3%4/31> — V2 4) =

9
= (Vo —0A/d0) + ] = DE/31 + J.

which leads directly to V x B = dE/dt + J, which is the first of the second pair
of the Maxwell equations (16). The final “no magnetic charge” equation (V, B)
(V,V x A) = 01in (16) follows directly from the elementary identity (V, Vx) =
thereby completing the proof.

O«

This proposition allows us to consider the observable potential functions (¢, A) :
M* — T*(M*) as fundamental ingredients of the ambient vacuum field medium,
by means of which we can try to describe the related physical behavior of charged
point particles imbedded in space-time M*. As there was written by J.K. Maxwell
[19]: “The conception of such a quantity, on the changes of which, and not on its
absolute magnitude, the induction currents depends, occurred to Faraday at an early
stage of his researches. He observed that the secondary circuit, when at rest in an
electromagnetic field which remains of constant intensity, does not show any electri-
cal effect, whereas, if the same state of the field had been suddenly produced, there
would have been a current. Again, if the primary circuit is removed from the field, or
the magnetic forces abolished, there is a current of the opposite kind. He therefore
recognized in the secondary circuit, when in the electromagnetic field, a “peculiar
electrical condition of matter” to which he gave the name of Electrotonic State.” The
following observation provides a strong support of this reasonings within this vacuum
field theory approach:

Observation. The Lorenz condition (12) actually means that the scalar potential field
¢: M* — R continuity relationship, whose origin lies in some new field conserva-
tion law, characterizes the deep intrinsic structure of the vacuum field medium.
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To make this observation more transparent and precise, let us recall the definition
[50, 64, 30, 83] of the electric current J : M* — E3 in the dynamical form

J = pu, (19)

where the vector u € T(R3) corresponds to the charge velocity. Thus, the following
continuity relationship
ap/dt +(V,pu) =0 (20)

holds, which can easily be rewritten [57] as the integral conservation law

d
— t,r)d>r =0
dl/;ztp(’r) r

for the charge inside of any bounded domain Q, C E3, moving in the space-time
M* with respect to the natural evolution equation dr/dt := u. Following the above
reasoning, we obtain the following result.

Proposition 1.2. The Lorenz condition (12) is equivalent to the integral conservation
law

d
— t,r)d3r =0, 21
it Ja, p(t.1) 1)
where Q; C E3 is any bounded domain, moving with respect to the charged point
particle & evolution equation
dr/dt =u(t,r), (22)

which represents the velocity vector of related local potential field changes propagat-
ing in the Minkowski space-time M*. Moreover, for a particle with the distributed
charge density p : M* — R, the following Umov type local energy conservation
relationship holds for any t € R:

i P(ts”)‘P(t”’) d3r —

23
1= u(@.r) =

Proof. Consider first the corresponding solutions to potential field equations (13),
taking into account condition (19). Owing to the standard results from [30, 50], one
finds that A = ¢u, which gives rise to the following form of the Lorenz condition
(12):

dp/dt + (V,eu) =0, (24)

This obviously can be rewritten [57] as the integral conservation law (21), so the
expression (21) is stated.
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To state the local energy conservation relationship (23) it is necessary to combine
the conditions (20), (24) and find that

Ipg)/dt + (u, V(pp)) + 2p¢(V,u) = 0. (25)

Taking into account that the infinitesimal volume transformation d3r = y(t,r)d3ro
for the Jacobian x(¢,r) := |dr(t;ro)/dro| of the corresponding transformation r :
Q4 — 2. induced by the Cauchy problem for the differential relationship (22)
for t € R satisfies the evolution equation dy/dt = (V,u)y, easily following from
(22), and applying to the equality (25) the operator tho (...)x*d3r¢, one obtains the
equality

o |
Q

d
4 (ppxP)d>rg = —/ (ppx)Jd>ro =
dt Q1

0

d
= i |, eear = gean. o

Here we denote by £ := th p(t.r)d>r the conserved charge and by £(£; Q) :
= th (p@y)d3r the conservation quantity of local energy. The latter quantity can
be simplified, owing to the infinitesimal Lorentz invariance four-volume measure re-
lationship d3r(t,r9) A dt = d3rg A dtg, where variables (¢,7) € R, x Q; C M*
are, within the present context, taken with respect to the moving reference frame
KC; ., related to the infinitesimal charge quantity d£(¢,r) := p(t,r)d>r, and variables
(to,r0) € Ryy x Qsy C M 4 are taken with respect to the laboratory reference frame
K4y, related to the infinitesimal charge quantity d£(to, 7o) = p(to, ro)d >ro, satisfy-
ing the charge conservation invariance d&(¢,r) = d&(tp, ro). Using the mentioned
above infinitesimal Lorentz invariance relationships one can calculate the local en-
ergy conservation quantity £(&; Q) as

£(8:Q0) = /Q (po)d’r = fg (oL )a?r =

3
d3rndt 3 d>ro Adio 3
[Szt (p(p "o " ) ’ /Szz <p§0 d3r0 Adt ) d 27)

dto, .3 ppd3r
= —)d°r = e
[, Goigrarr = [

where we took into account that df = dtg+/1 — |u|2. Thus, owing to (26) and (27)

the local energy conservation relationship (23) is satisfied, proving the proposition.
O
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The constructed above local energy conservation quantity (27) can be rewritten

E£(E:Q) :/Q a5 et 1) . / dE(t, r)

VI—Tul?

as

where dE(t,r) = d&(t,r)p(t,r)/+/1 — |u|? is the distributed in vacuum electro-
magnetic field energy density, related with the electric charge d&(z, r) located at a
point (t,r) € M*.

The above proposition suggests a physically motivated interpretation of electro-
dynamic phenomena in terms of what should naturally be called the vacuum potential
field, which determines the observable interactions between charged point particles.
More precisely, we can a priori endow the ambient vacuum medium with a scalar po-
tential energy field density function W := £¢ : M* — R, where £ € R is the value
of an elementary charge quantity, satisfying the governing vacuum field equations

) ow PA _, .
—VIW = pf. S+ (Y, A) =0, ‘az_Z_V A=¢tpw, A=Wuv, (28

2w
ot2

taking into account the external charged sources, which possess a virtual capability
for disturbing the vacuum field medium. Moreover, this vacuum potential field func-
tion W : M* — R allows the natural potential energy interpretation, whose origin
should be assigned not only to the charged interacting medium, but also to any other
medium possessing interaction capabilities, including for instance, material particles,
interacting through the gravity.

The latter leads naturally to the next important step, consisting in deriving the
equation governing the corresponding potential field W: M* — R, assigned to a
charged point particle moving in the vacuum field medium with velocity u € T (R3)
and located at point r(t) = R(t) € E3 at time ¢t € R. As can be readily shown
[68, 69, 70, 74], the corresponding evolution equation governing the related potential
field function W: M* — R, assigned to a moving in the space E> charged particle
&€ under the stationarily distributed field sources, has the form

%(—Wu) =-VW, (29)

where W := W(t, ")r—R@), u(t) :== dR(t)/dt at point particle location (, R(7)) €
M*.

Similarly, if there are two interacting charged point particles located at points
r(t) = R(t)andry(t) = Ry(t) € E3 attime ¢ € R and moving with velocities u :=
dR(t)/dt andu y := dR ¢ (t)/dt, respectively, then the corresponding potential field
function W’* — R, considered with respect to the reference frame K’ specified by
Euclidean coordinates (t',r —ry) € E* and moving with the velocity u € T (R3)
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subject to the laboratory reference frame /C, should satisfy [68, 69] with respect to
the reference frame K’ the dynamical equality
d
dt’

where v’ := dr/dt’, u’f :=drys/dt’ € T(R?), are the velocity vectors. The latter
comes with respect to the laboratory reference frame K about the dynamical equality

W' —u'p)] = -VW, (30)

d _ -
W @ —up)] = =YW fugl?). 3D

The dynamical potential field equations (29) and (30) appear to have important prop-

erties and can be used as means for representing classical electrodynamic phenomena.
Consequently, we shall proceed to investigate their physical properties in more detail
and compare them with classical results for Lorentz type forces arising in the electro-
dynamics of moving charged point particles in an external electromagnetic field.

1.3.1. Classical relativistic electrodynamics revisited

The classical relativistic electrodynamics of a freely moving charged point particle in
the Minkowski space-time M* := R x [E3 is based on the Lagrangian approach. It

uses the Lagrangian function
L:=—mg4/1— |ul?, (32)

where mg € Ry is the so-called particle rest mass and u € T(R?) is its spatial
velocity in the Euclidean space [E3, expressed here and in the sequel in light speed
units (with light speed c¢). The least action principle in the form

5]
3§ =0, S:=-m f 1 — |u|?dt
0 . V

for any fixed temporal interval [t1,7,] C R gives rise to the well-known relativistic
relationships for the mass of the particle

m=__0 (33)

V1= [u?’

the momentum of the particle

mou
pi=mu = ——
V1—ul?
and the energy of the particle
m
Eo=m = ——"
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It follows from [50, 64], that the origin of the Lagrangian (32) can be extracted from

the action
[523 (2]
S = _mO/ 1= ulzar =—m0/ . (34)
131 71

on the suitable temporal interval [71,72] C R, where, by definition,

dt :=dty/1—|ul?

and 7 € R is the so-called, proper temporal parameter assigned to a freely moving
particle with respect to the rest reference frame XC,.. The action (34) is rather ques-
tionable from the dynamical point of view, since it is physically defined with respect
to the rest reference frame /C,, giving rise to the constant action S = —mg (72 — 71),
as the limits of integrations 71 < 12 € R were taken to be fixed from the very be-
ginning. Moreover, considering this particle to have charge £ € R and be moving
in the Minkowski space-time M # under action of an electromagnetic field (¢, A) €
R x E3, the corresponding classical (relativistic) action functional is chosen (see
[12, 30, 50, 64, 70, 83]) as follows:

— 7 Np_ &
S = /Tl [-modt + (A, F)dT Jlﬁ_updr], (35)

with respect to the proper reference system, parameterized by the Euclidean space-
time variables (t,7) € E*, where we have denoted 7* := dr/dt in contrast to the
definition u := dr/dt. The action (35) can be rewritten with respect to the laboratory
reference frame /C moving with velocity vector u € E* as

1%}
S = Ldt, L:=—mo+\/1—|ul?+E(A,u)— £, (36)
. oy 1—ul*>+§(A4,u)—§¢

on the suitable temporal interval [t1,#;] C R, which gives rise to the following [50,
30, 64, 83] dynamical expressions

mo

V1= ul?

P=p+E&A, p=mu, m=

for the particle momentum and

Eo = \Jmd+|P —EAP2 + Ep (37)

for the energy of charged particle &, where, by definition, P € E3 is the common
momentum of the particle and the ambient electromagnetic field at a space-time point
(t,ryem 4,
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The expression (37) for the particle energy £y also appears open to question, since
the potential energy £ ¢, entering additively, has no affect on the particle mass m =
mg/+/1 — |u|?. This was noticed by L. Brillouin [17], who remarked that the fact that
the potential energy has no affect on the particle mass tells us that “... any possibility
of existence of a particle mass related with an external potential energy, is completely
excluded”. Moreover, it is necessary to stress here that the least action principle (36),
formulated with respect to the laboratory reference frame K time parameter t € R,
appears logically inadequate, for there is a strong physical inconsistency with other
time parameters of the Lorentz equivalent reference frames. This was first mentioned
by R. Feynman in [30], in his efforts to rewrite the Lorentz force expression with
respect to the proper reference frame /C,. This and other special relativity theory
and electrodynamics problems stimulated many prominent physicists of the past [16,
17, 30, 64, 86] and present [3, 8, 18, 20, 26, 32, 33, 34, 37, 38, 52, 53, 59, 60] and
[9, 61, 62, 66, 75, 77, 82, 85] to try to develop alternative relativity theories based on
completely different space-time and matter structure principles. Some of them prove
to be closely related with a virtual relationship between electrodynamics and gravity,
based on classical works of H. Lorentz, Schott, J. Schwinger, R. Feynman [30, 54, 79,
80] and many others on the so called “electrodynamic mass” of elementary particles.
Arguing of that mass, one can readily come to a certain paradox: by the well-known
energy-mass relationship, the particle mass determines the energy of its gravitational
field. Yet this energy should lead to an increase in the mass of the particle that in turn
should lead to increased gravitational field and so on. In the limit, for instance, an
electron must have infinite mass and energy, which is not observed in reality.

There is also another controversial inference from the action expression (36). As
one can easily show [30, 50, 64, 83], the corresponding dynamical equation for the
Lorentz force is given by

dp/dt = F := £E + £u x B. (38)

We have defined here, as before, E := —dA/dt — Vg for the corresponding electric
field and B := V x A for the related magnetic field, acting on the charged point
particle €. The expression (38) means, in particular, that the Lorentz force F depends
linearly on the particle velocity vector u € T (R3), and so there is a strong dependence
on the reference frame with respect to which the charged particle £ moves. Attempts
to reconcile this and some related controversies [17, 30, 48, 62, 74, 82] forced Einstein
to elaborate his special relativity theory and proceed further to creating his general
relativity theory trying to explain the gravity by means of geometrization of space-
time and matter in the Universe. Here we must mention that the classical Lagrangian
function £ in (36) is written in terms of a combination of terms expressed by means
of both the Euclidean proper reference frame variables (z,r) € E* and arbitrarily
chosen Minkowski reference frame variables (¢, r) € M*.
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These problems were recently analyzed using a completely different “geometry-
free” approach [68, 69, 74], where new dynamical equations were derived, which
were free of the controversial elements mentioned above. Moreover, this approach
avoided the introduction of the well known Lorentz transformations of the space-
time reference frames with respect to which the action functional (36) is invariant.
From this point of view, there are interesting for discussion conclusions in [5, 36,
40, 78, 88], in which some electrodynamic models, possessing intrinsic Galilean and
Poincaré-Lorentz symmetries, were reanalyzed from diverse geometrical points of
view. From completely different point of view the related electrodynamics of charged
particles was reanalyzed in [42, 43, 44, 45, 46], where all relativistic relationships
were successfully infered from the classical Lienard-Wiechert potentials, solving the
corresponding electromagnetic equations. Subject to a possible geometric space-type
structure and the related vacuum field background, exerting the decisive influence on
the particle dynamics, we need to mention here recent works [4, 81] and the closely
related with their ideas the classical articles [47, 65]. Next, we shall revisit the results
obtained in [68, 69] from the classical Lagrangian and Hamiltonian formalisms [12]
in order to shed new light on the physical underpinnings of the vacuum field theory
approach to the study of combined electromagnetic and gravitational effects.

1.4. The vacuum field theory electrodynamics equations: Lagrangian analysis

1.4.1. A moving in vacuum point charged particle —
an alternative electrodynamic model

In the vacuum field theory approach [68, 69] to combining electromagnetism and the
gravity, the main vacuum potential field function W : M*— R, related to a charged
point particle £ under the external stationarily distributed field sources, satisfies the
dynamical equation (28), namely

%(—Wu) =-VW (39)

in the case when the external charged particles are at rest, where, as above, u =
dr/dt is the particle velocity with respect to some reference system.

To analyze the dynamical equation (39) from the Lagrangian point of view, we
write the corresponding action functional as

1 (%)
S = —/Wdt:—/W\/l—i-lr'lzdr, (40)
1 71

expressed with respect to the proper reference frame ;. Fixing the proper temporal
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parameters 7] < Tp € R, one finds from the least action principle (6S = 0) that

pi=0L)0F = —WFi/y\/1+|F|2 =—-Wu,

) @1
p:=dp/dt =0L/dr = —VW /1 + |F|?,
where, owing to (40), the corresponding Lagrangian function is
L:=-Wy/1+|F]2. (42)
Recalling now the definition of the particle mass
m:=-W (43)

and the relationships dt = dt+/1 — |u|?, Fdt = udt, from (41) we easily obtain
exactly the dynamical equation (39). Moreover, one now readily finds that the dy-
namical mass, defined by means of expression (43), is given as m = —2&—_ which

N 1=[ul?

coincides with the equation (33) of the preceding section. Now one can formulate the
following proposition using the above results

Proposition 1.3. The alternative freely moving point particle electrodynamic model
(39) allows the least action formulation (40) with respect to the “rest” reference frame
variables, where the Lagrangian function is given by expression (42). Its electrody-
namics is completely equivalent to that of a classical relativistic freely moving point
particle, described in Subsection 1.3.1.

1.4.2. A moving in vacuum interacting two charge system -
an alternative electrodynamic model

We proceed now to the case when our charged point particle £ moves in the space-
time with velocity vector u € T(R3) and interacts with another external charged
point particle £ , moving with velocity vector u 5 € T (R3) with respect to a com-
mon reference frame /C. As shown in [68, 69], the respectively modified dynamical
equation for the vacuum potential field function W': M*— R subject to the moving
reference frame K’ is given by equality (30), or

d 17/ / / 17!

W[_W (' — uf)] = -V, (44)
where, as before, u’ := dr/dt’, u’f :=drs/dt’ € T(R?) are the velocity vectors.
Since the external charged particle £  moves in the space-time M 4. it generates the
related magnetic field B := V x A, whose magnetic vector potentials 4 : M *— E3

and A’ : M*— E3 are defined, owing to the results of [68, 69, 74], as

EA:=Wuy, EA =Wy, (45)



90 ANATOLIJ PRYKARPATSKI

Whence, taking into account that the field potential

_ w’
W=——_ (46)
L—Juysl?
and the particle momentum p’ = —W'u’ = —Wu, equality (44) becomes equivalent
to
d / / 17/
—(p"+§A4) =-VW', (47)

dt’

if considered with respect to the moving reference frame K’ or to the Lorentz type
force equality

d -
;P HE) =-VW( - lusl?), (48)

if considered with respect to the laboratory reference frame X, owing to the classical
Lorentz invariance relationship (46), as the corresponding magnetic vector potential,
generated by the external charged point test particle § s with respect to the reference
frame K, is identically equal to zero. To imbed the dynamical equation (48) into the
classical Lagrangian formalism, we start from the following action functional, which
naturally generalizes the functional (40):

%)
S = _/W/,/1+|f—r'f|2df. (49)
7

Here, as before, W' is the respectively calculated vacuum field potential W sub-
ject to the moving reference frame XK', 7 = w'dt’/dz,if = u/fdt//df, dt =

dt’ . J1—|u' — u’f |2, taking into account the relative velocity of the charged point
particle & subject to the reference frame K’, specified by the Euclidean coordinates

(t',r—ry)e R*, and moving simultaneously with velocity vector u € T(R3) with
respect to the laboratory reference frame /C, specified by the Minkowski coordinates
(t,r) € M* and related to those of the reference frame X’ and K; by means of the
following infinitesimal relationships:

di* = (dt")* + |drs|?, (dt')*> =d7* + |dr —drs|?. (50)

So, it is clear in this case that our charged point particle £ moves with the velocity
vector u’ — u’f e T(R3?) with respect to the reference frame K’ in which the external
charged particle & ¢ is at rest. Thereby, we have reduced the problem of deriving the
charged point particle £ dynamical equation to that solved in Subsection 1.3.1.
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Now we can compute the least action variational condition §S = 0, taking into
account that, owing to (49), the corresponding Lagrangian function with respect to
the proper reference frame K; is given by

L:=-W 1+ —7ifl2 (51)

As a result of simple calculations, the generalized momentum of the charged particle
& equals

P 0L _ —W'i + Wiy

= = =m' +EA :=p +EA =p+E4, (52
i

1+|f—ff|2

where, owing to (46) p’ := —W'u' = —Wu = p e E3, 4’ = W’u’f = Wuf =

A € [E3, and giving rise to the dynamical equality

d _
TP ) = VW1 | g2 (53)

with respect to the proper reference frame K. As dt’ = dt,/1+ |F —F|? and

VIFHIF =i =0 — u’f|2)_%, we obtain from (53) the equality

d -
— A =-VW', 54
S +4) (54)
exactly coinciding with equality (47) subject to the moving reference frame K’. Now,
making use of expressions (50) and (46), one can rewrite (54) as that with respect
to the laboratory reference frame K :

d ./ ’ 77/ d —Wu EWu', VW
L +84) =W = 4 + ——
dt’(p E ) dt’ \/1+|“_/f|2 \/1+|u}_|2 \/1+\u_’/-|2
L( —Wdr EWdr, ) YW
AN i+ Pde i+ 2 112

- - d —_
L (Wi 4 WLy = —VW (1 — |us]?).

exactly coinciding with (48):

d -
(P +EA) = VW (1 - lu £1?). (55)

Remark 1.4. The equation (55) allows to infer the following important and physi-
cally reasonable phenomenon: if the test charged point particle velocity u ¢ € T(R3?)
tends to the light velocity ¢ = 1, the corresponding acceleration force Fy. :=
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—VW( — |u f|2) is vanishing. Thereby, the electromagnetic fields, generated by
such rapidly moving charged point particles, have no influence on the dynamics of
charged objects if observed with respect to an arbitrarily chosen laboratory reference
frame KC.

The latter equation (55) can be easily rewritten as

d _ _
d_’Z — VW —&dA/dt + VW|uy|> =

=E(—E'VIW —0A4/0t) — E(u, VYA + EV (A, uz),
or, using the well-known [50] identity
Via,b) = {(a,V)b+ (b,V)a+ b x(Vxa)+ax(Vxb), (56)
where a, b € E3 are arbitrary vector functions, in the standard Lorentz type form

d
d—’;:gEJrguxB—V@A,u—uf). (57)
The equality (57), being before found and written down with respect to the mov-
ing reference frame X’ in [68, 69, 74] and with some inconsistency in [58] allows us

to formulate the next important proposition.

Proposition 1.5. The alternative classical relativistic electrodynamic model (47) al-
lows the least action formulation based on the action functional (49) with respect to
the rest reference frame K., where the Lagrangian function is given by expression
(51). The resulting Lorentz type force expression equals (57), being modified by
the additional force component F. := —V(§A,u — u y), important for explanation
[2, 15, 84] of the well known Aharonov-Bohm effect.

1.4.3. A moving charged point particle dynamics formulation, dual to
the classical relativistic invariant alternative electrodynamic model

Itis easy to see that the action functional (49) is written utilizing the classical Galilean
transformations of reference frames. If we now consider the action functional (40)
for a charged point particle moving with respect the reference frame X, and take
into account its interaction with an external magnetic field generated by the vector
potential A: M* — E3, it can be naturally generalized as

S = /(—Wdt—lré(A,dr)):/[—W L+ |2+ (A F)lde,  (58)

71

where dt = dt /1 — |ul?.
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Thus, the corresponding common particle-field momentum takes the form

P;:%:_L+EA:mu+§A::p+§A, (59)

or V14|72

and satisfies

. dP AL _ —VW +EV(A4,
Pi=—=—_""=-VW 1+ [Ff2+EV(A,F) = aak 1A u>, (60)
dt  Or V1—|u|?
where
L= W1+ |F2+E(AF) (61)

is the corresponding Lagrangian function. Since dt = dt+/1 — |u|?, one easily finds

from (60) that

dP -

= -V £V (A, (62)
Upon substituting (59) into (62) and making use of the identity (56), we obtain the
classical expression for the Lorentz force F, acting on the moving charged point par-

ticle & :

d
9P . F —EE 4 tux B, 63)
dt

where E := —£71VW — %—‘;‘ is its associated electric field and B := V x A is the

corresponding magnetic field. This result can be summarized as follows:

Proposition 1.6. The classical relativistic Lorentz force (63) allows the least action
formulation (58) with respect to the rest reference frame variables, where the La-
grangian function is given by formula (61). Yet its electrodynamics, described by the
Lorentz force (63), is not equivalent to the classical relativistic moving point particle
electrodynamics, described by means of the Lorentz force (38), as the inertial mass
expression m = —W does not coincide with that of (33).

Expressions (63) and (57) are equal up to the gradient term
Fe:=—EV{(Au—uy),

which reconciles the Lorentz forces acting on a charged moving particle £ with re-
spect to different reference frames. This fact is important for our vacuum field theory
approach since it uses no special geometry and makes it possible to analyze both elec-
tromagnetic and gravitational fields simultaneously by employing the new definition
of the dynamical mass by means of expression (43).
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1.5. The vacuum field theory electrodynamics equations: Hamiltonian analysis

Any Lagrangian theory has an equivalent canonical Hamiltonian representation via
the classical Legendre transformation [1, 6, 39, 71, 83]. As we have already formu-
lated our vacuum field theory of a moving charged particle £ in Lagrangian form, we
proceed now to its Hamiltonian analysis making use of the action functionals (40),
(51) and (58).

Take, first, the Lagrangian function (42) and the momentum expression (41) for
defining the corresponding Hamiltonian function with respect to the moving refer-
ence frame /C,:

H:=(p.i)—L= o) W fiepp e

CWVI-pRIWE I |pR /W2

Consequently, it is easy to show [1, 6, 71, 83] that the Hamiltonian function (64) is
a conservation law of the dynamical field equation (39), that is ‘fi—il = ‘2—1;1 = 0 for
all 7, € R which naturally leads to an energy interpretation of H. Thus, we can
represent the particle energy as £ = /W2 — |p|2. Accordingly the Hamiltonian

equivalent to the vacuum field equation (39) can be written as

dr 0H p .. dp  0H _ WVW 65)
dt dp /W2 —|p|? P o T /W2 —|p|?

and we have the following result.

Proposition 1.7. The alternative freely moving point particle electrodynamic model
(39) allows the canonical Hamiltonian formulation (65) with respect to the ‘“rest”
reference frame variables, where the Hamiltonian function is given by expression
(64). Its electrodynamics is completely equivalent to the classical relativistic freely
moving point particle electrodynamics described in Subsection 1.3.1.

In the analogous manner, one can now use the Lagrangian (51) to construct the
Hamiltonian function for the dynamical field equation (47), describing the motion of
charged particle £ in an external electromagnetic field in the canonical Hamiltonian
form:

. _dr _0H . dP _ OH

== P T T (66)
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where

P iy ———L U S—

1= Taee T
2 /)2

P ST

\PFr) + e~ Joveoer

_ (67)
W)>—|P? sy — w2 2 §ALP)
Vo TP W= e

— W2 |EA2—| P2 — —_8(4.P) ’
\/ EAP=IP] N W2—|EA2—| P2

H:= (P i)— L=

being written with respect to the laboratory reference frame K. Here we took into
account that, owing to definitions (45), (46) and (52),

_ _dr _dry dt -
EA = W@:}:W’d[’: =§A=W’d—:-ﬁ=W/rf,/1—|u—uf|2=
W'r O T—
_ rf — _,'.f (W/)z _ |P|2,

and, in particular,

A - w’
3 W=

i'f:__—7 T
(W2 —|P|? 1= [ug|?

where A : M*— R3 is the related magnetic vector potential generated by the mov-
ing external charged particle & r. Equations (66) can be rewritten with respect to the
laboratory reference frame K in the form

dr dp
—=u, — =¢F UuxB—EV{A,u—ur), 68
- P = €E +fux B—§V(Au—uy) (69)
which coincides with the result (57).
Whence, we see that the Hamiltonian function (67) satisfies the energy conserva-
tion conditions‘fi—lg = % = % = 0, for all 7,#' and ¢t € R, and that the suitable

energy expression is

E(A, P)
VW2 —g2[AR — P2

&= \W2—g2ap—|Pi2 + (©9)
where the generalized momentum P = p + £A. The result (69) differs essentially
from that obtained in [50], which makes use of the Einsteinian Lagrangian for a
moving charged point particle £ in an external electromagnetic field. Thus, we obtain
the following proposition:



96 ANATOLIJ PRYKARPATSKI

Proposition 1.8. The alternative classical relativistic electrodynamic model (68),
which is intrinsically compatible with the classical Maxwell equations (14), allows
the Hamiltonian formulation (66) with respect to the proper reference frame variables,
where the Hamiltonian function is given by expression (67).

The inference above is a natural candidate for experimental validation of our the-
ory. It is strongly motivated by the following remark.

Remark 1.9. It is necessary to mention here that the Lorentz force expression (68)

uses the particle momentum p = mu, where the dynamical “mass” m = —W
satisfies condition (69). The latter gives rise to the following crucial relationship
between the particle energy £y and its rest mass mg = —Wy (for the velocity u = 0

at the initial time moment ¢ = 0) :

_ 2
o =m 1 —[§A0/mo| (70)

- 0 )
V1 —=2[EAg/mo|?

or, equivalently, at the condition |EA4¢/mg|? < %

mo = 50/ Lt 11— 4l5d0/E0P + 1E40/E 2, n

where Ag := A|;=¢ € E3, which strongly differs from the classical expression mgy =
Eo — £, following from (37) and is not depending a priori on the external potential
energy £@o. At |EAg/Ep| — 0, the following asymptotical mass values follow from
(71):

mo >~ &o, m(()i) g :|:\/§|§A()|

The first mass value mg ~ &g is physically correct, giving rise to the bounded

charged particle energy &£p, but the second mass values m(()i) ~ ++/2|EA4¢]| are not
physical, as they give rise to the vanishing denominator \/ 1 - 2‘§A0 / mgi) >~ 0in

(70), being equivalent to the unboundedness of the charged particle energy modulus
|€o|. Tt is also worth of mentioning that the sign of the mass m¢ always coincides
with that of the energy &p.

To make this difference more clear, we now analyze the Lorentz force (63) from
the Hamiltonian point of view based on the Lagrangian function (61). Thus, we
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obtain that the corresponding Hamiltonian function
H = (P )= L= (P F)+W1+|F]2-EAF)=
= (P —EAF) + WL/l + /]2 =

—(p. p) N w _ (72)
W1—|pl2/W2  /1—|p2/W?2

W2 _[p2 —
=—_—m=_‘/W2_|p|2
VW2 —|pl?

Since p = P —£A, expression (72) assumes the final “no interaction” [50, 64, 49, 72]
form

H=—\W>—|P—g4P, 73)
which is conserved with respect to the evolution equations (59) and (60), that is
dH/dt = dH/dt = 0 for all 7, € R. These equations latter are equivalent to
the following Hamiltonian system

9H P—§A
y = — = — s
0P YW2—|P—gap

_ OH _ WVW —V(£A4,(P — £A)) 74
N T T
as one can readily check by direct calculations. Actually, the first equation
R et 2. S P _
VWP AR WP
mu —Wu u

VW2—p2 yW2—[p]2  V1-u]?
holds, owing to the condition dt = dt+/1 — |u|? and definitions p := mu, m =
—W , postulated from the very beginning. Similarly we obtain that

\A7%4 V(EA, u) \A7% V(EA, u)
- — + — = — 5 + 5
VI=IpP/Ww2 o Vi=[pP/wz  JI=ul? J1=ul
coincides with equation (62) in the evolution parameter # € R. This can be formulated
as the next result.

Proposition 1.10. The dual to the classical relativistic electrodynamic model (63) al-
lows the canonical Hamiltonian formulation (74) with respect to the proper reference
frame variables, where the Hamiltonian function is given by expression (73). More-
over, this formulation circumvents the “mass-potential energy” controversy attached
to the classical electrodynamical model (36).
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The modified Lorentz force expression (63) and the related rest energy relation-
ship are characterized by the following remark.

Remark 1.11. If we make use of the modified relativistic Lorentz force expression
(63) as an alternative to the classical one of (38), the corresponding charged particle
& energy expression (73) also gives rise to a true physically reasonable energy expres-
sion (at the velocity u := 0 € [E3 at the initial time moment ¢ = 0); namely, & = my
instead of the physically controversial classical expression &g = mg + £pg, where
@0 := @|¢=0, corresponding to the case (37).

1.6. The quantization of electrodynamics models
in the vacuum field theory geometry-free approach

1.6.1. The problem setting

Recently [68, 69], we elaborated a new regular geometry-free approach to deriving
the electrodynamics of a moving charged point particle £ in an external electromag-
netic field from first principles. This approach has, in part, reconciled the mass-
energy controversy [17] in classical relativistic electrodynamics. Using the vacuum
field theory approach initially proposed in [68, 69, 74], we reanalyzed this problem
above from both the Lagrangian and Hamiltonian perspective and derived key ex-
pressions for the corresponding energy functions and Lorentz type forces acting on a
moving charged point particle &.

Since all of our electrodynamics models were represented here in canonical Hamil-
tonian form, they are well suited to the application of Dirac quantization [14, 22] and
the corresponding derivation of related Schrodinger type evolution equations. We
describe these procedures in this section.

1.6.2. Free point particle electrodynamics model and its quantization
The charged point particle electrodynamics models, discussed in detail in Sections
2 and 3, were also considered in [69] from the dynamical point of view, where a
Dirac quantization of the corresponding conserved energy expressions was attempted.
However, from the canonical point of view, the true quantization procedure should
be based on the relevant canonical Hamiltonian formulation of the models given in
(65), (66) and (74).

In particular, consider a free charged point particle electrodynamics model char-
acterized by (65) and having the Hamiltonian equations

dr  0H p dp  0H WVWw

de ™0 JWEoppt de T o W pp

where the function W: M* — R, defined in the preceding sections, is the cor-
responding vacuum field potential characterizing medium field structure, (r, p) €
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T*(R3) ~ E3 x E3 are the standard canonical coordinate-momentum variables on
the cotangent space T*(R3), r € R is the proper reference frame /C, time parameter
of the moving particle, and H : T*(R3) — R is the Hamiltonian function

H:=—\W2—|p|2, (75)

expressed here and hereafter in light speed units. The proper reference frame X,
parameterized by variables (z,7) € E*, is related to any other reference frame K in
which our charged point particle £ moves with velocity vector u € E3. The frame K
is parameterized by variables (¢, ) € M* via the Euclidean infinitesimal relationship
dt? = dt?+|dr|?, which is equivalent to the Minkowskian infinitesimal relationship
dt?> = dt?> — |dr|?>. The Hamiltonian function (75) clearly satisfies the energy
conservation conditions dH /dt = dH /dt = 0 for all t,7 € R. This means that

the suitable energy
€=\ W2—|pP (76)

can be treated by means of the Dirac quantization scheme [22, 23] to obtain, as h —
0, (or the light speed ¢ — o0) the governing Schrodinger type dynamical equation.
To do this following the approach in [68, 69], we need to make canonical operator

replacements £ — &= —lﬁa% p—pi= ?V, as h — 0, in the following energy
expression:
€= (Ev.&y) = . €)= (v, HTHY), (77)

where (-, -) is the standard L-inner product. It follows from (76) that
E2=w?—|p?=H"H (78)

is a suitable operator factorization in the Hilbert space H := L,(R3;C) and ¥ € H
is the corresponding normalized quantum vector state. Since the following elemen-
tary identity

W2 —|p? =W =W pPW H2A - W pPWH 2w (79)
holds, we can use (78) and (79) to define the operator
H:=0-wpPw Hl2w. (80)

Having calculated the operator expression (80) as i — O up to operator accuracy
O(R*), it is easy see that
|P|2 o n? 2
W= — \Y%
2m(u) 2m(u)

H= + W, (81)
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where we have taken into account the dynamical mass definition m(u) := —W (in
the light speed units). Consequently, using (77) and (81), we obtain up to operator
accuracy O(7i*) the following Schrodinger type evolution equation

GV 2
) 2m(u)
with respect to the rest reference frame /C; evolution parameter T € R. For a related

evolution parameter ¢ € R parameterizing a reference frame /C, the equation (82)
takes the form

Vi + Wy (82)

. 81# . hzmo

2
ihe _—2m(u)2v v — moy. (83)

Here we used the fact that it follows from (76) that the classical mass relationship
m(u) = mo/+/1 — |u|? holds, where mg € R is the corresponding rest mass of our
point particle &.

The linear Schrodinger equation (83) for the case i/c — 0 actually coincides
with the well-known expression [22, 30, 50] from classical quantum mechanics.

1.6.3. Classical charged point particle electrodynamics model
and its quantization

We start here from the first vacuum field theory reformulation of the classical charged
point particle electrodynamics (introduced in Subsection 1.3.1) and based on the con-
served Hamiltonian function (73)

H:= —\/W2—|P—$A|2, (84)

where £ € R is the particle charge, (W, A) € R x E3 is the corresponding represen-
tation of the electromagnetic field potentials and P € E3 is the common generalized
particle-field momentum P := p + £A, p := mu, which satisfies the classical
Lorentz force equation. Here m := —W is the observable dynamical mass of our
charged particle, and u € 3 is its velocity vector with respect to a chosen reference
frame /C, all expressed in light speed units.

Our electrodynamics based on (84) is canonically Hamiltonian, so the Dirac
quantization scheme

h
P—P:=-V, E—-Ei=—F— (85)

should be applied to the energy expression € := /W2 — | P — £A|2, following from
the conservation conditions dH /dt = 0 = dH /dt, satisfied for all 7,¢ € R.
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Proceeding as above, we can factorize the operator £2 as

W2 —|P -4 =
=WA-W P —eAPW)YV2(1 =W P —gAPWH'2W .= AT A,

where (as ii/c — 0, ic = const) H := #(M)H-iv — EA|2 + W up to operator ac-
curacy O(%*). Hence, the related Schrodinger type evolution equation in the Hilbert
space H = L,(R3;C) is

i = &y = Ay = 2l |V — APy + Wy (86)

with respect to the proper reference frame /C, evolution parameter T € R, and corre-
sponding Schrédinger type evolution equation with respect to the evolution parameter
t € R takes the form

L0 h 2
ihr = sz | 7V — EA| Y —moy.

The Schrodinger equation (86) (at A/c — 0) coincides [22, 51] with the classical
quantum mechanics version.

1.6.4. Modified charged point particle electrodynamics model and its quanti-
zation

From the canonical viewpoint, we now turn to the true quantization procedure for the
electrodynamics model, characterized by (53) and having the Hamiltonian function
(67)

§{4, P)

H:=—\W2-£2|A2 - |P|>? - — : (87)
/ VW2 =242 | P2
Accordingly the suitable energy function is
- AP
= \/W2—§2|A|2—|P|2+ = £ ) , (88)
VW2 —£2|42 - |P|?
where, as before, P := p + €A, p := mu, m := —W, is a conserved quantity for

(53), which we will canonically quantize via the Dirac procedure (85). Toward this
end, let us consider the quantum condition

€= EY.Ey) = (1.E%), (hy) =1, (89)
where, by definition, &= —?% and Y € H = L,(R3;C) is a respectively normal-

ized quantum state vector. Making now use of the energy function (88), one readily
computes that
§2(A, P)(P, A)

E2=W?2_|P—¢£A]2+ 21
|P —EA| TETIE

’



102 ANATOLIJ PRYKARPATSKI

which transforms by the canonical Dirac type quantization P — P = ?V into the
symmetrized operator expression

£2(A, P)(P, A)

E2 W2 P AP+ 2 A
|P —£A| W2 1B

(90)

Factorizing the operator (90) in the form &2 =H'H, and retaining only terms up
to O(h*) (as h/c — 0), we compute that

y.— L _|h R gy h
H = 5 o5 |7V = 847 = 55054, FV)(F V. A), (91)

where, as before, m(u) = —W in light speed units. Thus, owing to (89) and (91), the
resulting Schroédinger evolution equation is

2 .y, 1 |k 2 g2 h h
ihgy == HY = 55 |1V =84V — 550 (A PV GV )y (92)

with respect to the proper reference frame proper evolution parameter t € R. The
latter can be rewritten in an equivalent form as

T 1 yh g2 hyo b
ihge = =3may AV — amay {7V, §414)V — 5505 (4. 7 VIGV, Ay, (93)

where [, -]+ means the formal anti-commutator of operators. Similarly one also ob-
tains the related Schrodinger equation with respect to the time parameter t € R,
which we shall not dwell upon here. The result (92) only slightly differs from the
classical Schrodinger evolution equation (86). Simultaneously, its form (93) almost
completely coincides with the classical ones from [22, 51, 64] modulo the evolution
considered with respect to the proper reference time parameter t € R. This suggests
that we must more thoroughly reexamine the physical motivation of the principles un-
derlying the classical electrodynamic models, described by the Hamiltonian functions
(84) and (87), giving rise to different Lorentz type force expressions. A more deep
and extended analysis of this matter is forthcoming in a paper now in preparation.

2. Conclusions

All of dynamical field equations discussed above are canonical Hamiltonian sys-
tems with respect to the corresponding proper reference frames K, parameterized
by suitable time parameters t € R. Upon passing to the basic laboratory reference
frame K with the time parameter ¢ € R, the naturally related Hamiltonian structure
is lost, giving rise to a new interpretation of the real particle motion. Namely, one
that has an absolute sense only with respect to the proper rest reference system, and
otherwise being completely relative with respect to all other reference frames. As for
the Hamiltonian expressions (64), (67) and (73), one observes that they all depend
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strongly on the vacuum potential energy field function W : M*— R, thereby avoid-
ing the mass problem of the classical energy expression pointed out by L. Brillouin
[17]. It should be noted that the canonical Dirac quantization procedure can be ap-
plied only to the corresponding dynamical field systems considered with respect to
their proper reference frames.

Remark 2.1. Some comments are in order concerning the classical relativity prin-
ciple. We have obtained our results relying only on the natural notion of the proper
reference frame and its suitable Lorentzian parametrization with respect to any other
moving reference frames. It seems reasonable then that the true state changes of a
moving charged particle £ are exactly realized only with respect to its proper refer-
ence system. Then the only remaining question would be about the physical justifica-
tion of the corresponding relationship between time parameters of moving and proper
reference frames.

The relationship between reference frames that we have used through is expressed

dv =di\/1—|ul2, (94)

where u := dr/dt € E3 is the velocity vector with which the proper reference frame

as

I moves with respect to another arbitrarily chosen reference frame K. Expression
(94) implies, in particular, that

dt*> —|dr|* = d?, (95)

which is identical to the classical infinitesimal Lorentz invariant. This is not a coinci-
dence, since all our dynamical vacuum field equations were derived in turn [68, 69]
from the governing equations of the vacuum potential field function W : M*— R in
the form
2w ow ap
—V2W =§£p, — +VOOW)=0, —
t? o ot W) ot
which is a priori Lorentz invariant. Here p € R is the charge density and v := dr/dt
the associated local velocity of the vacuum field potential evolution. Consequently,
the dynamical infinitesimal Lorentz invariant (95) reflects this intrinsic structure of
equations (96). Rewritten in a nonstandard Euclidean form dt? = dt? + |dr|?, it

+Vp) =0,  (96)

gives rise to a completely different relationship between the reference frames X and

KCr, namely
dt =dty/1+|F|?,

where 7 := dr/d 7 is the related particle velocity with respect to the proper reference
system. Thus, we observe that all our Lagrangian analysis in this Section is based
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on the corresponding functional expressions written in these “Euclidean” space-time
coordinates and with respect to which the least action principle was applied. So we
see that there are two alternatives: either to apply the least action principle to the cor-
responding Lagrangian functions expressed in the Minkowski space-time variables
with respect to an arbitrarily chosen reference frame /C, or to apply the least action
principle to the corresponding Lagrangian functions expressed in Euclidean space-
time variables with respect to the proper reference frame /C,.

This leads us to a slightly amusing but thought-provoking observation: according
to our analysis, all results of classical special relativity related to the electrodynamics
of charged point particles can be obtained (in a one-to-one correspondence) using our
new definitions of the dynamical particle mass and the least action principle with re-
spect to the associated Euclidean space-time variables in the proper reference system.

An additional remark concerning the quantization procedure of the proposed elec-
trodynamics models is in order: if the dynamical vacuum field equations are ex-
pressed in canonical Hamiltonian form, as we have done in this paper, only straight-
forward technical details are required to quantize the equations and obtain the cor-
responding Schrodinger evolution equations in suitable Hilbert spaces of quantum
states. There is another striking implication from our approach: the Einsteinian equiv-
alence principle [30, 48, 50, 64] is rendered superfluous for our vacuum field theory
of electromagnetism and gravity.

Using the canonical Hamiltonian formalism elaborated here for the alternative
charged point particle electrodynamics models, we found it rather easy to treat the
Dirac quantization. The results obtained compared favorably with classical quanti-
zation, but it must be admitted that we still have not given a compelling physical
motivation for our new models. We plan to revisit this issue in future investigations.
Another important aspect of our vacuum field theory geometry-free approach to com-
bining the electrodynamics with the gravity, is the manner in which it singles out the
decisive role of the rest reference frame ;.. More precisely, all of our electrodynam-
ics models allow both the Lagrangian and Hamiltonian formulations with respect to
the proper reference system evolution parameter t € R, which are well suited the to
canonical quantization. The physical nature of this fact remains is as yet not quite
clear. In fact, as far as we know [48, 50, 52, 53, 64], there is no physically reasonable
explanation of this decisive role of the rest reference system, except for that given
by R. Feynman who argued in [30] that the relativistic expression for the classical
Lorentz force (38) has physical sense only with respect to the proper reference frame
variables (r,7) € R x E3. In future research we plan to analyze the quantization
scheme in more detail and begin work on formulating a vacuum quantum field theory
of infinitely many particle systems.
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