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A structure of decision-level fusion-based autism diagnosis using analysis of EEG signals 
related to presentation of facial expression modes has been proposed. EEG signals of autistic 
and normal children were recorded during processing images of emotional facial expression 
modes, such as sadness, happiness, and calmness. Then brain signals were mapped into the 
feature space by applying a novel hybrid model utilizing the brain potentials recorded during 
the examination task. The aim of mapping was to achieve separation of the autistic samples 
from normal ones with the highest precision. The created map provides the feature vectors 
that reflected spatial, temporal, and spectral data, as well as the coherence degrees for distinct 
areas of the brain. The mapping process was optimized using a genetic algorithm by assign-
ing weighs to the feature vectors. Then the feature vectors corresponding to the three facial 
expressions of emotional modes were classified by support vector machines. Finally, using 
decision-level fusion through a majority voting rule, we see that the proposed structure is able 
to effectively distinguish the autistic individuals from normal ones.
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INTRODUCTION

Autism, Asperger’s syndrome, pervasive develop
mental disorder (not otherwise specified as childhood 
disintegrative disorder), and Rett’s syndrome are 
known as pervasive developmental disorders. 
The autism spectrum disorders (ASDs) refer to 
autism per se, Asperger’s syndrome, and pervasive 
developmental disorder not otherwise specified [1]. 
Autism is a neurological disorder that hinders the 
brain from functioning properly in terms of social 
situations and communicative skills [1–3]. Three main 
cognitive theories have been proposed concerning the 
individuals with autism, such as the theory of mind 
deficit, executive dysfunction, and the theory of weak 
central coherence. With the help of these theories, the 

nature of behavioral functions of children with ASD 
can be accounted for to some extent. Recent reports 
and studies indicated that the prevalence rate of the 
mentioned disorder is still increasing in different 
nations [4–10]. The diagnosis of autism is not an easy 
process; it generally requires a set of certain behavioral 
and cognitive characteristics. 

At present, researchers are trying to find ASD 
diagnostic approaches through electrophysiological 
and neuroimaging techniques. Among these methods, 
interpretation of EEG signals is one of the fundamental 
tools in diagnosing and identifying neurophysiological 
disorders. Since EEG signals contain extensive high-
resolution temporal information, the respective 
analysis has significant advantages in comparison 
with that in computer imaging techniques [11, 12]. 
In addition, EEG is relatively easy to use and more 
economical as well. Therefore, researchers are inclined 
to analyze EEG signals of autistic individuals and to 
compare these signals with normal ones. 

In simple terms, the researchers, using pattern re
cognition techniques, have succeeded in providing di-
agnostic algorithms with different performance [13], 
so that various feature extraction methods were evalu-
ated to distinguish children with ASD based on EEG 
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signals. For example, Sheikhani et al. [14] utilized 
Lempel-Ziv (LZ) complexity, short-time Fourier trans-
form (STFT), and STFT at a bandwidth (STFT-BW) in 
the total spectrum. Further, Behnam et al. [15] calcu-
lated the STFT-BW component in the alpha frequency 
range (8–12 Hz) as a feature. Then, Higuchi’s fractal 
(FD) and Katz’s fractal dimensions were computed in 
all EEG sub-bands and in the entire spectrum [12]. 
Moreover, Razali et al. [16] examined the Gaussian 
mixture model as a method of feature extraction for 
analyzing brain signals in the frequency domain. In 
another work, Bosl et al. [17] used modified multi-
scale entropy (MMSE) as a feature vector. Later on, a 
few authors [18] applied principal components analy-
sis (PCA) to STFT of the EEG signals. Also, Duffy  
et al. [19] employed PCA of the coherence data as an 
objective technique to meaningfully reduce the num-
ber of variables.

Our study proposes a diagnostic algorithm based on 
a hybrid model. This means that this algorithm classi-
fies EEG signals of children with autism and differen-
tiates these signals from normal ones during percep-
tion of images of the facial expression modes. In this 
hybrid model, brain signals are mapped into a feature 
space by utilizing brain potentials related to certain 
emotional modes. In this algorithm, EEG signals of 
autistic and normal children are recorded during pro-
cessing three different emotional facial expressions 
(sadness, happiness, and calmness); after preprocess-
ing them, a vector-space map is written by means of 
the proposed hybrid model. The created map provides 
the feature vectors reflecting the spatial, temporal, and 
spectral data, as well as the coherence degrees for the 
distinct brain areas. The mapping process is optimized 
by a genetic algorithm by assigning weights to the fea-
ture vectors. Then, the feature vectors corresponding 
to the three facial expressions of emotional modes are 
classified by Support Vector Machines (SVMs). Final-
ly, using decision-level fusion through the majority 
voting rule, we see that the proposed algorithm helps 
to distinguish effectively autistic and normal children 
from each other. 

METHODS

Participants. Six children (four boys and two girls) 
ranging in age from 7 to 9 years were diagnosed as 
autistic by the Autistic Society of Malaysia according 
to the DSM-IV criteria. An intelligence quotient 
measure of the autistic children was determined based 

on the Stanford Binet test. The IQ test took about 2–3 
days to be completed. In this test, the IQ levels are 
categorized into very gifted or highly advanced (VG), 
superior (Su), high average (HA), borderly impaired 
or delayed (BI), moderately impaired or delayed 
(Mo), gifted or very advanced (G), average (Ave), low 
average (LA), and mildly impaired or delayed (MI). 
We considered ASD children with either Ave or LA 
in their verbal or nonverbal IQs. The control group 
consisted of six boys, 7 to 9 years old, without a 
history of neurologic treatment. Each of the children 
in the non-ASD group took about 3–4 h (continuous 
session) to complete the IQ test. The normal group 
had an average level in both verbal and nonverbal IQs. 

Stimuli. The stimuli consisted of visual presentation 
of images of sad, happy, and calm human faces, which 
were shown as movie clips with a duration of 1 min 
for each affective state. Each face was shown for 
only 8 sec; there was a 2-sec-long time interval after 
displaying each face to let the child change his/her 
mood to watch the next face. 

EEG Recording. The participants were asked to 
sit in a light and quiet room, and electrodes were 
placed on their heads according to the international 
10–20-system. The channels C3, C4, F3, F4, P3, P4, 
T3, and T4 were used, and CZ was considered as 
reference. While the participants were watching the 
video clips of sad, happy, and calm human faces, 
their EEGs were recorded using the BIMEC EEG 
set (Germany). The recorded EEG signals are then 
saved for off-line processing. The channel data were 
sampled with a 250 sec–1 frequency and filtered with 
low-pass elliptic filters in the frequency range 0–64 
Hz. Elliptical filters effectively attenuate unwanted 
frequency-band effects. To remove the impact of 
artifacts of the 50 Hz electricity network, a notch filter 
was used.

Structure of the Proposed Decision-Level Fusion-
Based Autism Diagnosis. The proposed algorithm 
consists of four major steps of feature extraction, 
mapping to the feature space, optimization of this 
mapping through the weight assignment, classification 
of the feature vectors, and data fusion in the decision 
level (a decision-making phase). Figure 1 shows a 
block diagram of our proposed decision-level fusion-
based autism diagnosis structure. These stages are 
completely described below. 

Feature Extraction. There are important data in 
EEG signals that help us to effectively distinguish 
between autistic and normal children. In order to 
extract this valuable information, a hybrid model 
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based on the EEG signals has been provided. In this 
step, the signals are mapped in a vector space. In a 
sense, the feature vectors are produced through this 
model (Fig.  2). The merits of our proposed hybrid 
model include (i) nearly all of the brain potentials 
occurring during the examination task employed; 
(ii) it was organized based on utilizing distinct 
characteristics between the two groups, and (iii) no 
dimension reduction algorithms were used. As a result, 
no valuable data were lost. In this model, EEG signals 
are divided into l-sec-long epochs. Then a number of 
features are extracted based on a hybrid model. Here, 
the nature of extracted features from EEG signals is 
described, and then the structure of the hybrid model 
is discussed. 

Discrete Fourier Transform (MDFT) Coefficients. 
The EEG signals in each epoch can be considered as 
a time series. The MDFT in a time series is defined as 
follows [20, 21]:
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where xn is the nth sample, and N is the total number 
of samples in each epoch.

Log Energy in the δ, θ, α, β, and γ Bands. Due to 
the nonstationary nature of EEG signals, these signals 
should be decomposed into frequency bands; hence, a 
time-frequency transform (such as wavelet transform) 
is an appropriate tool to extract the features [22]. 
Wavelet transform is the product of the correlation be-
tween the frequency content of the signal and a mother 
wavelet function at different scales [23, 24]. Accord-
ingly, the continuous wavelet transform can be defined 
by the following formula: 
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     Fig. 2: Block diagram of the proposed decision-level fusion-based autism diagnosis 
structure. 
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F i g. 1. Mapping of EEG signals to the feature space.

Р и с. 1. Картування ЕЕГ-сигналів у просторі ознак.
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,	 (3) 

where x(t) is the signal to be analyzed, and Ψ(t) is 
called the mother wavelet; * denotes the complex 
conjugate, s is the scale variable (s ≠ 0)), and τ is the 
time shift variable. In this study, band-limited EEG 
signals (0–64 Hz) were decomposed into five bands, 
gamma (32–64 Hz), beta (16–32 Hz), alpha (8–16 Hz), 
theta (4–8 Hz), and delta (0–4 Hz), by analyzing the 
wavelet at four levels (scales) with Daubechies 4 [25]. 
Figure 3 shows a block diagram of this decomposition. 

Log Energy Beta/Alpha Ratio. The ratio of beta 
and alpha brain waves [26] is a criterion of the arousal 
magnitude. The brain signals are recorded during 
emotional facial expression processing; this is why 
extraction of this feature from EEG signals can be 
a useful tool in distinguishing between autistic and 
normal children.

Mean of the Squared Magnitude of Coherence 
(MSMC). The coherence measures the coupling 
between two distinct time series in the frequency 
domain. The resulting coherence value will allow one 
to show close relations between two brain areas [27]. 
In our study, the coherence degree between the left 
and right hemispheres of the brain was calculated; the 
coherence degree within one single hemisphere was not 
examined. Due to the four channels of recording from 
each hemisphere, the respective values are very close 
to each other [28]. Therefore, calculation of coherence 
between the close channels is not permissible. Hence, 
the samples of channels were filtered in the range 
0–0.64 Hz. The MSMC was calculated in the same 
frequency range with a resolution of 1.0 Hz as 

,	 (4)

where Cxy  is defined as
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F i g. 3. Mapping of EEG signals to the feature space. 
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F i g. 2. Block diagram of wavelet decomposition of EEG into frequency bands.

Р и с. 2. Блок-діаграма wavelet-декомпозиції ЕЕГ у частотні смуги. 
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where pxx(f) and pyy(f) are the power spectral densities 
of the channels x and y, respectively. Also, pxy(f) 
represents the cross power spectral density of the 
channels x and y.

Hybrid Model. So far, the nature of features used 
in the model was introduced. It is important how these 
features must be arranged and how the channel epochs 
must be incorporated to produce useful information. 
In simple terms, by using all the channel samples, this 
model is capable of representing simultaneously the 
feature vectors in any given time; the vectors include 
the place, time, and spectral information. To construct 
the hybrid model, we performed the following steps:

(i) Segmentation of all the channel samples into 

l-sec-long epochs (W is the number of epochs).
(ii) Receiving of the nth epoch of all channels 

(n=1:W)
(a) MDFT calculation. 
(b) Calculation of the Log energy beta/ alpha ratio. 
(c) MSMC calculation between the channels of the 

left and right hemispheres. 
(d) Calculation of the Log energy in sub-bands δ, 

θ, α, β, and γ for the total sample resulting from all 
epoch channels. 

(iii) Repetition of step 2 until n ≤ W.
Finally, this algorithm yields a d × W matrix for an 

EEG signal where W signifies the number of epochs 
and d denotes the number of extracted features.

Weight Assignment using a K-nearest Neighbors 
Genetic Algorhythm (KNN-GA). Generally, a genetic 
algorithm (GA) provides a huge variety of possible 
solutions for a certain problem; then each of the 
solutions is evaluated based on the fitness function. 

4 

F i g. 4. Block diagram of wavelet decomposition of EEG into frequency sub-bands. 
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F i g. 3. Results of applying the fusion methods in diagnosing the 
patterns on the training dataset.

Р и с. 3. Результати застосування техніки злиття для діагностики 
патернів згідно з базою даних тренування. 
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Next, a set of the best solutions produces new 
solutions. Hence, the search space is driven to find 
the best possible solution [29, 30]. In this phase, to 
optimize the mapping process in the feature space, the 
weights are assigned to the extracted features using the 
GA. In our application, the solutions are the weights 
that have been assigned to the features. The GA finds 
the weights in the way that the fitness function should 
be minimized. 

As a rule, the weights assigned to the features 
must satisfy two conditions. First, when the weights 
are assigned, the discrimination of autistic children 
from normal ones must be performed more accurately. 
Second, the weights must have a high degree of 
reliability and generalization. In our application, since 
the weights are assigned to the features to distinguish 
autistic children from normal ones with a minimum 
error, the classification error is considered the fitness 
function. To achieve the weights with the highest 
possible generalization, the K-nearest neighbors 
(KNN) classifier is used. This nonparametric classifier 
distinguishes the objects on the basis of most similar 
training examples existing in the feature space. 
Finally, the fitness function is defined as

Fitness function = A – B,	 (6)

where A signifies the total number of test samples that 
were entered to the KNN classifier, and B signifies 
the number of test samples classified by the KNN 
classifier correctly. Table 1 briefly represents the 
applied topologies to assign the optimized weights to 
the extracted features.

Classification. Classification in our case is the 
process of assigning a feature vector to one of 
the predefined classes or categories in a manner 
minimizing the error of classification [31]. In the ASD 

detection problem, the two classes are individuals 
with ASD (class one) and non-ASD subjects (class 
two). This process is usually performed by applying 
classifiers on the feature vectors of two classes. 
The essential part of this process is to know how a 
classifier assigns one of the two classes to an unknown 
feature vector. In our research, classification is carried 
out by three SVMs for identification of three facial 
expression modes. The output of a binary SVM 
classifier can be computed by the following expression 
[32]:

,	 (7)

where  presents the training dataset in which 
the input vectors are  and the class labels 

, αi > 0 are Lagrangian multipliers. Also, 
b signifies the bias, and k(xi, xj) is the kernel SVM 
function. In our applications, the Gaussian RBF kernel 
function is used. 

Data Fusion at the Decision Level. Data fusion 
at the decision level is an effective approach in 
machine learning algorithms, in which the results of 
classifications are combined to improve the learning 
performance [33, 34]. To make the data integration 
useful, the basic classifiers must be reliable enough, 
and an appropriate approach must be adopted to the 
integrated relevant data. In such a sense, the integration 
approach must compensate the shortcomings of each 
classifier [35]. In this stage, a decision-level data 
fusion is used to achieve the best possible diagnostic 
method. Since different facial expressions probably 
produce different EEG patterns, they can be used 
as discriminative measures to differentiate between 
autistic children and normal ones. So, using the 
fusion of these patterns, we were able to obtain all 

T a b l e 1. Diagnosis Results of the Proposed Structure for Autistic and Normal Subjects before and after Weighting Optimization

Т а б л и ц я 1. Результати діагностики аутистичних та нормальних суб’єктів перед оптимізацією згідно зі значеннями ваги 
та після такої оптимізації  

Emotion 
modes

Accuracy rate, % (test samples)

without  weighting with  weighting
A3 A4 A5 A6 C7 C8 C9 C10 C11 Total A3 A4 A5 A6 C7 C8 C9 C10 C11 Total

sadness 96.66 83.33 100 70 100 100 100 80 43.33 85.92 95 83.33 98.33 73.33 100 100 100 100 48.33 88.7

happiness 90 96.66 96.66 63.33 100 100 100 8.33 96.66 83.51 96.66 98.33 91.66 80 100 95 100 50 85 88.51

calmness 96.66 96.66 100 28.33 100 100 100 90 98.33 89.99 91.66 85 98.33 43.33 100 100 100 100 100 90.92



NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2017.—T. 49, № 1 69

DECISION-LEVEL FUSION-BASED STRUCTURE OF AUTISM DIAGNOSIS

information, which can be used to distinguish the two 
groups. One way is fusion at the decision level based 
on the output of classification algorithms [36, 37]. The 
output of different classification algorithms may be 
stated as one of the following three forms [38]:

Type I (abstract level) in which the classifier gives 
one single-class label for the specific input. 

Type II (rank level) in which the classifier sorts an 
ordered sequence of the nominated classes in a list 
for each specific input so that the class with the most 
likely features is put at the beginning of the list. 

Type III (measurement level) in which the classifier 
assigns a measurement value to each class; this 
represents the degree of confidence to belonging to a 
specific input to a certain class.

The type-I output includes the majority voting and 
Bayes methods; the type II-output includes the Borda 
counting method and highest-rank method, and, finally, 
the type-III output includes the product, maximum, 
minimum, and summation [37, 38]. In this study, in 
order to achieve the optimal decision, the integration 
process of output of three SVM classifiers is examined 
based on types I and II. First, a brief explanation of the 
integration language is provided, and then the applied 
methods are described.

Let’s  assume that  D = {D 1,D 2, . . . ,DL} and  
Ω = {ω1, ω2,..., ωK} signify the set of classifiers and 
the set of class labels, respectively [37, 38]. 

In each classifier D i, after receiving the feature 
vector x ∈ Rn, the output vector is produced as follows:

,	 (8)

where dij(x) is the value reported by the classifier. 
The value of dij(x) depends on the type of outputs, so 
that in type I dij(x) ∈ {0,1}. In other words, if the i th 
classifier chooses class ωj, then dij will be equal to 1, 
otherwise zero. In type II, dij(x)  is the integer number, 
and in type III, dij(x) ∈ [0,1], which signifies the score 
of belonging of pattern x to the class ωj .

The integration of classifier outputs means that, 
by combining the output vectors of L classifiers, the 
vector of pattern x to K classes is defined as

	 (9),

where F represents the aggregation rule. After 
determining this vector, the class of pattern x will 

correspond to the greatest entry of D(x). In other 
words, the x pattern belongs to class ωs if 

 stKtxx t
D

s
D ≠=∀≥ ,,...,2,1)()( µµ ,	 (10)

The output of different classifiers may be arranged 
in the format of a matrix called as the Decision Profile 
DP(x), as shown here [37].

,	 (11)

where the i th row of the matrix represents the output 
of classifier Di for the x, pattern, and the  j th  column 
of the matrix is the decision value of pattern x to the 
ωj class provided by classifiers D1 to D2.      

Fusion Based on Type I Output. Majority Voting. 
In majority voting [38, 39], the ensemble decision can 
be described as follows. Choose class ωk,  if

 ,	 (12)

Naïve Bayes Combination. This scheme assumes 
that the classifiers are mutually independent given a 
class label (conditional independence) [37].  Denote 
by p(sj)  the probability that classifier Dj labels x in 
class sj ∈ Ω. The conditional independence allows one 
for the following representations:

 , 	 (13)

Then the posterior probability needed to label x is

 
.

	 (14)

       

The denominator does not depend on ωk and can  
be ignored; so, the support for class ωk can be 
calculated as
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 ,	  (15)

The practical implementation of the naive Bayes 
(NB) method on a Z dataset with cardinality N is ex-
plained below. For each classifier Di, a K × K confu-
sion matrix CM i is calculated by applying D i to the 
training dataset. The (k, s) th entry of this matrix, ,  
is the number of elements of the dataset whose true 
class label is ωk, and are assigned by Di to class ωs. By 
Ns, we denote the total number of Z elements of class 
ωs. Taking  as an estimate of the probability 
p(si | ωk), we see that Eq. (15) is equivalent to

 .	 (16)

Fusion Based on Type-III output.  Class-
Conscious Methods. Given DP(x), the class-conscious 
methods [38-41] operate classwise on each column of 
DP(x).The rules are described as follows: 

Sum rule: This computes the soft class label vectors 
using

 . 	   (17)

Product rule: It computes the soft class label vectors 
as:

.	  (18)

Min rule: computes the soft class label vectors 
using:

.	 (19)  

Max rule: This computes the soft class label vectors 
using

.	  (20)

Class-Indifferent Methods. Given DP(x), the 
class-indifferent approach uses the whole of the DP(x) 
disregarding the classes [38]. There are two different 
methods, decision templates and a Dempster-Shafer 
combination. Due to the computational complexity of 
these methods, the latter were not used in this study.

RESULTS

In our proposed algorithm, two cross-validation 
methods were applied. In the test and training stages, 
the hold-out and leave-one-out (LOO) methods were 
used, respectively [42]. Six normal and six autistic 
children participated in the research. From these 12 
subjects, 9 children were selected for the training 
phase. Also, three children (including two autistic 
children and one normal child) were selected randomly 
as test samples in order to evaluate the performance 
of the proposed structure. The three children selected 
for the test stage did not participate in the training 
stage and parameter setting of the algorithm. These 
three children were unknown to the algorithm. In this 
paper, the autistic and normal signals are considered 
positive and negative classes, respectively. Therefore, 
true positive (TP) and true negative (TN) samplings 
are defined as correctly classified autistic and normal 
samples, respectively. Moreover, false positive (FP) 
and false negative (FN) samplings are defined as 
incorrectly classified autistic and normal samples, 
respectively [43]. Based on these definitions, the 
accuracy rate is defined as 

 .	 (21)

Autism Diagnosis Results. Finally, the proposed 
structure can distinguish the autistic patterns from 
the normal ones sufficiently accurately. To improve 
the process of distinguishing the autistic from normal 
children, the GA was used to assign the weight to the 
extracted features from the brain signals during pro-
cessing the facial expressions. Table 2 demonstrates 
the overall diagnostic process of patterns in the three 
emotional states before and after assigning the weights 
to features in the training phase. Comparison of the 
values of Table 3 clearly reveals the improved clas-
sification performance before and after the weight as-
signment. In Table 2, there are two groups, autistic and 
control children marked with An and Cm , respectively, 
where n  and m are the participant indices.

Although assigning the weight to features enhances 
the performance of the classification process, our goal 
was to achieve the highest possible accuracy of the 
diagnosis rate. Therefore, we apply data fusion at the 
decision level. Figure 4 shows the results of applying 
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different fusion methods on the outputs of classifiers. 
In Fig. 4, among different methods of data fusion at 
the decision level, the voting method demonstrated 
the best diagnosis performance. The voting rule at the 
decision level could diagnose the autistic and normal 
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F i g. 4. Resalts of applying the fusion methods in diagnosing 
patterns in the training dataset.

Р и с. 4. Результати застосування методик об’єднання при диаг
ностиці патернів у тренувальній базі даних.

T a b l e 2. Diagnosis Results of Autistic and Normal EEG Signals during Processing of Emotional Facial Expressions

Т а б л и ц я 2. Результати діагностики ЕЕГ-сигналів, записаних у перебігу обробки інформації щодо емоційних виразів 
обличчя аутистичними та нормальними дітьми

Accuracy rate (%) Situation  modes
sad happy calm

Subjects Autism Control Autism Control Autism Control
Autism  (1) 93.33 6.67 100 0 96.66 3.34

Autism  (2) 86.66 13.34 100 0 86.66 13.34

Control (12) 0 100 6.67 93.33 0 100

T a b l e 3. Diagnosis Results of Test Patterns Based on Our 
Proposed Decision-Level Data-Fusion Algorithm

Т а б л и ц я 3. Результати діагностики тест-патернів, 
базованих на нашому запропонованому алгоритмі 
прийняття рішень на базі об’єднання 

Test samples
Accuracy rate (%)

Autism Control
Autism  (1) 98.33 1.67
Autism  (2) 98.33 1.67
Control (12) 0 100
Total Accuracy 98.88

T a b l e 4. Statistical Evaluation of the Spectral Features in 
Some Channels

Т а б л и ц я 4. Статистична оцінка спектральних 
характеристик по деяких каналах 

Emotional modes

Spectral features                         sadness happiness calmness

MDFT

C3 1.17E-12 1.11E-19 1.90E-21
C4 1.41E-13 1.58E-23 1.47E-13
F3 1.13E-07 1.86E-13 2.23E-16
F4 2.42E-13 2.31E-11 6.20E-17
P3 1.74E-16 8.41E-28 1.12E-24
P4 1.75E-10 2.38E-14 4.37E-11
T3 1.90E-21 3.14E-21 8.32E-34
T4 4.39E-22 1.06E-31 1.29E-30

Log-energy 
beta/alpha

C3 2.68E-14 1.19E-03 4.89E-10
C4 1.37E-05 7.12E-01* 0.066713*
F3 2.66E-03 8.12E-02* 8.68E-08
F4 6.60E-09 3.36E-01* 2.03E-05
P3 7.63E-66 2.72E-54 1.53E-53
P4 1.32E-49 1.95E-28 3.09E-33
T3 1.32E-54 1.24E-48 7.07E-72
T4 1.90E-52 1.77E-24 2.53E-59

Log-energy δ 4.07E-44 5.01E-39 5.03E-34
Log-energy  θ 3.88E-88 4.62E-90 1.30E-95
Log-energy α 5.26E-99 2.51E-92 4.24E-101
Log-energy β 1.50E-86 2.56E-77 2.54E-78
Log-energy γ 1.81E-66 1.89E-57 5.24E-53

* Corresponds to P values > 0.05; the evaluated feature is not  
significantly different in the two groups.

patterns at the training phase, based on the LOO 
assessment standard, with an accuracy rate of 94.62%. 

Finally, after setting training parameters of our 
proposed autism diagnosis structure, a set of unknown 
samples was given to it, and the performance of our 
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emotional mode. Similarly, with respect to the log-
energy beta/alpha values, there were significant 
differences in the P3, P4, T3, and T4 electrode 
positions, although for the happy mode there were 
no differences in C4, F3, and F4 electrodes. Log-
energy values in the delta, theta, alpha, beta, and 
gamma ranges showed the minimum P values, which 
revealed accurate estimations of the differences 
between ASD children and control ones. Statistical 
evaluation of the extracted MSMC feature in the 
two groups for some channels is shown in Table 6. 
Analysis of the MSMC values indicated significant 
differences between the emotional states. In other 
words, interhemispheric MSMC values obtained 
during facial expression modes can be considered a 
significant feature subset.

T a b l e 5. Statistical Evaluation of the Extracted MSMC Features in Two Groups for Some Channels

Т а б л и ц я 5. Статистична оцінка виділених MSMC-ознак у двох групах по деяких каналах

Emotional modes

sadness happiness calmness

Channel F4 C4 T4 P4 F4 C4 T4 P4 F4 C4 T4 P4

F3 2.66E-02 2.06E-07 4.76E-07 3.21E-10 2.52E-02 9.26E-20 1.12E-12 8.24E-21 1.40E-10 1.70E-20 1.75E-16 7.34E-25

C3 3.17E-05 9.64E-10 1.00E-12 4.77E-20 3.81E-15 2.50E-20 3.49E-15 1.93E-31 1.09E-19 6.41E-22 2.65E-23 9.52E-36

T3 5.36E-06 2.31E-10 8.67E-04 3.48E-17 2.96E-12 1.81E-19 1.45E-06 6.07E-22 2.39E-17 8.22E-23 1.61E-12 2.93E-29

P3 7.71E-10 5.30E-12 1.77E-07 1.80E-12 4.91E-19 1.81E-24 1.16E-16 7.43E-32 1.47E-31 1.23E-31 1.55E-31 4.54E-35

T a b l e 6. Comparison between Our Proposed Diagnosis Structure and Those in Other Works

Т а б л и ц я 6. Порівняння успішності діагностики з використанням нашої запропонованої структури та діагностики в 
інших роботах 

Diagnosis Algorithms Condition Accuracy rate (%)
Sheikhani  et al. (2007) [13] eyes open 81.0
Behnam et al. (2008) [15] eyes open 89.5

Ahmadlou et al. (2010)[12] resting, eyes closed 90

Razali et al. (2011) [16] motor imitation task
(to clinch their hands by following video stimuli) 86.62

Bosl et al. (2011) [17] resting state Control from HRA Over 80
(at age 9 months)

Shams et al. (2012) [18] eyes open 90-100

Duffy et al. (2012) [19] awake state control: 88.5
ASD: 86

Alhaddad et al. (2012) [44] relaxed condition (91.64±.021)
Our proposed algorithm processing of the facial expression 98.88

diagnosis structure was evaluated. Hence, EEG signals 
of the three children (S1, S2, and S12), which were 
put aside in the hold-out method, were given to our 
proposed structure. Table 3 shows diagnosis results of 
the three normal and autistic children during emotional 
facial expression processing. Also, Table 4 shows the 
final diagnosis results of the three children’s brain 
signals by decision-level data fusion based on the 
voting rule. 

Statistical Analysis. To evaluate the extracted 
features from EEG channels, the two-tailed t-test 
with a 95% confidence interval was used for the 
two groups (Tables 5 and 6). This statistical method 
was applied to the samples related to each emotional 
mode. Analysis of the two groups of MDFT showed 
significant differences for all channels and for each 
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DISCUSSION

In previous researches for diagnosing the autism 
disorder, different techniques have been employed, 
and different results have been reported with respect 
to various test datasets. The degree of generalization 
and validity of a diagnosis algorithm depend on two 
factors, the size of the test dataset used and the type of 
cross-validation methods used. Recent researches in 
this field, with processing of EEG signals and applying 
different pattern recognition techniques, demonstrated 
prospects for EEG-based diagnosis algorithms with 
different performances. For example, the random 
sub-sampling validation technique was employed 
for testing the classification [12], while the k-fold 
validation was used to verify the results [16, 17], and 
the accuracy was presented by means of a LOO method 
[18]. As a result, due to the different databases utilized 
in those researches and also to different validation 
measures, comparing the algorithms with others in 
terms of accuracy is not an exact science. 

Our study focused on the advantage of TOM and 
examined EEG signals of autistic children during 
processing of emotional facial expressions in three 
different modes. Finally, a decision-level data fusion 
structure based on EEG signals was proposed to 
diagnose autism automatically. The salient advantages 
of the suggested structure, as compared with other 
algorithms presented in the literature, include the use 
of a hybrid model for feature extraction, the use of 
an optimization algorithm to assign the weights to the 
extracted features, and the use of decision-level data 
fusion. Also, processing of different facial expressions 
related to the emotional state probably created different 
brain patterns; some of the patterns in each mode may 
differ between the autistic and normal children. So, 
using the information fusion corresponding to the 
three different facial expressions, we were able to 
achieve the greatest volume of information allowing 
us to distinguish the two groups from each other in 
each emotional mode simultaneously. Table 7 briefly 
illustrates a comparison between our proposed autism 
diagnosis structure and other algorithms presented in 
the literature. 

Thus, a decision-level fusion-based structure using 
EEG signals was suggested for diagnosing autism. 
The EEG signals, related to three emotional facial 
expressions and shown by the tested children, were 
analyzed. In this structure, EEG signals were mapped 
into a vector space by applying a hybrid model. The 
resulting feature vectors reflect simultaneously the 

spatial, temporal, and spectral data, as well as the 
coherence degree in the distinct areas of the brain. 
Then, the mapping process was optimized be assigning 
weights to the feature using the GA. In the next stage, 
the features of three facial expression modes were 
classified. Finally, based on fusion at the decision 
level of three SVM classifiers, the ultimate decision 
was made. Thus, our technique demonstrated some 
advantages as compared to those proposed earlier by 
other authors.
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СТРУКТУРА ДІАГНОСТИКИ АУТИЗМУ, БАЗОВАНА 
НА РІШЕННЯХ З ВИКОРИСТАННЯМ ОБ’ЄДНАННЯ ТА 
ІНТЕРПРЕТАЦІЇ ЕЕГ-СИГНАЛІВ, ЯКІ ПОВ’ЯЗАНІ ЗІ 
СПРИЙНЯТТЯМ ВИРАЗІВ ОБЛИЧЧЯ 
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Р е з ю м е

Запропоновано структуру прийняття рішень на основі злит-
тя при діагностиці аутизму з використанням аналізу ЕЕГ-
сигналів, пов'язаних зі сприйняттям виразу обличчя. ЕЕГ-
сигнали, відведені у дітей, що страждають на аутизм, і 
здорових дітей, записувалися під час обробки зображень 
емоційних виразів обличчя,  таких як сум, щастя та спокій. 
Потім ЕЕГ-сигнали наносилися на карту простору рис. Це 
дозволяло сформувати нову гібридну модель, яка була орга-
нізована з використанням потенціалів мозку, відведених при 



NEUROPHYSIOLOGY / НЕЙРОФИЗИОЛОГИЯ.—2017.—T. 49, № 174

M. HASHEMIAN and H. POURGHASSEM

вирішенні тест-завдання. Метою картування було досягти 
високоточного розділення аутистичних та нормальних ви-
борок зразків. Створена карта дозволяла визначити вектори 
певних ознак, які відображають просторові, часові та спек-
тральні дані, а також рівень когерентності сигналів у різних 
зонах мозку. Процедура картування оптимізувалася з вико-
ристанням генетичного алгоритму через надання певних 
рівнів ваги векторам ознак. Потім вектори ознак, що відпо-
відали трьом емоційним виразам обличчя, класифікувалися 
із застосуванням машин опорних векторів. Нарешті, вико-
ристання рішення на основі об’єднання (згідно з правилом 
«голосування більшості») робило запропоновану структуру 
діагностики здатною ефективно розрізняти аутистичних та 
нормальних суб’єктів.
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