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A structure of decision-level fusion-based autism diagnosis using analysis of EEG signals
related to presentation of facial expression modes has been proposed. EEG signals of autistic
and normal children were recorded during processing images of emotional facial expression
modes, such as sadness, happiness, and calmness. Then brain signals were mapped into the
feature space by applying a novel hybrid model utilizing the brain potentials recorded during
the examination task. The aim of mapping was to achieve separation of the autistic samples
from normal ones with the highest precision. The created map provides the feature vectors
that reflected spatial, temporal, and spectral data, as well as the coherence degrees for distinct
areas of the brain. The mapping process was optimized using a genetic algorithm by assign-
ing weighs to the feature vectors. Then the feature vectors corresponding to the three facial
expressions of emotional modes were classified by support vector machines. Finally, using
decision-level fusion through a majority voting rule, we see that the proposed structure is able
to effectively distinguish the autistic individuals from normal ones.

KEYWORDS: autism spectrum disorders (ASDs), facial expression modes, EEG signal

interpretations, hybrid model, decision-level fusion.

INTRODUCTION

Autism, Asperger’s syndrome, pervasive develop-
mental disorder (not otherwise specified as childhood
disintegrative disorder), and Rett’s syndrome are
known as pervasive developmental disorders.
The autism spectrum disorders (ASDs) refer to
autism per se, Asperger’s syndrome, and pervasive
developmental disorder not otherwise specified [1].
Autism is a neurological disorder that hinders the
brain from functioning properly in terms of social
situations and communicative skills [1-3]. Three main
cognitive theories have been proposed concerning the
individuals with autism, such as the theory of mind
deficit, executive dysfunction, and the theory of weak
central coherence. With the help of these theories, the
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nature of behavioral functions of children with ASD
can be accounted for to some extent. Recent reports
and studies indicated that the prevalence rate of the
mentioned disorder is still increasing in different
nations [4—10]. The diagnosis of autism is not an easy
process; it generally requires a set of certain behavioral
and cognitive characteristics.

At present, researchers are trying to find ASD
diagnostic approaches through electrophysiological
and neuroimaging techniques. Among these methods,
interpretation of EEG signals is one of the fundamental
tools in diagnosing and identifying neurophysiological
disorders. Since EEG signals contain extensive high-
resolution temporal information, the respective
analysis has significant advantages in comparison
with that in computer imaging techniques [11, 12].
In addition, EEG is relatively easy to use and more
economical as well. Therefore, researchers are inclined
to analyze EEG signals of autistic individuals and to
compare these signals with normal ones.

In simple terms, the researchers, using pattern re-
cognition techniques, have succeeded in providing di-
agnostic algorithms with different performance [13],
so that various feature extraction methods were evalu-
ated to distinguish children with ASD based on EEG
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signals. For example, Sheikhani et al. [14] utilized
Lempel-Ziv (LZ) complexity, short-time Fourier trans-
form (STFT), and STFT at a bandwidth (STFT-BW) in
the total spectrum. Further, Behnam et al. [15] calcu-
lated the STFT-BW component in the alpha frequency
range (8—12 Hz) as a feature. Then, Higuchi’s fractal
(FD) and Katz’s fractal dimensions were computed in
all EEG sub-bands and in the entire spectrum [12].
Moreover, Razali et al. [16] examined the Gaussian
mixture model as a method of feature extraction for
analyzing brain signals in the frequency domain. In
another work, Bosl et al. [17] used modified multi-
scale entropy (MMSE) as a feature vector. Later on, a
few authors [18] applied principal components analy-
sis (PCA) to STFT of the EEG signals. Also, Duftfy
et al. [19] employed PCA of the coherence data as an
objective technique to meaningfully reduce the num-
ber of variables.

Our study proposes a diagnostic algorithm based on
a hybrid model. This means that this algorithm classi-
fies EEG signals of children with autism and differen-
tiates these signals from normal ones during percep-
tion of images of the facial expression modes. In this
hybrid model, brain signals are mapped into a feature
space by utilizing brain potentials related to certain
emotional modes. In this algorithm, EEG signals of
autistic and normal children are recorded during pro-
cessing three different emotional facial expressions
(sadness, happiness, and calmness); after preprocess-
ing them, a vector-space map is written by means of
the proposed hybrid model. The created map provides
the feature vectors reflecting the spatial, temporal, and
spectral data, as well as the coherence degrees for the
distinct brain areas. The mapping process is optimized
by a genetic algorithm by assigning weights to the fea-
ture vectors. Then, the feature vectors corresponding
to the three facial expressions of emotional modes are
classified by Support Vector Machines (SVMs). Final-
ly, using decision-level fusion through the majority
voting rule, we see that the proposed algorithm helps
to distinguish effectively autistic and normal children
from each other.

METHODS

Participants. Six children (four boys and two girls)
ranging in age from 7 to 9 years were diagnosed as
autistic by the Autistic Society of Malaysia according
to the DSM-IV criteria. An intelligence quotient
measure of the autistic children was determined based
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on the Stanford Binet test. The 1Q test took about 2—3
days to be completed. In this test, the 1Q levels are
categorized into very gifted or highly advanced (VG),
superior (Su), high average (HA), borderly impaired
or delayed (BI), moderately impaired or delayed
(Mo), gifted or very advanced (G), average (Ave), low
average (LA), and mildly impaired or delayed (MI).
We considered ASD children with either Ave or LA
in their verbal or nonverbal 1Qs. The control group
consisted of six boys, 7 to 9 years old, without a
history of neurologic treatment. Each of the children
in the non-ASD group took about 3—4 h (continuous
session) to complete the 1Q test. The normal group
had an average level in both verbal and nonverbal 1Qs.

Stimuli. The stimuli consisted of visual presentation
of images of sad, happy, and calm human faces, which
were shown as movie clips with a duration of 1 min
for each affective state. Each face was shown for
only 8 sec; there was a 2-sec-long time interval after
displaying each face to let the child change his/her
mood to watch the next face.

EEG Recording. The participants were asked to
sit in a light and quiet room, and electrodes were
placed on their heads according to the international
10-20-system. The channels C3, C4, F3, F4, P3, P4,
T3, and T4 were used, and CZ was considered as
reference. While the participants were watching the
video clips of sad, happy, and calm human faces,
their EEGs were recorded using the BIMEC EEG
set (Germany). The recorded EEG signals are then
saved for off-line processing. The channel data were
sampled with a 250 sec™! frequency and filtered with
low-pass elliptic filters in the frequency range 0—64
Hz. Elliptical filters effectively attenuate unwanted
frequency-band effects. To remove the impact of
artifacts of the 50 Hz electricity network, a notch filter
was used.

Structure of the Proposed Decision-Level Fusion-
Based Autism Diagnosis. The proposed algorithm
consists of four major steps of feature extraction,
mapping to the feature space, optimization of this
mapping through the weight assignment, classification
of the feature vectors, and data fusion in the decision
level (a decision-making phase). Figure 1 shows a
block diagram of our proposed decision-level fusion-
based autism diagnosis structure. These stages are
completely described below.

Feature Extraction. There are important data in
EEG signals that help us to effectively distinguish
between autistic and normal children. In order to
extract this valuable information, a hybrid model
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based on the EEG signals has been provided. In this
step, the signals are mapped in a vector space. In a
sense, the feature vectors are produced through this
model (Fig. 2). The merits of our proposed hybrid
model include (i) nearly all of the brain potentials
occurring during the examination task employed;
(i1) it was organized based on utilizing distinct
characteristics between the two groups, and (iii) no
dimension reduction algorithms were used. As a result,
no valuable data were lost. In this model, EEG signals
are divided into 1-sec-long epochs. Then a number of
features are extracted based on a hybrid model. Here,
the nature of extracted features from EEG signals is
described, and then the structure of the hybrid model
is discussed.

Discrete Fourier Transform (MDFT) Coefficients.
The EEG signals in each epoch can be considered as
a time series. The MDFT in a time series is defined as
follows [20, 21]:
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Fig. 1. Mapping of EEG signals to the feature space.
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where x is the nth sample, and N is the total number
of samples in each epoch.

Log Energy in the 6, 0, a, B, and y Bands. Due to
the nonstationary nature of EEG signals, these signals
should be decomposed into frequency bands; hence, a
time-frequency transform (such as wavelet transform)
is an appropriate tool to extract the features [22].
Wavelet transform is the product of the correlation be-
tween the frequency content of the signal and a mother
wavelet function at different scales [23, 24]. Accord-
ingly, the continuous wavelet transform can be defined
by the following formula:
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Fi g. 2. Block diagram of wavelet decomposition of EEG into frequency bands.
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where x(7) is the signal to be analyzed, and ¥(?) is
called the mother wavelet; * denotes the complex
conjugate, s is the scale variable (s # 0)), and 7 is the
time shift variable. In this study, band-limited EEG
signals (0-64 Hz) were decomposed into five bands,
gamma (32—64 Hz), beta (16-32 Hz), alpha (8—16 Hz),
theta (4-8 Hz), and delta (0—4 Hz), by analyzing the
wavelet at four levels (scales) with Daubechies 4 [25].
Figure 3 shows a block diagram of this decomposition.

Log Energy Beta/Alpha Ratio. The ratio of beta
and alpha brain waves [26] is a criterion of the arousal
magnitude. The brain signals are recorded during
emotional facial expression processing; this is why
extraction of this feature from EEG signals can be
a useful tool in distinguishing between autistic and
normal children.
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Mean of the Squared Magnitude of Coherence
(MSMC). The coherence measures the coupling
between two distinct time series in the frequency
domain. The resulting coherence value will allow one
to show close relations between two brain areas [27].
In our study, the coherence degree between the left
and right hemispheres of the brain was calculated; the
coherence degree within one single hemisphere was not
examined. Due to the four channels of recording from
each hemisphere, the respective values are very close
to each other [28]. Therefore, calculation of coherence
between the close channels is not permissible. Hence,
the samples of channels were filtered in the range
0-0.64 Hz. The MSMC was calculated in the same
frequency range with a resolution of 1.0 Hz as
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MSMC=3 " ¢, (f), (4)

where C is defined as
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where p_(f) and p (f) are the power spectral densities
of the channels x and y, respectively. Also, ny(f)
represents the cross power spectral density of the
channels x and y.

Hybrid Model. So far, the nature of features used
in the model was introduced. It is important how these
features must be arranged and how the channel epochs
must be incorporated to produce useful information.
In simple terms, by using all the channel samples, this
model is capable of representing simultaneously the
feature vectors in any given time; the vectors include
the place, time, and spectral information. To construct
the hybrid model, we performed the following steps:

(i) Segmentation of all the channel samples into
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F i g. 3. Results of applying the fusion methods in diagnosing the
patterns on the training dataset.

P u c. 3. Pe3ynbrartu 3acTOCYBaHHS TEXHIKH 3IUTTS IS IIATHOCTHKH
MATEePHIB 3T1IHO 3 0a3010 JaHUX TPEHYBaHHS.

l-sec-long epochs (W is the number of epochs).

(i1) Receiving of the nth epoch of all channels
(n=1:W)

(a) MDFT calculation.

(b) Calculation of the Log energy beta/ alpha ratio.

(c) MSMC calculation between the channels of the
left and right hemispheres.

(d) Calculation of the Log energy in sub-bands 9,
0, a, B, and y for the total sample resulting from all
epoch channels.

(ii1) Repetition of step 2 until n < W.

Finally, this algorithm yields a d x W matrix for an
EEG signal where W signifies the number of epochs
and d denotes the number of extracted features.

Weight Assignment using a K-nearest Neighbors
Genetic Algorhythm (KNN-GA). Generally, a genetic
algorithm (GA) provides a huge variety of possible
solutions for a certain problem; then each of the
solutions is evaluated based on the fitness function.
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Next, a set of the best solutions produces new
solutions. Hence, the search space is driven to find
the best possible solution [29, 30]. In this phase, to
optimize the mapping process in the feature space, the
weights are assigned to the extracted features using the
GA. In our application, the solutions are the weights
that have been assigned to the features. The GA finds
the weights in the way that the fitness function should
be minimized.

As a rule, the weights assigned to the features
must satisfy two conditions. First, when the weights
are assigned, the discrimination of autistic children
from normal ones must be performed more accurately.
Second, the weights must have a high degree of
reliability and generalization. In our application, since
the weights are assigned to the features to distinguish
autistic children from normal ones with a minimum
error, the classification error is considered the fitness
function. To achieve the weights with the highest
possible generalization, the K-nearest neighbors
(KNN) classifier is used. This nonparametric classifier
distinguishes the objects on the basis of most similar
training examples existing in the feature space.
Finally, the fitness function is defined as

Fitness function = A — B, (6)

where 4 signifies the total number of test samples that
were entered to the KNN classifier, and B signifies
the number of test samples classified by the KNN
classifier correctly. Table 1 briefly represents the
applied topologies to assign the optimized weights to
the extracted features.

Classification. Classification in our case is the
process of assigning a feature vector to one of
the predefined classes or categories in a manner
minimizing the error of classification [31]. In the ASD

detection problem, the two classes are individuals
with ASD (class one) and non-ASD subjects (class
two). This process is usually performed by applying
classifiers on the feature vectors of two classes.
The essential part of this process is to know how a
classifier assigns one of the two classes to an unknown
feature vector. In our research, classification is carried
out by three SVMs for identification of three facial
expression modes. The output of a binary SVM
classifier can be computed by the following expression
[32]:

Y= sgn(Zaiyik(xf,x)—i—b), (7

i=1

where {xl.,yl.}l_’\; presents the training dataset in which
the input vectors are | x, eR”’}il and the class labels
v € {—1,1 A a, > 0 are Lagrangian multipliers. Also,
b signifies the bias, and k(x, x) is the kernel SVM
function. In our applications, the Gaussian RBF kernel
function is used.

Data Fusion at the Decision Level. Data fusion
at the decision level is an effective approach in
machine learning algorithms, in which the results of
classifications are combined to improve the learning
performance [33, 34]. To make the data integration
useful, the basic classifiers must be reliable enough,
and an appropriate approach must be adopted to the
integrated relevant data. In such a sense, the integration
approach must compensate the shortcomings of each
classifier [35]. In this stage, a decision-level data
fusion is used to achieve the best possible diagnostic
method. Since different facial expressions probably
produce different EEG patterns, they can be used
as discriminative measures to differentiate between
autistic children and normal ones. So, using the
fusion of these patterns, we were able to obtain all

T a b le 1. Diagnosis Results of the Proposed Structure for Autistic and Normal Subjects before and after Weighting Optimization

Taoduauusal. Pe3yJbraTu 1iarHOCTHKH ayTHCTUYHHX TA HOPMAJIbHUX €Y0’€KTIB Iepe oNTHMI3aLi€lo 3rilHO 3i 3HAYEeHHAMHU Baru

Ta micJst Takoi onTuMizamii

Accuracy rate, % (test samples)
Emotion ithout weighti ith weighti
modes without weighting with weighting
AlAa A lalclclelc,|c, |romla A |a]a|c]|c]|c]|c,]c, ot
sadness  96.66 8333 100 70 100 100 100 80 4333 8592 95 $3.33 9833 7333 100 100 100 100 4833 88.7
happiness 90 96.66 96.66 6333 100 100 100 833 96.66 83.51 96.66 98.33 91.66 80 100 95 100 S50 85 8851
calmness  96.66 96.66 100 2833 100 100 100 90 9833 89.99 91.66 85 98.33 4333 100 100 100 100 100 90.92
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information, which can be used to distinguish the two
groups. One way is fusion at the decision level based
on the output of classification algorithms [36, 37]. The
output of different classification algorithms may be
stated as one of the following three forms [38]:

Type I (abstract level) in which the classifier gives
one single-class label for the specific input.

Type II (rank level) in which the classifier sorts an
ordered sequence of the nominated classes in a list
for each specific input so that the class with the most
likely features is put at the beginning of the list.

Type 11l (measurement level) in which the classifier
assigns a measurement value to each class; this
represents the degree of confidence to belonging to a
specific input to a certain class.

The type-I output includes the majority voting and
Bayes methods; the type Il-output includes the Borda
counting method and highest-rank method, and, finally,
the type-III output includes the product, maximum,
minimum, and summation [37, 38]. In this study, in
order to achieve the optimal decision, the integration
process of output of three SVM classifiers is examined
based on types I and II. First, a brief explanation of the
integration language is provided, and then the applied
methods are described.

Let’s assume that D = {D,D,,....,D,} and
Q={w, 0,.., o) signify the set of classifiers and
the set of class labels, respectively [37, 38].

In each classifier D, after receiving the feature
vector x € R", the output vector is produced as follows:

D;(x)=[d;(x) d,(x)...dy (x)]T, (8)

where d (x) is the value reported by the classifier.
The value of d,(x) depends on the type of outputs, so
that in type | d ;(x) € {0,1}. In other words, if the i th
classifier chooses class w,, then d, will be equal to I,
otherwise zero. In type II, dl.j(x) is the integer number,
and in type III, dl.j(x) € [0,1], which signifies the score
of belonging of pattern x to the class o, .

The integration of classifier outputs means that,
by combining the output vectors of L classifiers, the
vector of pattern x to K classes is defined as

D(x) = F(D,(x), D, (x),.... D, (x))" = o
=[up(x) i (X) ooty (X)] ,
where F represents the aggregation rule. After

determining this vector, the class of pattern x will
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correspond to the greatest entry of D(x). In other
words, the x pattern belongs to class o if

wy(x)= uy(x) ve=12,...K ,t#s,

(10)

The output of different classifiers may be arranged
in the format of a matrix called as the Decision Profile
DP(x), as shown here [37].

[d (%) oo d(3) e dy (1) ]
DP(x)=|d,(x) ... d;(x) ... dy(x)} (11)
| dy(x) o dy(x) o dy(X) |

where the i th row of the matrix represents the output
of classifier D for the x, pattern, and the j th column
of the matrix is the decision value of pattern x to the
w, class provided by classifiers D, to D,.

'Fusion Based on Type I Output MaJorlty Voting.
In majority voting [38, 39], the ensemble decision can
be described as follows. Choose class w,, if

D dy =max ) d, (12)

i=1 i=1

Hmw

Naive Bayes Combination. This scheme assumes
that the classifiers are mutually independent given a
class label (conditional independence) [37]. Denote
by p(s) the probability that classifier D, labels x in
class s, € Q. The conditional independence allows one
for the following representations:

L
p(s| wk) :p(slasz,---SL |a)k) :Hp(si | wk) ,

i=1

(13)
Then the posterior probability needed to label x is

|S)= p(a)k)p(s|a)k) —
p(s)

pw)[ 1 pGs 1 @)

p(s)

p(@,

(14)

k=12,.K .

The denominator does not depend on w, and can
be ignored; so, the support for class w, can be
calculated as
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L
()< plo)[ T s @), (15)
i=1
The practical implementation of the naive Bayes
(NB) method on a Z dataset with cardinality N is ex-
plained below. For each classifier D, a K x K confu-
sion matrix CM' is calculated by applying D, to the
training dataset. The (k, s) th entry of this matrix, cm,
is the number of elements of the dataset whose true
class label is @, and are assigned by D, to class w . By
N, we denote the total number of Z elements of class
o . Taking cm,’;’x’ /Nk as an estimate of the probability
p(s,| w,), we see that Eq. (15) is equivalent to

I &

# () o~ [Tem, . (16)
ko=l

Fusion Based on Type-IIIl output. Class-

Conscious Methods. Given DP(x), the class-conscious
methods [38-41] operate classwise on each column of
DP(x).The rules are described as follows:

Sum rule: This computes the soft class label vectors
using

L
w(x)=>d, j=12.K. (17)
i=1
Product rule: It computes the soft class label vectors
as:

L
wx)=[]d, Jj=12.K. (18)
i=1
Min rule: computes the soft class label vectors
using:

L
,uj(x) = n?:ilndl.j j=12,.K. (19)
Max rule: This computes the soft class label vectors

using

L
yj(x)zmﬂxdy j=12,.K. (20)
Class-Indifferent Methods. Given DP(x), the
class-indifferent approach uses the whole of the DP(x)
disregarding the classes [38]. There are two different
methods, decision templates and a Dempster-Shafer

combination. Due to the computational complexity of
these methods, the latter were not used in this study.
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RESULTS

In our proposed algorithm, two cross-validation
methods were applied. In the test and training stages,
the hold-out and leave-one-out (LOO) methods were
used, respectively [42]. Six normal and six autistic
children participated in the research. From these 12
subjects, 9 children were selected for the training
phase. Also, three children (including two autistic
children and one normal child) were selected randomly
as test samples in order to evaluate the performance
of the proposed structure. The three children selected
for the test stage did not participate in the training
stage and parameter setting of the algorithm. These
three children were unknown to the algorithm. In this
paper, the autistic and normal signals are considered
positive and negative classes, respectively. Therefore,
true positive (TP) and true negative (TN) samplings
are defined as correctly classified autistic and normal
samples, respectively. Moreover, false positive (FP)
and false negative (FN) samplings are defined as
incorrectly classified autistic and normal samples,
respectively [43]. Based on these definitions, the
accuracy rate is defined as

TP +TN
TP +TN +FP +FN

Accuracy =

2D

Autism Diagnosis Results. Finally, the proposed
structure can distinguish the autistic patterns from
the normal ones sufficiently accurately. To improve
the process of distinguishing the autistic from normal
children, the GA was used to assign the weight to the
extracted features from the brain signals during pro-
cessing the facial expressions. Table 2 demonstrates
the overall diagnostic process of patterns in the three
emotional states before and after assigning the weights
to features in the training phase. Comparison of the
values of Table 3 clearly reveals the improved clas-
sification performance before and after the weight as-
signment. In Table 2, there are two groups, autistic and
control children marked with 4 and C, respectively,
where n and m are the participant indices.

Although assigning the weight to features enhances
the performance of the classification process, our goal
was to achieve the highest possible accuracy of the
diagnosis rate. Therefore, we apply data fusion at the
decision level. Figure 4 shows the results of applying
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T a b 1e 2. Diagnosis Results of Autistic and Normal EEG Signals during Processing of Emotional Facial Expressions

T a6 uu 2. Pesyabraru aiarnoctuku EET-curnanis, 3anucanux y nepediry o0pooxu ingopmauii mono emouiiiHux Bupasis

00 IMuIs AYTUCTUYHUMHU TA HOPMAJTBbHUMMU IiTBbMH

Situation modes

Accuracy rate (%)

sad happy calm
Subjects Autism | Control Autism Control Autism Control
Autism (1) 93.33 6.67 100 0 96.66 3.34
Autism (2) 86.66 13.34 100 0 86.66 13.34
Control (12) 0 100 6.67 93.33 0 100

%

40 I I I I I I I |

F i g. 4. Resalts of applying the fusion methods in diagnosing
patterns in the training dataset.

P u c. 4. PesynbraTu 3acTOCyBaHHS METOIUK 00’ € THAHHS TIPU JTHAr-
HOCTHIII IATEPHIB Y TPEHYBaJbHIH 0a3i JaHUX.

different fusion methods on the outputs of classifiers.
In Fig. 4, among different methods of data fusion at
the decision level, the voting method demonstrated
the best diagnosis performance. The voting rule at the
decision level could diagnose the autistic and normal

T a b 1e 3. Diagnosis Results of Test Patterns Based on Our
Proposed Decision-Level Data-Fusion Algorithm

T a6 auusa3. Pe3yabraTu 1iarHOCTHKH TecT-NATEePHIB,
0230BaHNX HA HAIIIOMY 3aIIPONOHOBAHOMY AJTOPUTMI
NPUITHATTSA pilieHb Ha 6a3i 06’ eqTHAHHSA

Accuracy rate (%)
Test samples |

Autism Control
Autism (1) 98.33 1.67
Autism (2) 98.33 1.67
Control (12) 0 100

Total Accuracy 98.88
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T a b 1 e 4. Statistical Evaluation of the Spectral Features in
Some Channels

Taoanuysa4. CraTHCTHYHA OLIHKA CHIEKTPAJIbHUX
XapPaKTePUCTHK I10 JesIKHX KaHAIaxX

Emotional modes

Spectral features sadness happiness calmness
C3 1.17E-12 1.11E-19 1.90E-21

C4 1.41E-13 1.58E-23 1.47E-13

F3 1.13E-07 1.86E-13 2.23E-16

MDFT F4 2.42E-13 2.31E-11 6.20E-17
P3 1.74E-16 8.41E-28 1.12E-24

P4 1.75E-10 2.38E-14 4.37E-11

T3 1.90E-21 3.14E-21 8.32E-34

T4 4.39E-22 1.06E-31 1.29E-30

C3 2.68E-14 1.19E-03 4.89E-10
C4 1.37E-05 7.12E-01* 0.066713*

F3 2.66E-03 8.12E-02* 8.68E-08

E;i;i?:gy F4  6.60E-09  336E-01*  2.03E-05
P3 7.63E-66 2.72E-54 1.53E-53

P4 1.32E-49 1.95E-28 3.09E-33

T3 1.32E-54 1.24E-48 7.07E-72

T4 1.90E-52 1.77E-24 2.53E-59

Log-energy o 4.07E-44 5.01E-39 5.03E-34
Log-energy 6 3.88E-88 4.62E-90 1.30E-95
Log-energy a 5.26E-99 2.51E-92 4.24E-101
Log-energy B 1.50E-86 2.56E-77 2.54E-78
Log-energy v 1.81E-66 1.89E-57 5.24E-53

* Corresponds to P values > 0.05; the evaluated feature is not
significantly different in the two groups.

patterns at the training phase, based on the LOO
assessment standard, with an accuracy rate of 94.62%.

Finally, after setting training parameters of our
proposed autism diagnosis structure, a set of unknown
samples was given to it, and the performance of our
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T ableS. Statistical Evaluation of the Extracted MSMC Features in Two Groups for Some Channels

Tao6uauunas. Crarucruyda oninka Buginennx MSMC-03HaK y ABOX Ipynax 10 JesIKMX KaHAIaxX

Emotional modes

sadness happiness calmness
Channel F4 C4 T4 P4 F4 C4 T4 P4 F4 C4 T4 P4
F3 2.66E-02 2.06E-07 4.76E-07 3.21E-10 2.52E-02 9.26E-20 1.12E-12 8.24E-21 1.40E-10 1.70E-20 1.75E-16 7.34E-25
C3 3.17E-05 9.64E-10 1.00E-12 4.77E-20 3.81E-15 2.50E-20 3.49E-15 1.93E-31 1.09E-19 6.41E-22 2.65E-23 9.52E-36
T3 5.36E-06 2.31E-10 8.67E-04 3.48E-17 2.96E-12 1.81E-19 1.45E-06 6.07E-22 2.39E-17 8.22E-23 1.61E-12 2.93E-29
P3 7.71E-10 5.30E-12 1.77E-07 1.80E-12 4.91E-19 1.81E-24 1.16E-16 7.43E-32 1.47E-31 1.23E-31 1.55E-31 4.54E-35

T able 6. Comparison between Our Proposed Diagnosis Structure and Those in Other Works

Taouauus6. [HopiBHsAHHSA yenimHOCTI AIATHOCTUKY 3 BUKOPUCTAHHAM HALIOI 3alIPOIIOHOBAHOI CTPYKTYPH Ta 1iarHOCTHKHU B

iHmmMx podorax

Diagnosis Algorithms Condition Accuracy rate (%)
Sheikhani et al. (2007) [13] eyes open 81.0
Behnam et al. (2008) [15] eyes open 89.5
Ahmadlou et al. (2010)[12] resting, eyes closed 90
. motor imitation task
Razali et al. (2011) [16] (to clinch their hands by following video stimuli) 86.62
. Control from HRA Over 80
Bosl et al. (2011) [17] resting state (at age 9 months)
Shams et al. (2012) [18] eyes open 90-100
control: 88.5
Dufty et al. (2012) [19] awake state ASD: 86
Alhaddad et al. (2012) [44] relaxed condition (91.64+.021)
Our proposed algorithm processing of the facial expression 98.88

diagnosis structure was evaluated. Hence, EEG signals
of the three children (S1, S2, and S12), which were
put aside in the hold-out method, were given to our
proposed structure. Table 3 shows diagnosis results of
the three normal and autistic children during emotional
facial expression processing. Also, Table 4 shows the
final diagnosis results of the three children’s brain
signals by decision-level data fusion based on the
voting rule.

Statistical Analysis. To evaluate the extracted
features from EEG channels, the two-tailed ¢-test
with a 95% confidence interval was used for the
two groups (Tables 5 and 6). This statistical method
was applied to the samples related to each emotional
mode. Analysis of the two groups of MDFT showed
significant differences for all channels and for each
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emotional mode. Similarly, with respect to the log-
energy beta/alpha values, there were significant
differences in the P3, P4, T3, and T4 electrode
positions, although for the happy mode there were
no differences in C4, F3, and F4 electrodes. Log-
energy values in the delta, theta, alpha, beta, and
gamma ranges showed the minimum P values, which
revealed accurate estimations of the differences
between ASD children and control ones. Statistical
evaluation of the extracted MSMC feature in the
two groups for some channels is shown in Table 6.
Analysis of the MSMC values indicated significant
differences between the emotional states. In other
words, interhemispheric MSMC values obtained
during facial expression modes can be considered a
significant feature subset.
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DISCUSSION

In previous researches for diagnosing the autism
disorder, different techniques have been employed,
and different results have been reported with respect
to various test datasets. The degree of generalization
and validity of a diagnosis algorithm depend on two
factors, the size of the test dataset used and the type of
cross-validation methods used. Recent researches in
this field, with processing of EEG signals and applying
different pattern recognition techniques, demonstrated
prospects for EEG-based diagnosis algorithms with
different performances. For example, the random
sub-sampling validation technique was employed
for testing the classification [12], while the k-fold
validation was used to verify the results [16, 17], and
the accuracy was presented by means ofa LOO method
[18]. As a result, due to the different databases utilized
in those researches and also to different validation
measures, comparing the algorithms with others in
terms of accuracy is not an exact science.

Our study focused on the advantage of TOM and
examined EEG signals of autistic children during
processing of emotional facial expressions in three
different modes. Finally, a decision-level data fusion
structure based on EEG signals was proposed to
diagnose autism automatically. The salient advantages
of the suggested structure, as compared with other
algorithms presented in the literature, include the use
of a hybrid model for feature extraction, the use of
an optimization algorithm to assign the weights to the
extracted features, and the use of decision-level data
fusion. Also, processing of different facial expressions
related to the emotional state probably created different
brain patterns; some of the patterns in each mode may
differ between the autistic and normal children. So,
using the information fusion corresponding to the
three different facial expressions, we were able to
achieve the greatest volume of information allowing
us to distinguish the two groups from each other in
each emotional mode simultaneously. Table 7 briefly
illustrates a comparison between our proposed autism
diagnosis structure and other algorithms presented in
the literature.

Thus, a decision-level fusion-based structure using
EEG signals was suggested for diagnosing autism.
The EEG signals, related to three emotional facial
expressions and shown by the tested children, were
analyzed. In this structure, EEG signals were mapped
into a vector space by applying a hybrid model. The
resulting feature vectors reflect simultaneously the
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spatial, temporal, and spectral data, as well as the
coherence degree in the distinct areas of the brain.
Then, the mapping process was optimized be assigning
weights to the feature using the GA. In the next stage,
the features of three facial expression modes were
classified. Finally, based on fusion at the decision
level of three SVM classifiers, the ultimate decision
was made. Thus, our technique demonstrated some
advantages as compared to those proposed ecarlier by
other authors.
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M. Xaweman'?, X. [lypeaccem’’

CTPYKTYPA JTATHOCTUKU AYTHU3MY, BASOBAHA
HA PIINEHHAX 3 BUKOPUCTAHHAM OB’€IHAHHS TA
IHTEPITPETALIT EE-CUTHAJIIB, AKI [TOB’SA3AHI 31
CHPUMHATTIM BUPA3IB OBJINYYS

' TlenTp uudpoBoi 06pobOKH Ta JOCIIHKEHHS 30pOBOT
indopmanii Hamxadabancekoro nigposainy Icramcskoro
yHiBepcurery Azan (Ipan).

2 Hakadabancekuit migposain IcamaMcbkoro yHiBepcuTery
A3zan (Ipan).

PeszwomMme

3anponoHOBAaHO CTPYKTYPY HPUHHATTS pillleHb HAa OCHOBI 3IHUT-
TS NPHU AIarHOCTHII ayTU3My 3 BUKOpHCTaHHsIM aHainizy EETL-
CHUTHAJIB, MOB'I3aHUX 31 COPUHHATTAM BHUpa3y obmuvusi. EET -
CHTHAIH, BiABeACHI y AiTell, M0 CTpaXAalTh Ha ayTH3M, i
30POBHUX [iTeH, 3aMKUCyBaNKCs MiJ 4ac 00poOKu 300paxeHb
eMOLIMHNX BUPA3iB 00IMYYS, TaKUX SK CyM, LIACTS Ta CIIOKIH.
IMorim EET-curnanu HaHOCHJIHKCS Ha KapTy mpoctopy puc. Lle
103BOJISLTO c(hOPMYBaTH HOBY TiOpUIHY MOJieNb, sika Oyia opra-
Hi30BaHa 3 BUKOPHCTAHHIM MOTEHIIIaliB MO3KY, BiIBEICHUX NIPH
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BUpILICHHI TeCT-3aBAaHHsA. MeTOI0 KapTyBaHHSA OyJI0 AOCATTH
BHCOKOTOYHOTO PO3/IJIEHHS ayTUCTHYHHMX Ta HOPMaJbHUX BH-
06opoxk 3pa3kiB. CTBOpeHa KapTa J03BOJIsIA BUSHAYUTH BEKTOPH
MEeBHUX O3HAK, fAKi BioOpaxkalTh IPOCTOPOBi, 4aCOBI Ta CIEK-
TpaJibHi JJaHi, a TAKOXK PiBEHb KOTEPEHTHOCTI CUTHAIIB y Pi3HUX
30HaxX MO3Ky. [Ipoueaypa KapTyBaHHS ONTHMi3yBallacsi 3 BUKO-
PUCTAHHAM I'€HCTUYHOTO aJITOPUTMY uYepe3 HaJaHHS IEBHUX
piBHIB Baru BeKTopaM o3HaK. [loTiM BEeKTOpHU 03HAK, IO BiAMO-
BiJjany TPbOM €MOLIHHHUM BUpa3aM o0nu4us, KiacudikyBaanucs
i3 3aCTOCYBaHHAM MAIlIMH ONOPHUX BekTopiB. HapemTi, BUKO-
pUCTaHHS pilIEHHS Ha OCHOBi1 00’€qHAaHHS (3Ti1IHO 3 IPaBUIOM
«TOJIOCYBaHHS O1TBIIOCTI») POOMIIO 3aIPONOHOBAHY CTPYKTYPY
JIarHOCTUKHU 31aTHOI €()EKTUBHO PO3PIZHATH ayTHCTHYHHX Ta
HOpPMaJbHHUX CY0’ €KTiB.
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