УДК 661.74:669.14.046.554

А.А. Кулініч

ВПЛИВ ТЕМПЕРАТУРНО-ЧАСОВИХ ПАРАМЕТРІВ ВІДПАЛУ НА СТРУКТУРУ І МЕХАНІЧНІ ВЛАСТИВОСТІ СПЛАВУ АМг6л З ПІДВИЩЕНИМ ВМІСТОМ КРЕМНІЮ

In this paper we study the influence of temperature-temporal parameters of in-process annealing set on structure and mechanical properties of alloy AMr6 π with 1 % of silicon admixtures. Melting is conducted in the laboratory resistance stove in graphite crucible. We use the following materials: aluminium A99, ligature Al–Mg, Al–Zr, Al–Be, Al–Ti, Al–Si. The obtained standard samples 10 mm in diameter are annealed at different temperature-temporal parameters. Also, we determine their mechanical properties. We establish that alloy AMr6 π can reach the maximum level of mechanical properties 1,0 % Si after annealing at the following mode – 430 °C, 20 h. + 530 °C , 8 h. The replacement of the standard annealing for the new mode for the alloy under study containing 1 % Si allows increasing the values of temporal break resistance by 12 %, and relative lengthening by 41 %. The new mode of annealing is instrumental in changing the phase morphology of Mg₂Si from ramified one to a more compact. Also, grinding and spheroidizing of the particles take place. It influences the increase of level of mechanical properties of alloy AMr6 π .

Вступ

Головною шкідливою домішкою ливарних сплавів системи Al–Mg, що знижує рівень механічних властивостей, є кремній. Для цих сплавів дефіцит магнію в твердому розчині, що виникає через утворення фази Mg₂Si, впливає на зниження міцності, а фаза Mg₂Si, впливає на зниження міцності, а фаза Mg₂Si, маючи розгалужену морфологію, впливає також на зниження рівня пластичності та в'язкості руйнування [1–5]. Але, незважаючи на зазначене, домішки кремнію вводять в окремі сплави системи Al–Mg (такі, як AMr7, AMr11) з метою поліпшення ливарних властивостей – підвищення рідкоплинності та зниження схильності сплавів до утворення гарячих тріщин під час кристалізації [1–3].

Типовий сплав цієї системи — АМгбл належить до сплавів із середнім вмістом магнію, його використовують як після лиття, так і після термічної обробки. В цьому сплаві, згідно з ДСТУ 2839—94, вміст домішок кремнію не має перевищувати 0,2 %. Але якщо використовувати для виробництва цього сплаву технічний алюміній, лом і відходи алюмінієвих сплавів з метою зниження його собівартості, то можливе підвищення у ньому вмісту домішок кремнію.

Стандартні режими термічної обробки, які застосовуються для сплаву АМгбл у промисловості (430 \pm 10 °C, 20 год із подальшим гартуванням), суттєво не впливають на морфологію фази Mg₂Si в цьому сплаві. Але в працях [1, 2] показано, що в силумінах частинки фази Mg₂Si можуть змінювати морфологію при високотемпературній термічній обробці. Для перевірки мож-

ливості впливу високотемпературної термічної обробки на морфологію фази Mg₂Si в ливарних сплавах системи Al-Mg потрібно провести експериментальні дослідження з вивчення впливу режимів відпалу на структуру та механічні властивості сплаву AMr6л з підвищеним вмістом домішок кремнію.

Постановка задачі

Мета роботи — встановити вплив температурно-часових параметрів відпалу на структуру і механічні властивості сплаву АМгбл з домішками кремнію вмістом 1 %.

Методика досліджень

Об'єкт дослідження в роботі — ливарний сплав АМґбл. Хімічний склад цього сплаву змінювали в таких межах: Mg = 6-7 %, Zr = 0,15 %, Be = 0,05 %, Ti = 0,1 %. Вміст домішок у сплаві: Mn \leq 0,05 %, Cu \leq 0,03 %, Zn \leq 0,06 %, Fe \leq 0,1 %. Додатково вводили домішки кремнію 1 % з використанням подвійної алюмінієвої лігатури.

Плавки проводили в лабораторній печі опору в графітошамотному тиглі. Використовували такі шихтові матеріали: алюміній марки А99, лігатури Al–Mg, Al–Zr, Al–Be, Al–Ti, Al–Si. У тиглі розплавляли алюміній і лігатуру Al–Be. Після їх розплавлення, за температури 690 °С, вводили лігатури Al–Zr, Al–Ti, Al–Si. Після розплавлення шихтових матеріалів і перемішування розплаву вводили лігатуру Al–Mg. За температури 700 °С проводили рафінування розплаву флюсом у кількості 2% від маси сплаву. Склад флюсу: 85 % карналіту (MgCl₂·KCl) і 15 % МАТЕРІАЛОЗНАВСТВО ТА МАШИНОБУДУВАННЯ

фтористого кальцію. Після цього розплав розливали в металеву виливницю.

На отриманих стандартних зразках діаметром 10 мм визначали механічні властивості досліджуваних сплавів (тимчасовий опір розриву, межу плинності, відносне видовження).

Випробування механічних властивостей проводились на розривній машині TIRA-TEST за стандартними методиками.

Середні квадратичні відхилення значень механічних властивостей були в межах: $\sigma_{\rm B} - \pm 20$ МПа, $\sigma_{0,2} - \pm 10$ МПа, $\delta - \pm 15$ %.

Мікрорентгеноспектральний аналіз проводили з використанням растрового електронного мікроскопа РЕММА-101А. Хімічний аналіз зразків досліджуваних сплавів проводили, використовуючи метод оптичної спектроскопії випарним розрядом.

Якісний та кількісний металографічний аналіз виконано на мікроскопі NEOFOT-31. Рентгенографічне дослідження проводили в Си-характеристичному випромінюванні із застосуванням дифрактометра ДРОН-413.

Експериментальна частина

На першому етапі досліджень встановлено вплив домішок кремнію на фазовий склад, структуру та механічні властивості сплаву АМгбл після лиття в кокіль.

За даними рентгенофазового, рентгеноспектрального й термічного аналізів структура сплаву АМгбл після лиття складається з α -твердого розчину та двох евтектик, склад яких наведено в табл. 1. Хімічний склад фаз, що утворюються в досліджуваному сплаві при кристалізації, наведено в табл. 2.

Таблиця 1	. Фазові	перетворення	в сплаві	АМ г6л	при
кристаліз	ації				

Перетворення при	Температура перетворень. °С			
кристалізації	T_1	T_2	T_3	
$P \rightarrow \alpha Al$	620	_	_	
$P \rightarrow \alpha Al + Mg_2Si$	_	548	_	
$P \rightarrow \alpha Al + \beta (Al_3Mg_2) + Mg_2Si$	—		450	

Таблиця 2. Хімічний склад надлишкових фаз у сплаві АМгбл

Формула фази	Аl, % мас.	Si, % мас.	Мg, % мас.
(Al_3Mg_2)	62-65	—	35-38
Mg ₂ Si	—	38	62

Експериментальні дослідження показали, що під час нерівноважної кристалізації досліджуваного сплаву першими кристалізуються зерна алюмінієвого твердого розчину, потім подвійна евтектика $\alpha_{Al} + Mg_2Si$, останньою кристалізується потрійна евтектика $\alpha_{Al} + \beta(Al_3Mg_2) +$ $+ Mg_2Si$ (див. табл. 1). Металографічні дослідження в поєднанні з мікрорентгеноспектральним аналізом показали, що основною за кількістю евтектикою в сплаві є потрійна евтектика $\alpha_{Al} + \beta(Al_3Mg_2) + Mg_2Si.$

Згідно з даними, наведеним в табл. 3, підвищення вмісту кремнію з 0,03 до 2 % у сплаві АМгбл впливає на зниження температури початку кристалізації сплаву (T_1 – температура ліквідусу) на 18 °С, підвищення температури (T₂) евтектичної реакції α_{A1} + Mg₂Si на 39 °C, зниження температури (Т3 – температура нерівноважного солідусу) евтектичної реакції $\alpha_{A1} + \beta(Al_3Mg_2) +$ + Mg₂Si на 3 °C. При вмісті кремнію в досліджуваному сплаві 0,03 % інтервал його кристалізації становить 172 °С, але в міру збільшення вмісту кремнію інтервал кристалізації сплаву АМгбл зменшується. Це зумовлює підвищення ливарних властивостей сплаву (підвищення рідкоплинності і зменшення схильності до утворення гарячих тріщин).

Згідно з даними металографічного і мікрорентгеноспектрального аналізів, при вмісті в сплаві АМгбл кремнію до 0,05 % кремнійвмісних фаз не утворюється. В концентраційному інтервалі 0,06–1 % Si в досліджуваному сплаві з'являється нова фаза — Mg₂Si (табл. 3).

Таблиця 3. Вплив кремнію на фазовий склад сплаву АМгбл і температуру фазових перетворень при кристалізації

Si, %	Si, % Температура перетворень, °С		Фазовий склад	
мас.	T_1	T_2	T_3	сплаву
0,03	622	542	450	$\alpha_{Al}, \beta(Al_3Mg_2)$
0,2	619	549	449	$\alpha_{Al}, \beta(Al_3Mg_2), Mg_2Si$
0,5	616	552	448	$\alpha_{Al}, \beta(Al_3Mg_2), Mg_2Si$
1,0	610	570	447	$\alpha_{Al}, \beta(Al_3Mg_2), Mg_2Si$

Встановлено, що при збільшенні вмісту кремнію в сплаві АМгбл до 1 % зростає кількість виділень частинок фази Mg_2Si . Також спостерігається укрупнення розмірів цих виділень та зростає розгалуженість частинок фази Mg_2Si (рисунок, *a*). Стандартні режими термічної обробки, які застосовуються для сплаву АМґбл в промисловості (430 \pm 10 °C, 20 год з подальшим гартуванням), суттєво не впливають на морфологію фази Mg₂Si в цьому сплаві (рисунок, δ). Тому на другому етапі досліджень встановлювали можливість оптимізації температурно-часових параметрів відпалу з метою зміни морфології фази Mg₂Si на більш компактну і, відповідно, підвищення рівня механічних властивостей досліджуваного сплаву. Для вибору оптимального режиму термічної обробки сплаву АМґбл використовували дані термічного, металографічного та мікрорентгеноспектрального аналізів.

Мікроструктура сплаву АМґбл з домішками кремнію 1 %: a – після лиття; б – після відпалу (430 °C, 20 год) та гартування у воду; e – після відпалу (430 °C, 20 год + 530 °C, 8 год) та гартування у воду; ×500

Експериментальні дані термічного аналізу показали, що для сплаву АМгбл з домішками кремнію 1 % температура нерівноважного солідусу становить 447 °C, а температура рівноважного солідусу – 550–560 °C.

Було встановлено, що оптимальний комплекс механічних властивостей в досліджуваному сплаві досягається при двостадійному режимі відпалу: температура першої стадії не повинна перевищувати температуру нерівноважного солідусу, мета цієї стадії — часткове розчинення нерівноважної евтектики α_{AI} + + $\beta(AI_3Mg_2)$ + Mg₂Si; температура другої стадії не повинна перевищувати температуру рівноважного солідусу, мета цієї стадії — прискорити дифузію атомів кремнію, що сприяє подрібненню та сфероїдизації частинок фази Mg₂Si.

Експериментальні дослідження показали, що оптимальна температура першої стадії відпалу для сплаву АМгбл з 1,0 % Si – 430 ± 5 °C, час витримки 20 год, температура другої стадії відпалу дорівнює 530 ± 5 °C. Вплив двостадійного режиму відпалу за різного часу витримки на другій стадії на механічні властивості досліджуваного сплаву після повної термічної обробки (відпал та гартування у воду) відображено в табл. 4.

Час витримки на другій стадії	Механічні властивості		
відпалу, год	σ _в , МПа	δ, %	
1	238	8,2	
2	240	8,5	
3	243	8,9	
4	247	9,4	
5	252	10,0	
6	257	10,2	
7	260	10,4	
8	265	10,7	
9	261	10,3	
10	258	9,5	

Таблиця **4.** Вплив двостадійного режиму відпалу на механічні властивості сплаву АМгбл з 1,0 % Si

Примітка. 1-ша стадія відпалу — 430 °С, 20 год, 2-га стадія відпалу — 530 °С, після відпалу — гартування у воду. Вміст магнію в сплаві АМґбл — 6,3 %.

Згідно з даними, наведеним в табл. 4, максимального рівня механічних властивостей сплав АМгбл з 1,0 % Si набуває після двостадійного відпалу за режимом 430 °C, 20 год + 530 °C, 8 год: $\sigma_{\rm B} = 265$ МПа, $\delta = 10,7$ %. Для порівняння наведемо механічні властивості сплаву АМгбл з 1,0 % Si при стандартному режимі відпалу (430 °C, 20 год): $\sigma_{\rm B} = 237$ МПа, $\delta = 7,6$ %.

Застосування запропонованого двостадійного режиму відпалу сприяє зміні морфології фази Mg_2Si з розгалуженої на більш компактну, відбувається подрібнення і сфероїдизація частинок (рисунок, *в*). Зміною морфології частинок фази Mg_2Si можна пояснити підвищення рівня механічних властивостей сплаву АМгбл з 1,0 % Si.

Висновки

На прикладі сплаву АМгбл показано можливість розробки оптимальних технологій термічної обробки ливарних сплавів Al–Mg з підвищеним вмістом шкідливих домішок кремнію.

Встановлено, що для досліджуваного сплаву, який містить 1 % Si, заміна стандартного одностадійного відпалу на запропонований двостадійний режим дає можливість підвищити значення тимчасового опору розриву на 12 %, а відносного видовження — на 41 %.

Перспективність подальших досліджень полягає в пошуку оптимальних температурночасових параметрів відпалу для інших промислових ливарних сплавів системи Al-Mg для забезпечення додаткового резерву подальшого підвищення комплексу їх механічних властивостей без зміни хімічного складу.

- 1. Золотаревский В.С., Белов Н.А. Металловедение литейных алюминиевых сплавов. – М.: МИСИС, 2005. – 375 с.
- Машиностроение. Энциклопедия. Цветные металлы и сплавы. Композиционные металлические материалы. Т. II / Под общ. ред. И.Н. Фридляндера. – М.: Металлургия, 2001. – 880 с.
- Постников Н.С. Коррозионностойкие алюминиевые сплавы. – М.: Металургия, 1976. – 303 с.

Рекомендована Радою інженерно-фізичного факультету НТУУ "КПІ"

- Кулініч А.А., Гаврилюк В.П., Рябініна О.О. Структура і фізико-механічні властивості сплаву системи Al-Mg, мікролегованого кремнієм // Металознавство та обробка металів. – 2010. – № 1. – С. 8–11.
- 5. Гаврилюк В.П., Кулинич А.А., Рябинина Е.А. Влияние кремния на структуру и механические свойства сплава АМгбл после лиття в кокиль // Процессы литья. 2010. № 3. С. 58–63.

Надійшла до редакції 17 січня 2012 року