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APPROPRIATE NUMBER AND ALLOCATION OF ReLUs
IN CONVOLUTIONAL NEURAL NETWORKS

Background. Due to that there is no common conception about whether each convolutional layer must be followed
with a ReLU, the question on an appropriate number of ReLUs and their allocation is considered.

Objective. The goal is to find a law for ascertaining an appropriate number of ReLUs. If this number is less than the
number of convolutional layers, then the law shall stand for an appropriate allocation of Rel.Us.

Methods. A method of evaluating performance on the EEACL26 and CIFAR-10 datasets over various versions of
ReLUs’ allocation is defined. The performance is evaluated through 4 and 8 epochs for EEACL26 and CIFAR-10,
respectively, for each allocation version. The best scores of performance are extracted.

Results. In convolutional neural networks with 4 or 5 convolutional layers, the first three convolutional layers shall be
followed with ReLUs, and the rest of convolutional layers shall not be ReLUed. It is plausible that appropriateness of
ReLUs includes from-the-start compactness of allocating them, i.e. all ReLUs are allocated one by one from the
very first convolutional layer. An appropriate number of ReLUs is an integer between a half of the convolutional layers’
number and the half increased by 1.

Conclusions. In some cases, the gain can grow up to 100 % and more. The gain for CIFAR-10, if any, is of roughly
10 to 20 %. Generally, as the training process goes on, the gain expectedly drops. Nevertheless, the stated appropri-
ateness of number and allocation of ReLUs rationalizes the convolutional neural network architecture. Convolutional
neural networks under the appropriate ReLUs’ allocation can be progressively optimized further on its other hyperpa-

rameters.
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Introduction

In convolutional neural networks (CNNSs), a re-
ctified linear unit (ReLU) is a layer that applies the
non-saturating activation function f(x) = max{0, x}.

It increases the nonlinear properties of the decision
function and of the overall network without affec-
ting the receptive fields of the preceding convolu-
tion layer (ConvL). Some other functions are also
used to increase nonlinearity. They are, for example,
the saturating hyperbolic tangent and the sigmoid
function [1, 2]. Compared to other functions the
usage of ReLU is preferable, because CNNs with
ReLUs are trained faster [3] without making a sig-
nificant difference to generalization accuracy.

Problem statement

If a ReLU is in a CNN, it follows a ConvL.
The last ConvL which actually is the fully-connected
layer (FCL) is usually not followed with a ReLU [4].
However, there is no common conception about whe-
ther each ConvL, excepting FCL, must be followed
with a ReLU. Some famous CNN architectures do
not have any ReLUs. An example is VGGNet from
Karen Simonyan and Andrew Zisserman [5] which
was the runner-up in ILSVRC 2014 [6]. VGGNet
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is a 21-layer CNN consisting of 16 ConvLs and 5
pooling layers, and having nonetheless good perfor-
mance on 1000 image categories [5, 6]. Therefore,
the question on an appropriate number of ReLUs
is still unanswered.

To answer the question, a law for ascertaining
an appropriate number of ReLUs must be found. If
this number is less than the number of ConvLs,
then the law shall stand for an appropriate alloca-
tion of ReLUs. In other words, which ConvLs
should not be followed with ReLUs is going to be
substantiated. For achieving this, the five tasks are
going to be done:

1. To define benchmark image recognition prob-
lems (IRPs) which will be exploited for gathering
statistics of performance over various versions of
ReLUs’ allocation. Each IRP should be solved with
a fixed CNN architecture, implying a constant num-
ber of ConvLs. A ReLU can be inserted wherever
is needed.

2. To define a method of evaluating perfor-
mance over various versions of ReLUs’ allocation.
The performance will be evaluated through a few
epochs for each allocation version. The number of
epochs is assigned for the evaluation consistency,
rather than a perfect improved performance.
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3. To extract the best scores of per-
formance and suggest a factor or a group
of factors unifying those scores, related to
ReLUs’ allocations. This is about a com-
mon feature in those ReLLUs’ allocations
bringing the close-to-best performance.

4. To formulate a routine of alloca-
ting ReLUs for scoring the best perfor-
mance. This routine is the law prescribing
positions in the CNN architecture where
ReLUs should be inserted.

5. To validate the routine. The va-
lidation refers to the benchmark IRPs sol-
ved under the appropriate RelLUs’ alloca-
tion against other allocations.

o)

Benchmark IRPs

An IRP dataset should not be big for
gathering statistics faster. On the other
hand, the dataset performance should not
be very high because we must see its sig-
nificant improvement under the appropri-
ate ReLUs’ allocation. The MNIST data-
set cannot be exploited due to that reason
as CNNs recognize the MNIST dataset
handwritten digits at 99.73 % accuracy.

Instead of MNIST, a dataset of en-
larged English alphabet capital letters
(EEACL26) will be used [7, 8]. Although
EEACL26 is a dataset of artificial images
(Fig. 1), they are featured with horizontal
and vertical lines, squares, circles, cros-
sings, diagonals, curves, serpentine lines,
i. e. with all important basic attributes of
real images. This dataset constituting 26 ca-
tegories is simultaneously simple and useful for ga-
thering statistics of performance in the fastest way.
The EEACL?26 dataset is scalable, i. e. we can gene-
rate as many images as needed.
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Fig. 1. A subset of 112 monochrome images of size 28x28 from
the EEACL26 dataset
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Fig. 2. Dlver51ty of color images from the CIFAR-10 dataset containing 10 im-
age categories (labeled as
“deer”,

I3

alrplane
“horse”, “ship”,

automobile”, “bird”, “cat”,
“truck™)

“dog”, “frog”,

Another IRP will be based on the CIFAR-10
dataset of 32x32 color images [3, 9, 10]. Its perfor-
mance is far poorer than that of the EEACL26
dataset, because CIFAR-10 images are motley and
heterogeneous (Fig. 2). Nevertheless, the CIFAR-10
dataset performance is expected to be more “sen-
sitive” to the appropriate ReLUs’ allocation and al-
locations close to the appropriateness.

A CNN for EEACL26 can be successfully
trained with 4 ConvLs. CIFAR-10 needs 5 ConvLs.
Note that successfulness here does not mean en-
tirely applicable accuracy in the end of training. It
means just that the training process progresses, and
it is unnecessary to come to its completion.

In CNNs for the EEACL26 dataset, filters of
ConvLs have size of 3 to 8, regarding that two 2x2
max pooling layers are inserted after the first and
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second ConvLs. For the CIFAR-10 dataset, three
2x2 max pooling layers are inserted after the first
three ConvLs. Thus, here filters of ConvLs have
size of 2 to 5, although size of 1 is once set in the
last ConvL for 32x32 images. Numbers of filters
are 20, 50, 100 for EEACL26 (it is 26 filters in the
last ConvL). These numbers are 20, 50, 100, 200
for CIFAR-10 with 10 filters in the last ConvL.
The training parameters are constant: the learning
rate is 0.001, momentum is 0.9, and weight decay is
0.0005, which are nearly optimal [3, 5, 6, 9, 10]. Size
of image batch for training is set to 100. Hyper-
parameters are standard: stride is 1 for ConvLs and
is 2 for pooling, without zero-padding.

Evaluation of performance

Maximal number of ReLUs equals to the num-
ber of ConvLs. Minimal number of ReLUs is 0
meaning that ReLU is not used at all. Let the k-th
version of ReLUs’ allocation correspond to the bi-
nary number k—1 represented with 4 positions for
EEACL26, and with 5 positions for CIFAR-10. For
instance, the 7-th version for CIFAR-10 is 00110,
implying to allocate ReLUs after only the third
and fourth ConvLs. The first version corresponding
to 0 means a CNN without ReLLU. The second ver-
sion corresponding to 1 means a CNN with a single
ReLU inserted after the last ConvL (FCL). The last
version, which is the 16-th and 32-nd for EEACL26
and CIFAR-10, respectively, means that ReLU is
inserted after each ConvL.

Performance is evaluated for each of those 16
and 32 versions. A suitable number of epochs for
evaluation on EEACL26 is 4. This number is twice
greater for CIFAR-10. No perfect performance is
achieved through this number of epochs, but it is
enough for the evaluation consistency and the cor-
responding inferences. However, it is not sufficient
to evaluate just on such two image sizes. Therefore,
initial 28x28 images from EEACL26 are resized to
NxN by

N € Agpacr =132, 36, 40, 44, 48, 52, 56, 60, 64}.

Initial 32x32x3 images from CIFAR-10 are resized
to NxNx3 by

N e Acipar € {36, 40, 44, 48, 52, 56, 60, 64}.
The resulting performance is of vectors
VeeacL (N, k) = [V; (N, k)]s (1)
and

Veirar (Vs ©) =1y, (N, K)ly.s 5 )

where v;(N , k) is an error rate on EEACL26 after

the p-th epoch, and v;*(N , k) is an error rate on

CIFAR-10 after the p-th epoch. To compare them
independently of image size and dataset, they are
normalized. Normalization of averages gives

4
> v (N, k)
7(N, k)= —2 A3)

4
max > v.(N
qzm; » (N q)

and

8
> V(N, k)

7(N, k) = —27 )

k%
max » v, (N, q)
g=1,32 77

Along with (3) and (4), the normalized perfor-
mance after the final epoch should be used also:

N, ky = —L 6 o)
max v,(N, q)
q=1, 16
and
BN, k)= — 8 N6 ©)

max vg (N
g=1. 3 8 ( ’ q)

Owing to that each of the normalized error
rates (3)—(6) achieves its maximal value equal to 1,
they can be summed over N. This is why evalua-
tions

Vky= > TNk, (7)
Ne{28}UAppacL

v (k) = (N, k), (8)
Ne{32}UAcirar

k)= > TN, k), )
Ne{28UAgpactL

BK= Y (N k) (10)
Ne{32}UAcipar

are eligible for finding appropriate allocations of
ReLUs.

Best scores of performance
The best scores of performance are extracted

by minimizing the evaluations (7)—(10). Fig. 3 and
Fig. 4 show 10 polylines (3) and 9 polylines (4)
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plotted against versions of ReLUs’ allo- 1 T T T
cation, respectively. Polylines (3) are ve-
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without ReLUs or CNNs with a single
ReLU inserted after the last ConvL
cannot perform good. Allocating a sing-

le ReLU in the very start which is £ =9 for the
allocation by the binary number 1000, is poor

practice. Besides, allocating ReLUs from both ends
which is k=10 for 1001, , is unacceptable. A

version with an alternation like at k =11 for 1010,

does not seem promising. The same concerns k =12

for 1011, and k =16 for 1111,

Fig. 3. The 10 polylines (3) plotted against 16 versions of ReLUs’ allocation

Unlike the EEACL26 dataset, the CIFAR-10
dataset gives more controversial results for k& =1,
when CNN does not have ReLUs. Although
performance on CIFAR-10 is not so scattered, it is
harder to infer from polylines in Fig. 4. However,
the most protuberant points (whose bunch is closer
to 1) can be marked out for
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Fig. 4. The 9 polylines (4) plotted against 32 versions of ReLUs’ allocation
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by the ReLUs’ allocations correspon- !
ding to 0.9

000015, 000115, 01011,

011114,,10011), 10111, (1)

110115, 11111,,. 0.6

As it is seen, the worst scores for 0.5 Pt

the CIFAR-10 dataset have the factor
of the last ConvL’s ReLU unifying 04 |
them with the EEACL26 worst scores. (.3 }---- -
Another unifying factor is coming out |
of 1111, and 111115, as the fully-

ReLUed CNNs perform poorer. More- 0.1
over, allocating a couple of ReLUs in
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the two last ConvLs gives poor per- 1 2 3

formance also, no matter how many
ReLUs precede them.

Polylines (5) and (6) reflecting the final epoch
performance are shown similarly in Fig. 5 and Fig. 6.
These graphs are just inside of the sums (7)—(10)
which are shown in Figs. 7—10. In accordance
with Figure 5, the most “stable” versions of alloca-
ting ReLUs are

00103, 00115, 01005, 01105,

(12)

1
15 16
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Fig. 5. The final fourth epoch performance (5) against 16 versions

that factually contradicts some versions in (11).
The “stability” is hardly seen in Fig. 6, although
the scattering here is lesser than that in Fig. 5.

The best performance for EEACL26 is 1.54 %
by N =52, and the best performance is roughly

bettering as N increases. The best performance for
CIFAR-10 is 24.41 % by N =64, and it is bet-

tering also as NV increases, but the error rate decre-
ment is stronger apparent.
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Fig. 6. The final eighth epoch performance (6) against 32 versions
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00015y, 01015y, 1000, 10015, "
1010, 10115y, 11115,

and of non-allocation 0000, is con-

firmed.

Some of the extracted best scores
in Figs. 8§ and 10 are contradictious.
They are

001005, 001105, 01110,5,. (15)

This is why allocations (15) cannot be
considered for being appropriate. The
most appropriate versions of allocating
ReLUs for CIFAR-10 are

(16)

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 7. The sum (7) of 10 polylines (3) in Fig. 3

The sums in Figs. 7 and 9 allow to conclude
that the most appropriate versions of allocating
ReLUs for EEACL26 are

that is a subset of those ones in the list (12). Non-
appropriateness of allocations

Non-appropriateness of allocations (11)
along with

001115), 010003, 010015, 100005,

(17)

and the non-allocation 00000, is confirmed as
well. Allocations 11101,) and 11110.,, which are
closer to the fully-ReLLUed CNNs are unreasonable.
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Fig. 8. The sum (8) of 9 polylines (4) in Fig. 4
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8 I T 1101, is nothing but a single
7 L allocation among those ones in (13)
and (16) which proposes to insert a

ReLU after the last ConvL.
6 As allocations 1110(2) and 11100(2)
5 bring the close-to-best performance,
then the first three ConvLs shall be
4 followed with ReLLUs, and the rest of
ConvLs shall not be RelLUed. This is
3 an appropriate number and allocation of
ReLUs in CNNs with 4 or 5 ConvLs.
5 It is plausible that appropriateness of
ReLUs in CNNs with more ConvLs
| includes from-the-start compactness of

1 2 3 4 5 6 7 8 9 10 11 12
Fig. 9. The sum (9) of 10 polylines (5) in Fig. 5

Appropriateness of ReLUs

13

allocating ReLUs, i.e. all ReLUs are
allocated one by one from the very
first ConvL. An appropriate number
of ReLUs is an integer belonging to the segment

14 15 16

. . LConv . LConv +1 (18)
Now the task is to see factors which are com- 7y 9

mon for (13) and (16). But also non-appropriate-
ness in (14) and (17) should be regarded. Thus, the
case of only two ReLUs in the very start can be
treated as a non-appropriate allocation due to allo-
cations 1100,, and 11000, are contradictious.

Allocating ReLUs in the middle like 0110, and

011105, does not seem promising. Further, version

by L.,y ConvLls, where L., € N\ {l} . When num-
ber L, is even, there are two versions of ReLUs’
number. That actually was revealed for EEACL26
with 1100, and 1110,,. Therefore, CNNs consis-

ting of 2 ConvLs should have a single ReLU or be
the fully-ReLUed CNNS.
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Fig. 10. The sum (10) of 9 polylines (6) in Fig. 6
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Validation

The formulated routine of allocating ReLUs
for scoring the best performance is validated on the
benchmark IRPs of EEACL26 and CIFAR-10
datasets by training in 24 epochs. The relative

difference between performance by the appropriate
ReLUs’ allocation and a non-appropriate ReLUs’
allocation is shown against epochs in Figs. 11 and
12, where points above the horizontal line imply
positive gains standing for the formulated routine.

4.5

35

I [ N NN N S N
1 2 4 5 6 7 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Fig. 11. Ratios of the normalized epoch-wise performance for the EEACL26 dataset by non-appropriate ReLUs’ allocations to the

normalized epoch-wise performance by the appropriate

ReLUs’ allocation
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Fig. 12. Ratios of the normalized epoch-wise performance for the CIFAR-10 dataset by non-appropriate ReLUs’ allocations to the
normalized epoch-wise performance by the appropriate ReLUs’ allocation



IHOOPMALLINHI TEXHOIOT 1T, CACTEMHWUA AHATII3 TA KEPYBAHHS 77

Except the allocation 10000, the positive gain

for CIFAR-10 is apparent right after the epochs
3—13. Since the 14-th epoch, the gain is not so
obvious, but it still is convincing. Unlike allocati-
ons 00111, and 11001, non-appropriateness of

the allocation 10000,, reveals itself later. The gain

for EEACL26 is far stronger, except the far weaker
non-appropriateness of the allocations 1010, and

1011,). Generally, as the training process goes on,

the gain expectedly drops. Eventually, the appropri-
ateness is not optimality, so some IRPs may be

very first ConvL to cover approximately a half of
ConvLs. The appropriate number of ReLUs is either
the middle of the segment (18) for odd L., or

both the ends of this segment for even L., . Fig. 11

has shown that, in some cases, the gain can grow
up to 100 % and more. The gain for CIFAR-10, if
any (see Fig. 12), is of roughly 10 % to 20 %. But
the gain may fade away if the training is too long.
Nevertheless, the stated appropriateness of number
and allocation of ReLUs rationalizes the CNN archi-
tecture. CNNs under the appropriate ReLUs’ allo-
cation can be progressively optimized further on its
other hyperparameters.

ReLUed in a different way.

Conclusions

For significant improvement of performance,

ReLUs should be inserted one by one from the
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B.B. PomaHtok

HATNEXHE Y1CNO | PO3MILLEHHA BY3JIB NIHIMHUX BUNPAMNAYIB Y 3rOPTKOBUX HEMPOHHUX MEPEXAX

MpobnemaTtnka. Ockinbky He iCHye 3aranbHOi KOHLENLii TOoro, Yn MOBUHEH KOXEH 3ropTKOBWI LUAp CynpOBOAXKYBaTUCS BY3/IOM
NiHINHOrO BUNPSIMIAYa, PO3rNag4aeTbCA NUTaHHA LWOAO0 HANEXHOro Ymcna By3niB MNiHIMHUX BUNPAMNSAYIB Ta iX PO3MILLIEHHS.

MeTa gocnigxeHHA. MeTo0 pob0oTH € 3HAXOMKEHHS 3aKOHY AN BCTAHOBIEHHS HANEXHOro Yncna By3niB MiHIMHUX BUNPAMISYIB.
SAKLWO Lie YMCno € MEHLLMM 3a YMCIIO 3ropTKOBUX LLAPIB, TO LieW 3akoH 0BYMOBIIOBATUME HarexHe po3MiLLeHHSs By3MiB NiHINHNX BUNPSMASYIB.

MeToauka peanisauii. BusHavyaeTbcst MeToq ouUiHIOBaHHA NpoAyKTUBHOCTI Ha 6aHkax gaHux EEACL26 ta CIFAR-10 3a pisHumu
BepCisiMU pO3MiLLleHHS By3MiB NiHINHWX BUNpAMASYiB. [ns KOXHOI Bepcii po3MilleHHs NPOAYKTMBHICTb OLIHIOETLCS ynpodoBx 4 Ta 8
enox BignoeigHo Ans EEACL26 ta CIFAR-10. BrokpemnioloTbCsi HalkpaLLi NoKa3HUKK NPOAYKTUBHOCTI.

Pe3ynbTaTu gocnigXeHHsA. Y 3ropTKOBMX HEMPOHHNX Mepexax 3 4 Ta 5 3ropTKOBMMM Lapamuy nepLui Tpy 3ropTKOBI LWapy MaloTb
CYNpOoBOMAXYBaTUCS By3Namu NiHIMHUX BUNPAMIAYIB, @ peLuTa 3ropTKOBUX LIAapiB HEe NMOBUHHA NigAaBaTUCs Ui ob4McnioBanbHin npoue-
aypi. MpaBoonoaibHo Te, WO AOLUINbHICTb BY3MiB NiHIMHUX BUNPAMIAYIB BKMOYAE iX KOMNAKTHE PO3MILLEHHST 3 noyaTtky, TO6TO BCi By3nu
NiHINHUX BUNPSAMISAYIB PO3MILLYIOTLCS OAMH 3a OAHVM Bif Camoro NepLUoro 3ropTKOBOro Lwapy. HanexHe Yncno By3nis MiHINHWUX BUNPSAMNS-
YiB € AeAKUM LiNMM YACIIOM MiXK NMOMOBMHOHO KiNTbKOCTi 3rOPTKOBMX LUAPIB Ta L€ MOMOBUHOM, 36inbLueHo Ha 1.

BucHOBKW. Y fesikux Bunagkax Burpawl Moxe goxoamtu o 100 % i 6inbwe. Burpaw gns CIFAR-10, akwo Takuii maTme micue,
cTaHoBUTb Big 6nusbko 10 oo 20 %. B3arani, Burpall ovikyBaHoO cnagae 3 npocyBaHHsIM Mpouecy HaBvyaHHsA. OgHak HaBegeHa [AoLinb-
HICTb YMCNa Ta PO3MILLEHHS BY3MiB NiHIVHUX BUNPSAMNSAYIB paLioHaniye apXiTekTypy 3ropTKOBMX HEMPOHHUX Mepex. 3a HaneXHoro po3mi-
LLEEHHS BY3MiB NiHIVHUX BUMPSMISAYIB 3ropTKOBI HEMPOHHI Mepexi MOXyTb ByTV MOCTYNnoBO ONTUMI30BaHi Aani 3a iHWWMKU CBOIMU rinep-
napameTpamu.

Kniouosi cnoBa: 3ropTkoBa HelipoHHa mepexa; ReLU; EEACL26; CIFAR-10.

B.B. PomaHiok

HAONEXALLEE YACIIO W PACMONOXEHWE Y3MOB NUHEWHBLIX BLINMPAMUTENEM B CBEPTOYHbLIX HEMPOHHbIX
CETAX

Mpo6nemaTtuka. Mockornbky He cyLiecTByeT obLLel KOHLENLWN TOTO, JOMMKEH N KaXabl CBEPTOYHbIN LWAp CONpoBOXAaTbLCS Y3-
FIOM JIMHENHOTO BbINPSMUTENS, paccMaTpyMBaeTCs BOMPOC KacaTeNlbHO HaAsfliexallero Yncrna ysrnoB JIMHEMHbIX BbIMPSAMUTENEN U KX
pacnonoXeHus:.

Llenb nccnepoBaHus. Lienbto paboTbl ABNAETCA HAXOXAEHME 3aKkoHa AN onpefeneHns Haanexallero Yncna yanoB JIMHEeNHbIX
BbINpsiMuTenen. Ecnv aTto 4Mcno MeHblle, YeM YMCIIO CBEPTOYHBIX LLAPOB, TO 3TOT 3aKoH GyaeT obycnaenuBaTb Hagnexaiiee pacno-
NOXEHWE Y3MOB NIMHEWHbIX BbINPSAMUTENEN.

MeToauka peanusaumm. OnpegensieTcs METOA OLEHMBAHUSI NPON3BOANTENBHOCTM Ha Habopax aaHHbIXx EEACL26 n CIFAR-10 no
pasnuyHbLIM BEPCUSM PaCMoNOXeHNs y3MoB NIMHEVHbIX BbiNpsAMUTENe. [N Kaxaon BepCcuMmn pacrofioKeHns NpomM3BoAMTENbHOCTb oLe-
HMBaeTcs B TeveHue 4 n 8 anox cootBeTcTBeHHO Anst EEACL26 n CIFAR-10. U3Bnekatotcs Hauny4lwime nokasateny NnpovM3BoAMTENbHOCTH.

Pe3ynbTathbl uccrnegoBaHus. B cBEPTOYHBIX HEMPOHHBIX CETAX C 4 1 5 CBEPTOYHBIMU LLapaMu NepBble TPU CBEPTOYHbIX Liapa
[OOMKHBbI CONPOBOXAATLCH Y3Mamu NUHENHBIX BbINPSIMUTENEN, @ OCTanbHbIE CBEPTOYHBIE LLApbl HE NOAAANTCS 3TOW BbIYUCIUTENBHOW
npoueaype. MpaBgonoaobHo To, YTO LenecoobpasHOCTb Y3M0B NIMHENHBIX BbINPSIMUTENEN BKMOYAET MX KOMMaKTHOE PacronoXeHue c
Hayana, To eCTb BCE Y35lbl NIMHENHbIX BbINPSIMUTENEN pasMeLLalnTCs OAUH 3a ApYrMM C CamMoro NepBOro CBEPTOYHOro Wwapa. Haanexa-
LLiee YNCMO Y3MOB NIMHEWHbBIX BbINPSIMUTENEN SIBNSETCA HEKOTOPLIM LieNbIM YACIOM MeXay NOMOBUHOW KONMMYECTBa CBEPTOYHbIX LLIAapoB
1 3TOW NONOBUHOW, yBENWUYEHHOM Ha 1.

BbiBoabl. B HekoTOpbIX criyyasx BeMrpbiw MoxeT goxoauntb Ao 100 % u 6onbuwe. Bewmrpbiw ans CIFAR-10, ecnu TakoBoi By-
nert, coctaBnseT oT npubnuamtensHo 10 go 20 %. Boobue, BbIUIphIL OXMaaeMo nagaeT npu NpoaBwkeHun npouecca obyyerus. Tem
He MEHEee U3MoXeHHas LenecoobpasHOCTb YMCna U PacronoXeHUs Y3M0oB NMIMHEWHbIX BbINPSMUTENEN paLuoHanu3npyeT apxuTekTypy
CBEPTOYHbIX HEMPOHHbIX ceTen. Mpu Hagnexallem pacnonoXeHUn y3noB NIMHENHbIX BbINPSMUTENEN CBEPTOYHbIE HEVPOHHbIE CETU MO-
ryT 6bITb MOCTENEHHO ONTUMMU3MPOBaHbI MO APYrMM CBOMM runepnapameTpam.

KnioueBble cnoBa: cBepToyHas HelpoHHas ceTb; ReLU; EEACL26; CIFAR-10.
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