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On synchronization of randomly coupled oscillators

We study a network o fheterogeneous randomly coupledphase oscillators described by Kuramoto model. By
analyzing the continuum limit, we study the mean-field type synchronization. Using this approach, we discuss
the influence of network topology on the existence and properties ofsynchronized state if naturalfrequencies
are normally distributed. We show thatfor scale-free networks the intermediate state between coherent and

desynchronized state is prevalent.
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Introduction

Complex networks play an important role in many
natural and technological systems. One of the most
fascinating phenomena in the behavior of complex
dynamical systems made up of many elements is the
spontaneous emergence of order and the phenomenon
of collective synchronization, where a large number
of the system’s constituents forms a common dynami-
cal pattern, despite the differences in their individual
dynamics. A classical model for the phase dynami-
cs of weakly coupled oscillators is Kuramoto model,
which assumes global connections. Kuramoto model
formulation was motivated by the behavior of systems
of chemical and biological oscillators, and it has found
widespread applications such as in neuroscience. But
the topology of real world networks is often very
complex. Many networks have scale-free topology;
the distribution of the degree obeys the power law
[3], P(k) ~ k 7. Additionally, they are characteri-
zed by the existence of key nodes which drastically
reduce the average distance between nodes, the so-
called small-world property. In this paper we consider
the case ofundirected coupling networks with random
coupling, and discuss the synchronization of phase
oscillators using the approach, proposed in [4].

Background

We study the network with 7V-nodes, at each node
there exists an oscillator with the phase of the osci-
[lator O*. Each of the oscillators is considered to have
its own intrinsic natural frequency aJi and each is
coupled equally to some other oscillators. Interactions
are assumed to depend sinusoidally on the phase di-
fference. This situation can be modeled by the equati-
on,

= w+ K ~2 Ojjsin{6j - 0i), 1)
i

where K is the coupling constant; ay is 1if the nodes
i and j are connected, and 0 otherwise; uii — natural
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frequency of oscillator, is a random number, whose
distribution is given by the function <X¢). For simpli-
city, we assume g{uf) = g(—u). (Section 3 is devoted
to networks with unit normal distribution of natural
frequencies.)

Let’s define P(k) as the distribution of nodes wi-
th degree k, and p(k, o;t, 6) the density of oscillators
with phase 6 at time t, for given u and k. We assume
that p(k, ui;t, 9) is normalized as

p2m
/ k,uj\t,6)do = 1. 2
o p{k,uj\t,6) )

Under this assumption the collective oscillation
corresponds to the stable solution, = 0.

We use the order parameter and the continuum li-
mit equation for the network of oscillators proposed
in [4]:

Definition 1. Orderparameter r is determined by an
equality

«, =111 g(u)P(k)kp(k,Lj;t,0)ei6(L}d0dk
Ve JdkP (k)k
By definition 0 < r < |, r = 0 corresponds
to desynchronized state when there is no coherence

among the oscillators, r = 1 agrees with complete
synchronization.

Proposition 1. [4] r satisfies the condition

rd KP(K)dk =

—krd k2P g(Kkrui)\/l —ueduidk.

Ifr 770, then after some transformations we have

Ek= KJ kP(k)J  g(Kkrio)\/l —oodudk
()
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The Lh.s. of this equation is independent of r and

let’s define the r.h.s. of this equation as f(r). Ichi-
nomiya showed [4], that
Fk

f(r) <—r forO<r< 1 4

so /(1) is not larger than Ek, therefore the sufficient
condition that eq. (3) have solutionat 0 < r < 1is
that /(0) > Ek, that s

0)TrEK?
ok ®

We use equation 3 to evaluate value of order
parameter.

Proposition 2. The following inequality holds for

H b

Proof. Let’suse \/l —w2 > 1 —wj in (3):

Ek =K J kaP(k)d  g{Kkruj)y/1 —uzdwdk >

>K k2P(k)J g(Kkruj)(l - \ui\)dwdk >

>K £ K2P() ( g(Kkruj)(1—\ojYduick =

Jk2P (k)-"dk-K/ k2P{k
(k) iy
Ek E\gj\
r Kr2’

Q.E.D.
If L.Lh.s. of (6) tends to 0, then possible values of r
areclosetor =0orr = 1.

Scale-free networks with normally distributed
natural frequencies of oscillators

Suppose that natural frequencies have unit normal
distribution:

9iu, =7 S e~4 -

For network with scale-free topology the distri-
bution of the degree obeys the power law: P(fc) ~
A7, therefore Ek = £(7 —1), (((m) —Riemann zeta
function).

In random scale-free network with unit natural di-
stribution of natural frequencies of oscillators E\uj\ =

, Ek = C(7 - 1)>so we have:

> (1 —)r. )
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If 2 <7 < 3we have: Lh.s. of (7) is finite number; it
tendsto 0 is 7 tends to 2; if 7 = 3 Lh.s. of (7) is equal

to S0 (7) does not matter for small K.
/(0) = \] k2P(k)dk\] \/1 —uj2g(0)duj =

= ~A= [ k2P(k)dk \/l - u2du="=Ek?2
y/2irJ[ (k) J[-l 2y2

In random scale-free network Ek2 diverges if 2 <
7<3,s0r” 0.

For network with normally distributed natural
frequencies

J kzp(k)J g{Kkru)\/lI —udhidk <

<J KP(OL  g{Kkrui)dujdk =

=j ikep(k)

Therefore /(1) < EKk in this case.

I'(r) =~ 3 k2P(k)J 1
") G991 vair

xe"1 2 (K2k2ru;2) dujdk < 0,

forallo <r <1,s0/(0) > /(n) > f(r2) >/(1)
for all 0 < ri < r2 < 1 Therefore there is only one
valuer = ro,0<r<|1 that satisfies /(ro) = Ek.

Using that /(r) is a non-increasing function,
equation (3) and inequality (6), it is easy to prove the
following statement:

Proposition 3. 1ff{b) > Ek, thenr > 1+7 1 4

Iff{\) <Ek, thenr < V  KEk.
Iff{\) = Ek, thenr Jand .,

Moreover, we have shown that in random scale-
free network with unit natural distribution of natural
frequencies of oscillators jo~ 0, ro » 1. So we have
discovered a remarkable state where the population of
oscillators splits into two subpopulations, where one
is synchronized and the other is desynchronized. This
state is analogue to chimera state [1], when all osci-
llators are identical.
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Numerical simulation

The analysis above is in good agreement with
the results of the numerical simulations for N =
1000. To check our analysis we carried out the si-
mulations on Erdos-Renyi random network model and
Barabasi-Albert scale-free network model. We consi-
dered two types of probability density for natural
frequencies: normally distributed and uniformly distri-
buted on [, 1].

We considered scale-free network with different
values of 2 < 7 < 3. With increasing 7, the average
value of order parameter increased respectively. For
any 2 < 7 < 3 we observed order parameter r > 0.
We can remark that there is no threshold in the random
scale-free network. These results suggest that in the
infinite size scale-free network the critical coupling
constant Kc tends to 0, the same as in mean-field
continuum limit equation. In this paper we showed
how our theory described the behavior of the order
parameter r for a particular realization of the network
and the frequencies. We compare the approximations
described in this section with the numerical solution
for different types of networks.
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Conclusions

In this paper, we study the frequency synchroni-
zation of the random oscillator network. By analyzi-
ng the continuum limit equation, we find that mean-
field type synchronization occurs in random network
model. When K is less than K¢ oscillators are uni-
formly distributed across all possible phases, and the
population is in a statistical steady-state. When coupli-
ng K is sufficiently large, a synchronized solution is
possible. In the completely synchronized state, all the
oscillators share a common frequency, although their
phases can be different (difference tends to 0). We
evaluate order parameter and study synchronization in
scale-free networks with normally distributed natural
frequencies of oscillators. The results of numerical si-
mulations and recent results [2] are in good agreement
with this analysis.
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Mpo CMHXPOHI3aLlit0 BUMAAKOBO 3B’S13aHNX OCLUNIATOPIB

JocnigKeHo cucTemMy HEOAHOPIAHUX BMMAAKOBO 3B H3aHMX (DA30BMX OCUMIATOPIB, a came: y3araibHeHy
mMogenb KypamoTo. BrukopucTOBYytOUM MifgXia cepeaHbOoro rnoss, BUBYEHO YMOBW CUHXPOHI3aLil, BNNB CTPYKTY-
pU Mepe>Ki Ha iCHyBaHHA Ta BNaCTUBOCTI CMHXPOHI30BaHMX CTaHiB, SKLO BAACHI 4acTOTW OCUMASTOPIB €
BMNAAKOBAMM BENMUMHAMM, LLIO BigMOBiAaldTh HOpManbHOMY po3noginy. [oseaeHo, Wo B Tononorii scale-free
MPOMIDKHWA CTaH Mi>K MOEHOK CUHXPOHI3aLiE0 Ta [JeCMHXPOHI30BaHUM CTaHOM € AOMIHYHOUMM.

KntoyoBi cnosa: mogens KypamoTo, napameTp BropsKOBaHOCTI, CUHXPOHi3aLlis.
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