O. Pyliavska, M. Naichuk

ON p-GROUPS OF NILPOTENCY CLASS 3 WHERE ALL PROPER SUBGROUPS HAVE NILPOTENCY CLASS LESS THAN 3

We obtain determination of p-groups with nilpotency class 3 where all proper subgroups have nilpotency class less or equal 2. This solves Problem Nr. 87 stated by Y. Berkovich in [1].

Keywords: p-group, subgroup, nilpotency class.

Introduction

Properties of a group are connected with its subgroup structure. Sometimes to decide whether a group has a subgroup of a given type is more difficult than to obtain the list of all groups without subgroups of this type. For example, Miller and Moreno described nonabelian groups whose all proper subgroups are abelian [2]. Due to this result one can answer the question whether a finite nonabelian group has a proper nonabelian subgroup or not.

Analogously, the determination p-groups with nilpotency class 3 , where all proper subgroups have nilpotency class less than 3 gives the possibility to decide whether a finite nonabelian p-group G contains a proper subgroup H such that $\operatorname{cl}(H)>2$. Here $\operatorname{cl}(G)$ denotes the nilpotency class of the group G.

In [1] Y. Berckovich formulated the following problem: "Describe all p-groups with nilpotency class 3 , where all proper subgroups have nilpotency class less than 3 ". In this articles we solve this problem for finite p-groups.

We say that a finite p-group G is a minimal group of nilpotency class 3 if all proper subgroups of G are groups of nilpotency class less than 3. The set of such groups is denoted by \mathcal{M}.

Standard notation is in use.

- $\Phi(G)$ be the Frattini subgroup of G,
- $d(G)$ - the minimal number of generators of G,
- $Z_{i}(G)$ - the i-th member of lower central series,
- $G_{i}-i$-th member of upper central series.

We prove the following:
Theorem 1. For a finite group $G \in \mathcal{M}$ we have

1) $d(G) \leq 3$;
2) $\Phi(G) \subseteq Z_{2}(G)$;
3) $\exp \left(G_{3}\right)=p$.

The proof of this theorem is given in Section 2.
Using this theorem we obtain the necessary and sufficient conditions for a finite p-group to be a minimal group of nilpotency class 3 . To be concrete we show that a finite p-group is a minimal group of nilpotency class 3 under the following conditions

- for $d(G)=2$ if and only if $\Phi(G) \subseteq Z_{2}(G)$;
- for $d(G)=3$ if and only if $p=3$ and G asserts the following relations

$$
\begin{aligned}
G= & \left\langle a_{1}, a_{2}, a_{3}, c_{1}, c_{2}, c_{3}, z\right| z^{3}=1 \\
& c_{1}^{3^{r_{1}}}=z^{\mu_{1}}, c_{2}^{3^{r_{2}}}=z^{\mu_{2}}, c_{3}^{3^{r_{3}}}=z^{\mu_{3}} \\
& a_{1}^{3^{m_{1}}}=c_{1}^{\beta_{11}} c_{2}^{\beta_{12}} c_{3}^{\beta_{13}} z^{\lambda_{1}} \\
& a_{2}^{3^{m_{2}}}=c_{1}^{\beta_{21}} c_{2}^{\beta_{22}} c_{3}^{\beta_{23}} z^{\lambda_{2}} \\
& a_{3}^{3^{m_{3}}}=c_{1}^{\beta_{31}} c_{2}^{\beta_{32}} c_{3}^{\beta_{33}} z^{\lambda_{3}} \\
& {\left[a_{1}, a_{2}\right]=c_{3},\left[a_{2}, a_{3}\right]=c_{1},\left[a_{3}, a_{1}\right]=c_{2} } \\
& {\left[c_{i}, a_{i}\right]=z,\left[c_{i}, a_{j}\right]=\left[c_{i}, c_{j}\right]=1, } \\
& {\left.\left[c_{i}, z\right]=\left[a_{i}, z\right]=1,(i, j=1,2,3 ; i \neq j)\right\rangle }
\end{aligned}
$$

where parameters m_{i}, r_{j}, μ_{i} satisfy following conditions
a) $m_{1}, m_{2}, m_{3}, r_{1}, r_{2}, r_{3} \geq 1, \lambda_{i}, \mu_{j}=0,1,2$; $i, j=1,2,3$.
b) $r_{1} \leq \min \left(m_{2}, m_{3}\right), r_{2} \leq \min \left(m_{1}, m_{3}\right)$, $r_{3} \leq \min \left(m_{1}, m_{2}\right)$.
c) Let $i, j, k=1,2,3 ; i \neq j, i \neq k, j \neq k$ and $c_{i}=\left[a_{j}, a_{k}\right]$.
If $r_{i}<\min \left(m_{j}, m_{k}\right)$ then $\beta_{j k} \cong \beta_{k j} \cong 0$ $(\bmod 3), \mu_{i}$ - arbitrary;
if $r_{i}=m_{j}<m_{k}$ then $\beta_{j k} \cong-\mu_{i}(\bmod 3)$, $\beta_{k j} \cong 0(\bmod 3) ;$
if $r_{i}=m_{k}<m_{j}$ then $\beta_{k j} \cong \mu_{i}(\bmod 3)$, $\beta_{j k} \cong 0(\bmod 3) ;$
if $r_{i}=m_{j}=m_{k}$ then $\beta_{k j} \cong \mu_{i} \cong-\beta_{j k}$ $(\bmod 3)$.

Necessary conditions

In the proof we use the following known results
Proposition 2. For a finite p-group G we have $\Phi(G)=\mho(G) \cdot G_{2}$.

Proof of Theorem 1. 1) Let $G \in \mathcal{M}$. Since $\operatorname{cl}(G)=3$ there exist $g \in G_{2}$ such that $g \notin Z(G)$. Without loss of generality we assume that g is a commutator, i.e. there exist elements $a, b \in G$ such that $g=[a, b]$ and there is an element $c \in G$ such that $[g, c] \neq 1$. In that way the subgroup $H=\langle a, b, c\rangle$ has nilpotency
class 3. So it is an improper subgroup of $G, H=G$ and $d(G) \leq 3$.
2) To prove that $\Phi(G) \subseteq Z_{2}(G)$ we show that $\mho(G) \subseteq Z_{2}(G)$. Each element g from $\mho(G)$ is a product of some set of p-th degrees of elements of G. According Propozition 2 there are elements $g_{1} \in G$ and $c \in G_{2}$ such that $g_{1}{ }^{p}=g \cdot c$. Since $c \in G_{2} \subseteq Z_{2}(G)$ we have

$$
\begin{aligned}
& {[g, x]=\left[g_{1}^{p} \cdot c^{-1}, x\right] \cong\left[g_{1}^{p}, x\right] \cong } \\
& \cong\left[g_{1}, x\right]^{p} \cong\left[g_{1}, x^{p}\right] \quad(\bmod Z(G)) .
\end{aligned}
$$

Suppose that an element $g \in \mho(G)$ is not contained in $Z_{2}(G)$. Then there are elements $x, y \in G$ such that $[g, x] \notin Z(G)$ and $[g, x, y] \neq 1$. Since $\operatorname{cl}(G)=3$ we have

$$
\begin{align*}
{\left[g_{1}^{p}, x, y\right] } & =\left[g_{1}, x^{p}, y\right]= \\
& =\left[g_{1}, x, y\right]^{p}=[g, x, y] \neq 1 . \tag{1}
\end{align*}
$$

The subgroup $H=\left\langle g_{1}^{p}, x, y\right\rangle$ has nilpotency class 3 too, hence $H=G$. The element g_{1}^{p} is a nongenerator of the p-group G, thus G has exactly 2 generators, $G=\langle x, y\rangle$. Consequently $g_{1}=x^{\alpha} \cdot y^{\beta}$ and the following equalities for commutators hold

$$
\left[g_{1}, x\right]=\left[x^{\alpha} \cdot y^{\beta}, x\right]=\left[x^{\alpha}, x\right]^{y^{\beta}}\left[y^{\beta}, x\right]=\left[y^{\beta}, x\right] .
$$

From (1) we have

$$
1 \neq\left[g_{1}, x^{p}, y\right]=\left[g_{1}, x, y\right]^{p}=\left[y^{\beta}, x^{p}, y\right]
$$

The proper subgroup $H_{1}=\left\langle x^{p}, y\right\rangle$ of G has nilpotency class 3 . The contradiction with the condition $G \in \mathcal{M}$ gives $\mho(G) \subseteq Z_{2}(G)$. The condition $c l(G)=3$ implies $G_{2} \subseteq Z_{2}(G)$. According to Proposition 2 we have $\Phi(G) \subseteq Z_{2}(G)$.
3) The conditions $\operatorname{cl}(G)=3$ and $\mho(G) \subseteq Z_{2}(G)$ implies

$$
1=\left[a^{p}, b, c\right]=\left[[a, b]^{p}, c\right]=[a, b, c]^{p}
$$

for each set of elements $\{a, b, c\} \subset G$. Hence $\exp \left(G_{3}\right)=p$.
Theorem 3. Let $G \in \mathcal{M}$. If the group G is 3-generated, $G=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, then $p=3$.

Proof. 1) Let $G \in \mathcal{M}$ and $d(G)=3$. Thus for each pair $g, h \in G$ we have

$$
\begin{equation*}
[g, h, h]=[h, g, g]=1 \tag{2}
\end{equation*}
$$

Let $G=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$. Denote the commutators [$\left.a_{2}, a_{3}\right],\left[a_{3}, a_{1}\right],\left[a_{1}, a_{2}\right]$ by c_{1}, c_{2}, c_{3} correspondingly. From (2) we have

$$
\begin{aligned}
& {\left[c_{1}, a_{2}\right]=\left[c_{1}, a_{3}\right]=1,} \\
& {\left[c_{2}, a_{1}\right]=\left[c_{2}, a_{3}\right]=1,} \\
& {\left[c_{3}, a_{2}\right]=\left[c_{3}, a_{1}\right]=1 .}
\end{aligned}
$$

For commutator $h_{1}=\left[a_{1} \cdot a_{2}, a_{3}\right]$ we have $h_{1}=c_{1} c_{2}^{-1}$ $(\bmod Z(G))$ and taking into consideration (2) we obtain

$$
\begin{aligned}
1 & =\left[h_{1}, a_{1} \cdot a_{2}\right]= \\
& =\left[c_{1} \cdot c_{2}^{-1}, a_{1} \cdot a_{2}\right]=\left[c_{1}, a_{1}\right]\left[c_{2}, a_{2}\right]^{-1}
\end{aligned}
$$

Thus $\left[c_{1}, a_{1}\right]=\left[c_{2}, a_{2}\right]$. Analogously $\left[c_{1}, a_{1}\right]=$ $\left[c_{3}, a_{3}\right]$. Denote by z the element from $Z(G)$ such that

$$
\begin{equation*}
z=\left[c_{1}, a_{1}\right]=\left[c_{2}, a_{2}\right]=\left[c_{3}, a_{3}\right] . \tag{4}
\end{equation*}
$$

On the other hand, for each group G the Witt's identity holds:

$$
\left[x, y^{-1}, z\right]^{y} \cdot\left[y, z^{-1}, x\right]^{z} \cdot\left[z, x^{-1}, y\right]^{x}=1
$$

for all $x, y, z \in G$. Since $\operatorname{cl}(G)=3$ thus $[x, y, z] \in$ $Z(G)$ and $\left[x, y^{-1}, z\right]=[x, y, z]^{-1}=[y, x, z]$. Thus for all $x, y, z \in G$ we may rewrite the Witt's identities in the form:

$$
[y, x, z][z, y, x][x, z, y]=1
$$

Therefore

$$
\begin{equation*}
\left[a_{1}, a_{2}, a_{3}\right]\left[a_{3}, a_{1}, a_{2}\right]\left[a_{2}, a_{3}, a_{1}\right]=1 \tag{5}
\end{equation*}
$$

So from (4) and definitions $c_{i}, i=1,2,3$ we have $z^{3}=1$.

We obtain that the minimal groups of nilpotency class 3 with 3 generators exist for $p=3$ only.

From the proving of the theorem we obtain
Corollary 4. Let $G \in \mathcal{M}, G$ is 3-generated, $G=$ $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and

$$
\begin{equation*}
c_{1}:=\left[a_{2}, a_{3}\right], c_{2}:=\left[a_{3}, a_{1}\right], c_{3}:=\left[a_{1}, a_{2}\right] \tag{6}
\end{equation*}
$$

Then following conditions for the commutators hold

 1)$$
\begin{align*}
& {\left[c_{1}, a_{2}\right]=\left[c_{1}, a_{3}\right]=1,} \\
& {\left[c_{2}, a_{1}\right]=\left[c_{2}, a_{3}\right]=1,} \tag{7}\\
& {\left[c_{3}, a_{2}\right]=\left[c_{3}, a_{1}\right]=1}
\end{align*}
$$

2) the equality

$$
\begin{equation*}
\left[c_{1}, a_{1}\right]=\left[c_{2}, a_{2}\right]=\left[c_{3}, a_{3}\right]=z \tag{8}
\end{equation*}
$$

holds and z has the order 3;
3)

$$
\begin{equation*}
\left[c_{1}, c_{2}\right]=\left[c_{2}, c_{3}\right]=\left[c_{3}, c_{1}\right]=1 \tag{9}
\end{equation*}
$$

and $z \in Z(G)$
It is easy to see that for $p=3$ a p -group $G=$ $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ satisfying the conditions of Corollary 4 is a minimal group of nilpotency class 3 .

The necessary and sufficient conditions for $d(G)=2$

For $G \in \mathcal{M}$ Theorem 1 implies that $d(G) \leq 3$ and $\Phi(G) \subseteq Z_{2}(G)$. Now we show that last condition is sufficient for each group with $d(G)=2$ of nilpotency class 3 to be minimal of nilpotency class 3 .

Theorem 5. Let $d(G)=2$. Thus $G \in \mathcal{M}$ if and only if $c l(G)=3$ and $\Phi(G) \subseteq Z_{2}(G)$.

Proof. Let $d(G)=2, G=\langle a, b\rangle, \operatorname{cl}(G)=3$ and $\Phi(G) \subseteq Z_{2}(G)$. 2-generated p-group G has $p+1$ maximal subgroups: $M_{i}=\left\langle a b^{i}, \Phi(G)\right\rangle$ where $i=0,1, \ldots, p-1$ and $M_{p}=\langle b, \Phi(G)\rangle$. Consider $M_{0}=\langle a, \Phi(G)\rangle$. For each $g_{1}, g_{2} \in M_{0}$ holds $g_{i}=a^{t_{i}} h_{i}$ where $h_{i} \in \Phi(G)$. Thus

$$
\begin{aligned}
{\left[g_{1}, g_{2}\right] } & =\left[a^{t_{1}} h_{1}, a^{t_{2}} h_{2},\right]= \\
& =\left[a^{t_{1}} h_{1}, h_{2}\right]\left[a^{t_{1}} h_{1}, a^{t_{2}}\right]^{h_{2}}= \\
& =\left[a^{t_{1}}, h_{2}\right]^{h_{1}}\left[h_{1}, h_{2}\right]\left(\left[a^{t_{1}}, a^{t_{2}}\right]^{h_{1}}\left[h_{1}, a^{t_{2}}\right]\right)^{h_{2}} .
\end{aligned}
$$

All factors contain $h_{i} \in \Phi(G) \subseteq Z_{2}(G)$, so all of them are the elements of $Z(G)$. From maximality M_{0} we have $Z(G) \subseteq Z\left(M_{0}\right)$, so $\left[g_{1}, g_{2}\right] \in Z\left(M_{0}\right)$ for each $g_{1}, g_{2} \in M_{0}$, and consequently $\operatorname{cl}\left(M_{0}\right)=2$. Analogously $\operatorname{cl}\left(M_{i}\right)=2$ for each other maximal sub$\operatorname{group} M_{i}(i=1, \ldots, p-1, p)$. Therefore each proper subgroup of G has a nilpotency class 2 and $G \in \mathcal{M}$.

The necessary and sufficient
 conditions for $d(G)=3$

Consider the case $d(G)=3$ in details.
Theorem 6. The p-group G with $d(G)=3$ is minimal of nilpotency class $3(G \in \mathcal{M})$ if and only if the next conditions hold

1) $p=3$;
2) G asserts the representation

$$
\begin{aligned}
G= & \left\langle a_{1}, a_{2}, a_{3}, c_{1}, c_{2}, c_{3}, z\right| z^{3}=1 \\
& c_{1}^{3^{r_{1}}}=z^{\mu_{1}}, c_{2}^{3^{r_{2}}}=z^{\mu_{2}}, c_{3}^{3^{r_{3}}}=z^{\mu_{3}} \\
& a_{1}^{3^{m_{1}}}=c_{1}^{\beta_{11}} c_{2}^{\beta_{12}} c_{3}^{\beta_{13}} z^{\lambda_{1}} \\
& a_{2}^{3^{m_{2}}}=c_{1}^{\beta_{21}} c_{2}^{\beta_{22}} c_{3}^{\beta_{23}} z^{\lambda_{2}} \\
& a_{3}^{3^{m_{3}}}=c_{1}^{\beta_{31}} c_{2}^{\beta_{32}} c_{3}^{\beta_{33}} z^{\lambda_{3}} \\
& {\left[a_{1}, a_{2}\right]=c_{3},\left[a_{2}, a_{3}\right]=c_{1},\left[a_{3}, a_{1}\right]=c_{2} } \\
& {\left[c_{i}, a_{i}\right]=z,\left[c_{i}, a_{j}\right]=\left[c_{i}, c_{j}\right]=1 } \\
& {\left.\left[c_{i}, z\right]=\left[a_{i}, z\right]=1,(i, j=1,2,3 ; i \neq j)\right\rangle }
\end{aligned}
$$

where parameters m_{i}, r_{j}, μ_{j} satisfy following conditions.

$$
\begin{aligned}
& \text { a) } m_{1}, m_{2}, m_{3}, r_{1}, r_{2}, r_{3} \geq 1, \lambda_{i}, \mu_{j}=0,1,2 \text {; } \\
& i, j=1,2,3
\end{aligned}
$$

b) $r_{1} \leq \min \left(m_{2}, m_{3}\right), r_{2} \leq \min \left(m_{1}, m_{3}\right)$, $r_{3} \leq \min \left(m_{1}, m_{2}\right)$.
c) Let $i, j, k=1,2,3 ; i \neq j, i \neq k, j \neq k$ and $c_{i}=\left[a_{j}, a_{k}\right]$.
If $r_{i}<\min \left(m_{j}, m_{k}\right)$ then $\beta_{j k} \cong \beta_{k j} \cong 0$ $(\bmod 3), \mu_{i}-$ arbitrary.
If $r_{i}=m_{j}<m_{k}$ then $\beta_{j k} \cong-\mu_{i}(\bmod 3)$,
$\beta_{k j} \cong 0(\bmod 3)$.
If $r_{i}=m_{k}<m_{j}$ then $\beta_{k j} \cong \mu_{i}(\bmod 3)$,
$\beta_{j k} \cong 0(\bmod 3)$.
If $r_{i}=m_{j}=m_{k}$ then $\beta_{k j} \cong \mu_{i} \cong-\beta_{j k}$ $(\bmod 3)$.

Proof. According the Theorem 3 and Corollary 4 the conditions $p=3$ and commutator relations of G are the necessary conditions for G to be a minimal group of class 3. It is easy to see they are the sufficient ones too. So our aim is to establish the generating relations of such groups more precisely. To do this we will regard G as an extension of an abelian 3-generated group $A=\left\langle a_{1}\right\rangle_{3^{m_{1}}} \times\left\langle a_{2}\right\rangle_{3^{m_{2}}} \times\left\langle a_{3}\right\rangle_{3^{m_{3}}}$ by the abelian subgroup

$$
\begin{aligned}
& D=\left\langle c_{1}, c_{2}, c_{3}, z\right| z^{3}=1, \\
& \left.\quad c_{1}^{3^{r_{1}}}=z^{\mu_{1}}, c_{2}^{3^{r_{2}}}=z^{\mu_{2}}, c_{3}^{3^{r_{3}}}=z^{\mu_{3}}\right\rangle,
\end{aligned}
$$

where parameters $r_{1}, r_{2}, r_{3}, \mu_{1}, \mu_{2}, \mu_{3}$ are under the investigation.

From (7), (8) we have the group A acting on D as an operator group by the following way:

$$
\begin{array}{rlrl}
a_{1}: c_{1} & \mapsto c_{1} z & a_{2}: c_{1} & \mapsto c_{1} \\
c_{2} & a_{3}: c_{1} & \mapsto c_{2} \tag{10}\\
c_{3} & \mapsto c_{3}, & c_{2} & c_{3} \mapsto c_{2} z
\end{array} r c_{3}, ~ c r c c_{2} \mapsto c_{3} \mapsto c_{3} z .
$$

To describe the extensions we use the following well known theorem.

Theorem 7 (M. Hall). Let A be a group with generators $a_{1}, a_{2}, \ldots, a_{n}$ and relations $\varphi_{1}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1, \varphi_{2}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1, \ldots$, $\varphi_{k}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$. To determine an extension of the group A by abelian D we must determine

1) an acting of A on D as a group of operators;
2) a mapping of the relations set $\varphi_{1}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, $\varphi_{2}\left(a_{1}, a_{2}, \ldots, a_{n}\right), \ldots, \varphi_{k}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ to $D:$

$$
\begin{equation*}
\psi: \varphi_{i} \mapsto \alpha_{i} \in D, \quad i=1, \ldots, k \tag{11}
\end{equation*}
$$

where $\alpha_{i}(i=1, \ldots, k)$ satisfy following conditions:

$$
\begin{equation*}
\prod_{i} \alpha_{i}^{u_{i}}=1 \tag{12}
\end{equation*}
$$

for each solution u_{i} of equation system with coefficients from integer group ring $Z A$

$$
\begin{equation*}
\sum_{i} s_{j i} u_{i}=1, \quad j=1, \ldots, n \tag{13}
\end{equation*}
$$

where coefficients $s_{j i}$ are obtained from the relation φ_{i} by the following way. Let ξ_{j} - some mutually commuting elements, then using the collections process we obtain

$$
\begin{aligned}
& \varphi_{i}\left(a_{1} \cdot \xi_{1}, a_{2} \cdot \xi_{2}, \ldots, a_{n} \cdot \xi_{n}\right)= \\
& \quad=\varphi_{i}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \cdot \xi_{1}^{s_{1 i}} \cdot \xi_{2}^{s_{2 i}} \cdot \ldots \cdot \xi_{n}^{s_{n i}}
\end{aligned}
$$

The relations set of A is

$$
\begin{gather*}
\varphi_{1}=\left[a_{1}, a_{2}\right], \varphi_{2}=\left[a_{2}, a_{3}\right], \varphi_{3}=\left[a_{3}, a_{1}\right], \tag{14}\\
\varphi_{4}=a_{1}^{3^{m_{1}}}, \varphi_{5}=a_{2}^{3^{m_{2}}}, \varphi_{6}=a_{3}^{3^{3_{3}}} . \tag{15}
\end{gather*}
$$

Denote

$$
\begin{equation*}
\alpha_{1}=\psi\left(\varphi_{1}\right), \alpha_{2}=\psi\left(\varphi_{2}\right), \ldots, \alpha_{6}=\psi\left(\varphi_{6}\right) \tag{16}
\end{equation*}
$$

Every choosing of set $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{6} \in D$ satisfying (12) gives some group G, which is an extension A by D with action (10). Without loss of generality we may choose $\alpha_{1}=c_{3}, \alpha_{2}=c_{1}, \alpha_{3}=c_{2}$. For this choosing the relations of the group G satisfy all conditions from Corollary 4.

For given group A the condition (13) may be written as

$$
\begin{align*}
& a_{1}\left(\left(a_{2}-1\right) u_{1}+\left(1-a_{3}\right) u_{3}\right)+\pi_{1} u_{4}=0, \\
& a_{2}\left(\left(1-a_{1}\right) u_{1}+\left(a_{3}-1\right) u_{2}\right)+\pi_{2} u_{5}=0, \tag{17}\\
& a_{3}\left(\left(1-a_{2}\right) u_{2}+\left(a_{1}-1\right) u_{3}\right)+\pi_{3} u_{6}=0,
\end{align*}
$$

where $\pi_{i}=1+a_{i}+a_{i}^{2}+\cdots+a_{i}^{p^{m_{i}}-1}, i=1,2,3$.
The coefficients of this system of linear equations are elements of the group ring $Z A$. All of them are the divisors of zero in $Z A$, because

$$
\begin{equation*}
\left(a_{i}-1\right) \pi_{i}=0, \quad i=1,2,3 \tag{18}
\end{equation*}
$$

Consider some solutions of the system (17)
1)

$$
\begin{align*}
& \left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)= \\
& \quad=\left(0,0,0, a_{1}-1,0,0\right) \tag{19}\\
& \left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)= \\
& \quad=\left(0,0,0,0, a_{2}-1,0\right) \tag{20}\\
& \left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)= \\
& \quad=\left(0,0,0,0,0, a_{3}-1\right) \tag{21}
\end{align*}
$$

2)

$$
\begin{align*}
& \left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)= \\
& \quad=\left(\pi_{1}, 0,0, a_{1}\left(1-a_{2}\right), 0,0\right) \tag{22}\\
& \left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)= \\
& \quad=\left(\pi_{2}, 0,0,0, a_{2}\left(a_{1}-1\right), 0\right) \tag{23}\\
& \left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)= \\
& \quad=\left(0, \pi_{2}, 0,0, a_{2}\left(1-a_{3}\right), 0\right) \tag{24}\\
& \left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)= \\
& \quad=\left(0, \pi_{3}, 0,0,0, a_{3}\left(a_{2}-1\right)\right) \tag{25}\\
& \left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)= \\
& \quad=\left(0,0, \pi_{1}, a_{1}\left(a_{3}-1\right), 0,0\right) \tag{26}\\
& \left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)= \\
& \quad=\left(0,0, \pi_{3}, 0,0, a_{3}\left(1-a_{1}\right)\right) \tag{27}
\end{align*}
$$

3)

$$
\begin{align*}
& \left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)= \\
& \quad=\left(a_{3}-1, a_{1}-1, a_{2}-1,0,0,0\right) \tag{28}
\end{align*}
$$

According the condition (12) the solution (19) gives $\alpha_{4}^{a_{1}-1}=1$. By the another terms an image of relation $\varphi_{1}=a_{1}^{p^{m_{1}}}$ in D must commute with a_{1}. Thus we may suppose $\alpha_{4}=c_{1}^{\beta_{11}} c_{2}^{\beta_{12}} c_{3}^{\beta_{13}} z^{\lambda_{1}}$, where $\beta_{11} \cong 0$ mod 3. Analogously, from (20), (21) we have the images of relations $a_{2}^{p^{m_{2}}}, a_{3}^{p^{m_{3}}}$ must commute with a_{2}, a_{3} respectively and suppose $\alpha_{5}=c_{1}^{\beta_{21}} c_{2}^{\beta_{22}} c_{3}^{\beta_{23}} z^{\lambda_{2}}$, $\alpha_{6}=c_{1}^{\beta_{31}} c_{2}^{\beta_{32}} c_{3}^{\beta_{33}} z^{\lambda_{3}}$, where $\beta_{22} \cong \beta_{33} \cong 0 \bmod 3$.

The solution (22) gives $\alpha_{1}^{\pi_{1}}=\alpha_{4}^{a_{1}\left(a_{2}-1\right)}$. From (16) and (19) we have $c_{3}^{\pi_{1}}=\left[\alpha_{4}, a_{2}\right]$. Taking into account that $c_{3}^{a_{1}}=c_{3},\left[\alpha_{4}, a_{2}\right]=z^{\beta_{12}}$ we obtain $c_{3}^{3^{m_{1}}}=z^{-\beta_{12}}$. Comparing with relations of D we may conclude that 1) $m_{1} \geq r_{3}$, 2) $\beta_{12}=-\mu_{3}$ for $m_{1}=r_{3}$ and $\beta_{12}=0$ for $m_{1} \leq r_{3}$.

The next solution gives 1) $m_{2} \geq r_{3}$, 2) $\beta_{21}=\mu_{3}$ for $m_{2}=r_{3}$ and $\beta_{21}=0$ for $m_{2} \leq r_{3}$.

Analogously from (24)-(27) we obtain the other conditions for $\beta_{j k}$ and μ_{i}.
(28) gives $\left[a_{3}, \alpha_{3}^{-1}\right]\left[a_{2}, \alpha_{2}^{-1}\right]\left[a_{1}, \alpha_{1}^{-1}\right]=1$, or $\left[a_{3}, c_{3}^{-1}\right]\left[a_{2}, c_{2}^{-1}\right]\left[a_{1}, c_{1}^{-1}\right]=1$, which is equivalent (5).

Conclusion

We obtain the necessary and sufficient condition for finite p-group to be a minimal group of nilpotency class 3 . Thus the finite p-group G is a minimal group of nilpotency class 3 if and only if G is 2 -generated p-group of nilpotency class 3 with $\Phi(G) \subseteq Z_{2}(G)$ or G is 3-generated 3-group with relations pointed in the Theorem 5.

References

1. Berkovich Y. G. Groups of prime power order, I / Y. G. Berkovich. de Gruyter Expositions in Mathematics, 46. Berlin : Walter de Gruyter GmbH \& Co. KG, 2008. - xx +512 p.
2. Miller G. A. Non-abelian groups in which every subgroup is
abelian / G. A. Miller, H. C. Moreno // Trans. Amer. Math. Soc. - 1903. - Vol. 4. - P. 398-404.
3. Hall M., Jr. The theory of groups / M. Hall, Jr. - NY : MacMillan, New York, 1959. - xiii+434 p.

Пилявська О. С., Найчук М. М.

p-ГРУПИ КЛАСУ НІЛЬПОТЕНТНОСТІ 3, У ЯКИХ КОЖНА ВЛАСНА ПІДГРУПА МАЄ КЛАС НІЛЬПОТЕНТНОСТІ МЕНШЕ, НІЖ 3

Визначено всі скінченні р-групи класу нільпотентності 3, у яких кожна власна підгрупа має клас нільпотентності менше, ніж 3, і таким чином вирішено проблему № 87, поставлену Я. Г. Берковичем в [1].

Ключові слова: p-група, підгрупа, клас нільпотентності.

