
УДК 519.2

D. Fitel

MODIFIED BAYESIAN CLASSIFIERS FOR TEXT MESSAGES

The traditional methods of statistical classification of text spam are analyzed. For a naive Bayesian classifier,

a number of modifications are proposed. Based on these modifications, an alternative algorithm is described

and its time and space complexity are characterized.

Keywords: statistical classifiers, Bayesian Classifiers, algorithm, time complexity, space complexity.

Introduction

The problem of text spam has been around since the
early days of e-mail services and has since evolved to
numerous forms. Spam can vary by platform (e-mail,
instant messaging, social network messaging), by in-
tentions (from advertisement to phishing and ransom),
by distribution targets (from a single individual or gen-
eral public), etc.

While the number of messaging domains is grow-
ing rapidly, the prime purpose of spam remains the
same: to reach out to the recipient by any means or to
trick him into acting on the message by disguising it as
a legitimate message. This leads to a very clear prac-
tical definition of spam from the user’s perspective as
any unsolicited message, whether it acknowledges its
origin (e.g. unwanted advertisement) or is crafted to
gain the user’s trust (e.g. targeted phishing and ransom
attacks).

Given the large number of messaging systems
to which spam is applicable, the problem of detec-
tion of unwanted correspondence has evolved along
with distribution methods and now includes addi-
tional metadata like attached media and hyperlinks.
While they may seem to increase the complexity of
spam detection, they in fact give a basis for ad-
ditional means of filtering which are often much
easier to perform than the raw text classification
(see [1–3]).

While the message metadata can provide additional
information, in practice text classification is inevitable.
It is usually the final step in the whole process as it
tends to be most computationally expensive. Since the
metadata processing is different from case to case, it is
safe to say that the general problem of spam filtering
comes down to binary text classification. Therefore,
it makes sense to develop universal methods for spam
classification of text messages that can be later adopted
to any domain.

A number of supervised machine learning tech-
niques have been successfully applied to spam filter-
ing. They, however, have not yet fully replaced regu-
lar expression based filtering in large scale commercial
applications due to high requirements and sensitivity
to false positives.

In this paper we give an overview of a number
of statistical methods of performing spam filtering on
text messages, including Bayesian classifiers, nearest
neighbors, neural networks, and SVM. The mainly
focus on the high level algorithm and provide space
and time complexity limits for each of the algo-
rithms.

The main focus of this work is the Bayesian clas-
sifier — one of the most common and effective ap-
proaches to spam filtering (see [4]). We analyze an
existing naive Bayesian approach and tackle some of
the false assumptions that the algorithm relies on.
We propose a number of modifications of Bayesian
classifier. We then give performance comparison be-
tween the resulting algorithm to the original classi-
fier.

Additionally, we give a brief overview of common
problems in text message classification like feature se-
lection.

Scope and Applications

The vast majority of massively used communica-
tion services rely on text messages as the main form
of information exchange. Because of their openness,
such networks be extremely useful in spreading mali-
cious messages across wide audiences, both via private
(addressed to a particular individual) and public mes-
sages. Conceptually social network spam is no differ-
ent from e-mail spam as private messaging services of
popular social networks are equivalent in their func-
tionality to e-mail. Hence, we can focus the problem
of classifying spam messages in general, regardless of
the platform.

In general, the problem of spam detection de-
pends heavily on the application’s domain and can
benefit from additional metadata available along with
the text message. For example, in case of e-mails
the mail header is the source of metadata. Modern
spam filtering systems detect the vast majority of ma-
licious mails by simply checking the sender’s reputa-
tion before proceeding with analysis of the message
body.

This, of course, applies to all messaging services.
Maximum effectiveness can not be achieved without

c© D. Fitel, 2017

D. Fitel. Modified Bayesian classifiers for text messages 39

using all available data in addition to the message
text. However, in most cases text analysis is the
second stage preceded by a domain-specific filter.
Therefore, we can further focus on statistical classi-
fication of spam for text messages without specific
constraints.

The entities we need to classify are text mes-
sages that are given in the form of strings. Raw
strings are not convenient objects to handle in this
case since most machine learning algorithms can
only classify numerical objects or require a distance
metric or other measure of similarity between the
objects.

Before proceeding with machine learning, we have
to convert all messages to numerical vectors called
feature vectors, and then classify these vectors. The
simplest example of a feature vector is a binary
vector each index of which specifies whether a cer-
tain word is present in the message or not. More
complex feature vectors may contain frequencies of
words.

Extraction of features usually means that some
information from the original message is lost. On
the other hand, the way feature vector is chosen is
crucial for the performance of the filter. However,
feature vectors have to be sensitive to the class of
the message. If the features are chosen so that there
may exist a spam and a legitimate message with the
same feature vector, any algorithm will make mistakes
on it.

Preserving information with feature vectors is not
trivial and usually means that some information is lost.
Even the ultimate feature vector containing frequen-
cies of all words in the message does not preserve
semantical information. This problem however is out
of scope and is in the domain of Natural Language
Processing. In most practical applications the most
basic vectors of word frequencies or its modification
are sufficient.

Note that at the stage of feature selection it is possi-
ble to include the features from the available metadata
along with features from message text. However, we
will only focus on plain text as any of the described
algorithms can be easily expanded.

Definitions and Notations

Let us give a number of definitions that will be
commonly used.

M — the set of all messages.
L ⊆M — the set of legitimate messages.
S =M \ L — the set of spam messages.
Note that we will often speak of M , L and S in

context of the set of training messages.
T = {(m1, c1), (m2, c2), . . . , (mk, ck)}, mi ∈M ,

ci ∈ {S,L}, 1 ≤ i ≤ k — the training set of already
classified messages.

Tc = T ∩ c, c ∈ {L, S} — training set of legiti-
mate (TL) or spam (TS) messages.

x = (x1, x2, . . . , xn), xi ∈ {0, 1}, 1 ≤ i ≤ n —
binary feature vector of a message. Each coordinate
specifies whether a specific feature applies to the mes-
sage (i.e. whether the corresponding word is present
in the message).

f : M → {S,L} — classification function that
given a message determines its class. This function is
the ultimate goal of any classification algorithm.

We will also use the following symbols with fixed
meanings:

n — the number of features used in classification.
k = |T | — the power of the training set.

Naive Bayes Classifier

Consider the simple case of text classification
based on the presence or absence of just one word W .
Suppose we know that the word W only occurs in
spam messages. This gives us confidence that any
message containing W is spam. This approach can
be generalized to the probability of a message feature
vector occurring in the message.

Suppose we have two classes L and S correspond-
ing to legitimate and spam messages, and that there
is a known probability distribution of feature vectors
P (x|c), c ∈ {L, S}. In general it is hard to define
such distribution, but it is often possible to provide an
approximation. What we need to obtain is the class
that the given message belongs to, or the probability
P (c|x). This can be done using the Bayes’ formula

P (c|x) = P (x|c)P (c)
P (x)

=

=
P (x|c)P (c)

P (x|L)P (L) + P (x|S)P (S) ,

where P (x) is the a-priori probability of a message
with feature vector x and P (c) is the probability of
class c, i.e. the probability that any given message
belongs to c. Given the values P (c) and P (x|c) for
c ∈ {L, S} one can calculate the probability P (c|x)
which can then be used in a classification rule.

The most basic classification rule is to classify the
message to the category with bigger probability.
Definition 1. Maximum a-posteriori probability
(MAP) rule: if P (S|x) > P (L|x) then classify x
as spam, otherwise classify as legitimate message.

The MAP rule can be transformed to

If P (x|S)
P (x|L) >

P (L)
P (S) then classify x as spam,

otherwise as legitimate message.

The ratio P (x|S)
P (x|L) is known as the likelihood ratio

and is denoted as Λ(x).

40 НАУКОВI ЗАПИСКИ НаУКМА. 2017. Том 201. Фiзико-математичнi науки

This approach can be too simplistic for certain ap-
plications. For example, in case of e-mail spam filter-
ing, false positives (classifying legitimate message as
spam) are usually much more unwanted than false neg-
atives (classifying spam as legitimate message). The
following generalization allows to take such restric-
tions into account.
Definition 2. A cost function L(c1, c2) denotes the
cost of misclassifying a message of class c1 as the one
belonging to class c2.

Then we can express the expected risk of classi-
fying a message x belonging to class c in the above
terms.
Definition 3. The function

R(c|x) = L(S, c)P (S|x) + L(L, c)P (L|x),

x ∈M , c ∈ {L, S} is called the risk function.
Now we can define a natural classification rule in

terms of expected risk.
Definition 4. Bayes’ classification rule: if R(S|x) <
< R(L|x) then classify x as spam, otherwise as legit-
imate message [3].

It can be shown that Bayesian classifier f mini-
mizes the average risk

R(f) =

∫
L(c, f(x))dP (c, x) =

= P (L)

∫
L(L, f(x))dP (x|L) +

+ P (S)

∫
L(S, f(x))dP (x|S),

so in this sense Bayesian classifier already is opti-
mal [1].

Naturally, the loss of classifying the message cor-
rectly is zero, thus

L(S, S) = L(L,L) = 0.

Then the Bayes’s classification rule can be rewritten as

If Λ(x) > λP (L)
P (S) classify as spam

otherwise as legitimate message.

Here λ = L(L,S)
L(S,L) is the additional parameter that

specifies the risk of misclassifying legitimate messages
as spam. As the value of λ increases, the classifier
produces fewer false positives. This makes Bayesian
classifier especially appealing in e-mail spam filtering
since false positives there are much more expensive
than false negatives.

While the classification process is straightforward,
the practical applications of Bayes’s classifier are lim-
ited by our ability to approximate the a-priori proba-
bilities P (x|c) and P (c), c ∈ {L, S} from the training
data. Therefore, while the Bayes’s classifier is opti-
mal in the sense of minimizing the loss of classifi-
cation for given a-priori probabilities, the quality of

spam detection depends on the feature selection and
approximation of these probabilities.

P (L) and P (S) can be easily approximated by the
ratio of legitimate and spam messages respectively.
P (x|c), however, is non-trivial and depends on the
contents of selected feature vector.

Consider the simplest case where the feature vec-
tor xw is 1 if the message contains w and 0 otherwise.
Then the probability P (xw = 1|S) can be approxi-
mated by the ratio of spam messages containing w to
the ratio of all spam messages in a training set. This
is sufficient to be used by the Bayes’s classifier, so we
can outline the training and selection process for this
model.

Training process
1. Calculate probabilities P (c), P (xw = 0|c),
P (xw = 1|c), c ∈ {L, S}.
2. Using Bayes’s formula calculate P (c|xw = 0) and
P (c|xw = 1).
3. Calculate Λ(xw), xw = 0, 1, calculate

λ
P (L)

P (S)

and store these values.
Classification process

1. Determine feature vector xw for message m.
2. Retrieve the stored value Λ(xw).
3. Use Bayes’s decision rule to determine class of the
message.

Now we need to generalize this classifier to in-
clude more features than just the presence of a single
word. The simplest way (and the most used one) is to
choose a subset of words w1, w2, . . . , wn and define
the feature vector

x = (x1, x2, . . . , xn),

xi = 1 if the message contains wi, and xi = 0 other-
wise.

The problem with this approach is that it requires
calculation and storing of all possible values of the
feature vector, which is not feasible since there are 2n

such vectors. A common way to remove this require-
ment is to assume that the individual components of
the vector are independent [4]. This assumption is not
formally correct, but in practice it is a good compro-
mise between formal correctness and computational
requirements. We will consider other options in later
chapters.

Because of independence of features:

P (x|c) =
n∏

i=1

P (xi|c),

Λ(x) =

n∏

i=1

Λi(xi).

D. Fitel. Modified Bayesian classifiers for text messages 41

This classifier is known as Naive Bayesian Clas-
sifier due to assumption of independence of features.
Training and classification are very simple computa-
tionally.

Training process
1. For all wi ∈ W calculate and store Λi(xi),
x = 0, 1.
2. Calculate and store

λ
P (L)

P (S)
.

Classification process
1. Determine feature vector x for message m.
2. Calculate Λ(x) using the stored values Λi(xi).
3. Use Naive Bayes’s decision rule to determine class
of the message.

In terms of word selection for the feature vector,
usually most common and most rare words are ex-
cluded. For simple cases when performance is not
critical, all words form the training set can be used. In
later chapters we will consider ways to select words
with maximum mutual information.

Another benefit of naive Bayesian filter is that it
is very easy to expand the feature vector to include
additional available metadata. In case of e-mails, for
example, it would be contents of e-mail headers. It
is possible to include additional components either to
the calculation of the a-priory probability of the vec-
tor or to combine the risk of Bayesian classifier with
additional risk calculated from metadata when making
a decision.

k Nearest Neighbors Classifier

k Nearest Neighbors (or k-NN) is a modification
of the classical Nearest Neighbors algorithm. The idea
behind this classifier is to first define a metric on fea-
ture vectors and then classify the message according to
classes of k nearest messages in the training set. The
metric is often chosen to be Euclidean, but Hamming
or lp can also be used for this purpose.

Training process
1. Store feature vectors of training messages in two
sets L and S.

Classification process
1. For a message with feature vector x determine k
nearest neighbors from messages in the training set.
If there are more legitimate messages among them,
classify x as legitimate message, otherwise classify as
spam.

Since the algorithm does not require any prepro-
cessing of the training dataset, the training process is
trivial. The classification process, however, requires
calculation of distances to all messages in the training
set, and for feature vectors of lengthm the most trivial
implementations take O(mn) time for set of n mes-
sages in case of Hamming or lp metrics. Performing

indexing on the training set can decrease the running
closer to O(n) [1]. However, if the size of the set in-
creases over time, the algorithm might not be feasible
in practice for certain applications.

The k-NN classifier is widely applicable in general
classification problems, partially because it is one of so
called universally consistent rules. Consider the train-
ing set sn of n samples, and let use denote the k-NN
classifier over that set as fsn . Similar to Bayesian
classifier, we can determine the average risk R(fsn) of
the classifier. The risk value is always greater than or
equal than the Bayesian risk R∗ (recall that Bayesian
classifier is optimal in this sense), however for large
values of n R(fsn) will be close to R∗.
Definition 5. A classification rule is called consistent
if the expectation of the average risk E(Rn) converges
to the optimal (Bayesian) risk R∗ as n goes to infinity:

E(Rn) −−−−→
n→∞

R∗.

The classification rule is called universally consistent
if it is consistent for any distribution of (x, c).
Theorem 1 (Stone, 1977). If k → ∞ and k

n
→ 0,

then k-NN classification rule is universally consistent.

Consistency of k-NN rule allows to increase the
quality by increasing the size of the training set. Stone
theorem guarantees that as the size of the training set
increases with constant value of k, the selection of
messages for the training set does not matter. In addi-
tion to this, small values of k prevent quadratic com-
plexity O(n2) when computing nearest neighbors.

Despite theoretical results, k-NN classifiers are
performing worse than competition in practice for
spam classification and are computationally expensive.

Artificial Neural Network Classifier

Artificial neural networks (ANN) is a family of
models inspired by biological neural networks which
are widely used in classification, regression, and den-
sity estimation by approximating functions that can
depend on a large number of inputs and are generally
unknown. A neural network is a complex function
that may be decomposed into smaller units called neu-
rons and represented graphically as a network. Many
functions fall under such criteria, however the most
common kinds of neurons are perceptron and multi-
layer perceptron.

The perceptron produces a linear function of the
feature vector

f(x) = wTx+ b,

where f(x) > 0 for vectors of one class and f(x) < 0
for vectors of another class. Here w is the vector of
weights, or bias,

w = (w1, w2, . . . , wn).

This vector will be determined by the training process.

42 НАУКОВI ЗАПИСКИ НаУКМА. 2017. Том 201. Фiзико-математичнi науки

If we denote the classes by number −1 and +1,
we can use

d(x) = sign(wTx+ b)

as decision function. This allows us to represent the
decision function graphically as a neuron with n inputs
and a single output. A system of one perceptron is an
example of the simplest neural network.

Suppose the feature vector is two-dimensional,
x ∈ R

2. Then we can represent these feature vectors
as points on the plane. Then the decision function can
be represented as a line dividing the plane in two parts,
each corresponding to one of the classes. Similarly, the
decision boundary for three-dimensional feature vec-
tors is a plane, etc. In general, for n-dimensional fea-
ture vector the decision boundary is an n-dimensional
hyperplane.

The learning process for a perceptron is iterative.
The initial values of parameters (w0, b0) can be arbi-
trary, as they are updated on each iteration. On the
k-th iteration of the algorithm a training sample (x, c)
is chosen such that the current decision function does
not classify it correctly, i.e.

sign(wT
k x+ bk) 6= c.

Then the parameters (wk, bk) are then updated accord-
ing to the rule:

wk+1 = wk + cx,

bk+1 = bk + c.

The algorithm terminates when a decision func-
tion that correctly classifies all training set is found.
If the training set is linearly separable, the percep-
tron algorithm converges. It is known as Perceptron
Convergence Theorem proven by Frank Rosenblatt
in 1962 [5]. If, however, the set is not linearly separa-
ble, the algorithm will never converge. In this case it
is possible to still use the perceptron, but the training
loop needs to stop when the number of misclassifica-
tion becomes small.

We can now outline the training and classification
phases of the perceptron.

Training process
1. Initialize the values of w and b with random values
or 0.
2. Find a sample from the training set (x, c) such that

sign(wTx+ b) 6= c.

If there are no such samples, terminate as the train-
ing is completed and all training samples are being
classified correctly, else proceed to the next step.
3. Update (w, b) with new values

w := w + cx,

b := b+ c

and go to the previous step.

Classification process
1. For message with feature vector x classify it as

sign(wTx+ b).

As mentioned before, perceptrons can be com-
bined in multiple layers to form multilayer perceptrons

which are non-linear classifiers. Neurons of the first
layer which takes in the input parameters are called in-

put neurons, similarly neutrons of the last layer which
provide the function result value are called output neu-

rons. All layers between input and output are called
hidden layers.

Each neuron in the networks is similar to a percep-
tron: for input vector

x = (x1, x2, . . . , xn)

it calculates output value by the formula

o = φ
(n∑

i=1

wixi + b
)
,

where wi and b are weights and bias of the neuron re-
spectively, φ is a nonlinear function that approximates
binary output of the perceptron. Most often 1

1+eax or
tanh(x) are used as φ as they tend to give a good ap-
proximation while being mathematically convenient.

Like in the case of a single perceptron, training of a
neural network is searching for the values of weights
and biases for all neurons that minimize the output
error. Let us denote f(x) as the output of the neural
network. Then for training samples (xi, ci), 1 ≤ i ≤ k
the training has to minimize the total training error

E(f) =

k∑

i=1

|f(xi)− ci|2.

An iterative algorithm can be used to perform this
minimization. The most common one is the gradient
descent which in case of neural networks is called er-

ror backpropagation. The theory of backwards prop-
agation of errors is well developed and has many im-
plementations in practice [6].

The main reason to use multiple layers of neurons
is that the multilayer neural network is a non-linear
classifier. As a result, they are applicable for tasks with
training data that is not linearly separable, particularly
when the number of features is relatively small. How-
ever, in case of spam detection with multiple words
being used as features the data is often linearly separa-
ble, thus using neural network will have no noticeable
benefits over a simple perceptron.

Performance of the neural network is proportional
to the number of neurons. Thus, the large number
of features directly impacts performance as it trans-
lates to increased number of input neurons and thus

D. Fitel. Modified Bayesian classifiers for text messages 43

the complexity of the network in total. In practice
the number of features would have to be more strictly
limited than in case of a perceptron, which for spam
detection means the trade-off between non-linear de-
cision boundaries and the amount of information loss.

Because of the above reasons and due to the large
number of parameters that require tuning, the multi-
layer perceptron is hard to use in practice for spam
detection. It has been successfully used for that pur-
pose [1], but it is not easily applicable in general case
as it is hard to reconfigure. For the purposes of this
thesis we shall focus on a simple perceptron.

SVM Classifier

Support Vector Machines (SVM) is a class of
widely used algorithms for classification and regres-
sion. The theoretical foundation of SVM is the Statis-
tical Learning Theory that gives certain guarantees of
performance [5]. Let us consider classification prob-
lem with SVM for linearly separable data.

SVM works in a similar manner to perceptron in
terms of finding a linear boundary that separates test
data according to their classes. However, the purpose
of SVM is not to find any of these boundaries if they
exist, but to find the maximal margin separating hyper-
plane, with maximum distance to the nearest training
sample.
Definition 6. Let X = {(xi, ci)}, xi ∈ R

n, ci ∈
∈ {−1,+1} be the set of training samples and (w, b)
denote a separating hyperplane

sign(wTxi + b) = ci

for all 1 ≤ i ≤ k. The margin mi of a training sample
(xi, ci) with respect to the separating hyperplane is the
distance from xi to the hyperplane

mi =
|wTxi + b|

‖w‖ .

The margin m of the separating hyperplane for
training set X is the smallest margin of an instance in
the training set

m = min
i
mi.

The maximal margin separating hyperplane for
training set X is the separating hyperplane with max-
imal margin with respect to the training set [1].

The hyperplane given by parameters (x, b) is the
same as the hyperplane given by parameters (kx, kb),
hence we can only consider hyperplanes for which

min
i

|wTxi + b| = 1.

The optimal canonical hyperplane has minimal value
of ‖w‖, and that in order to find a canonical hyperplane

we need to solve the minimization problem: minimize
1
2w

Tw given conditions

ci(w
Txi + b) ≥ 1, i = 1, 2, . . . , k.

The problem may be transformed to a certain dual
form: maximize

Ld(α) =

k∑

i=1

αi −
1

2

k∑

i,j=1

αiαjcicjx
T
i xj

with respect to dual variables α = (α1, α2, . . . , αk),
∀i αi ≥ 0 and

∑k
i=1 αici = 0 [1].

The resulting problem is a classical quadratic opti-
mization problem, for which there exist efficient solu-
tions. Once we have found the solution α, parameters
(wo, bo) of the optimal hyperplane are determined as

wo =

k∑

i=1

αicixi,

bo =
1

cm
− wT

o xk,

where m is an arbitrary index for which αm 6= 0.
The resulting hyperplane is defined by the training

samples that are at minimal distance to it, so called
support vectors. Training process is quite complex,
while classification is straightforward.

Training process
1. Find α that solves the dual problem (maximizes Ld

under named constraints).
2. Determine w and b for the optimal hyperplane and
store the values.

Classification process
1. For message with feature vector x classify it as

sign(wTx+ b).

Implementation of SVM is non-trivial, in particu-
lar because of the quadratic optimization problem. In
case of spam classification, an easy and quick classi-
fication process is undoubtedly a benefit. However,
in many cases of spam filtering the training set needs
to be regularly updated, which is a hard procedure
with SVM.

Non-Naive Bayesian Classification

Overview. Recall the naive Bayesian classifier de-
scribed earlier. Let us ignore feature selection for now
and instead only consider classification of feature vec-
tors. Bayesian classifier is optimal in the sense of
minimization of expected risk, however it is a com-
mon practice to assume that individual components
of the feature vector are independent. Such assump-
tion, while significantly simplifying implementation
and improving training and classification performance,

44 НАУКОВI ЗАПИСКИ НаУКМА. 2017. Том 201. Фiзико-математичнi науки

does compromise the optimality of the classifier. In
this chapter we will analyze the possibility of an effec-
tive Bayesian classifier without assumption about fea-
ture independence and will develop an algorithm that
allows to balance learning/classification speed with op-
timality guarantees.

Let us return to Bayesian model for the case of a
single feature.

Training process
1. Calculate probabilities P (c), P (xw = 0|c),
P (xw = 1|c), c ∈ {L, S}.
2. Using Bayes’s formula calculate P (c|xw = 0) and
P (c|xw = 1).
3. Calculate Λ(xw), xw = 0, 1, calculate

λ
P (L)

P (S)

and store these values.
Classification process

1. Determine feature vector xw for message m.
2. Retrieve the stored value Λ(xw).
3. Use Bayes’s decision rule to determine class of the
message.

In the naive version assumption about indepen-
dence of features was made. With this assumption the
required probability can be easily found from a-priori
probabilities of separate features:

P (x|c) =
n∏

i=1

P (xi|c).

Now we again need to generalize this classifier to
include multiple features, however this time without
making any assumptions about the underlying distri-
bution. Let us ignore the feature selection for now as
it will be described in the following chapter.

Consider the feature vector

x = (x1, x2, . . . , xn),

xi = 1 if the message contains wi, xi = 0 otherwise.
As mentioned before, calculating and storing this value
for all 2n possible combinations of feature vector x is
not feasible in practice, so this has to be done during
classification process.

The probability P (x|c) for any given c ∈ {L, S}
is equal to the ratio of messages in c with feature
vector x to all messages in c. To calculate it effi-
ciently, we need to be able to quickly determine the
number of messages in the set that have specified
feature vectors. This can be done in a number of
ways.

Non-Naive Bayesian Classification Algorithm.

Let us now outline the updated algorithm for train-
ing and classification. Let M(c, x), c ∈ {L, S},
x ∈ 2|n| denote the power of subset of c with feature
vector x.

Theorem 2. Non-naive Bayesian classification algo-

rithm

Training process

1. Calculate |L| and |S|. Time complexity: O(k).
2. Calculate likelihood ratio

λ
P (L)

P (S)
.

Time complexity: O(1).
3. For both L and S construct corresponding tries

that allow to perform lookup of M(c, x). Time com-

plexity: O(nk). Space complexity: O(nk).
Classification process

1. Determine feature vector x for message m. Time

complexity: O(|m|) where |m| denotes the number of

words in message m.

2. Perform lookup of M(L, x) and M(S, x) using the

tries. Time complexity: O(n).
3. Calculate

P (x|L) = M(L, x)

|L|

and

P (x|S) = M(S, x)

|S| .

Calculate

Λ(x) =
P (x|S)
P (x|L) .

Time complexity: O(1).
4. Use Bayes’s decision rule to determine the class of

the message. Time complexity: O(1).
Proof. To be able to perform lookup of the number of
messages with specific feature vector, we shall store
the known feature vectors in a trie where each node
corresponds to one of the features, starting from x1.
Given a node at position xi the left subtree will contain
vectors with xi = 0 and the right subtree — vectors
with xi = 1. The leaf nodes will contain the num-
ber of messages in the set with feature vectors that
match the path from root to leaf. Since we need to
calculate both P (x|L) and P (x|S), we shall maintain
two tries, one for legitimate messages and one for
spam.

With this representation adding a message to the
trie takes time O(n) (where n is the dimension of fea-
ture vector) since the length of the path from root to
the corresponding leaf node is n. Therefore, the whole
training process takes O(nk), where k is size of the
training set.

Lookup of the feature vector also takes linear time
O(n) since we only follow the path of length n from
root to a leaf node. It is also easy to show that the
lower bound is O(n) because each of the feature vec-
tors has to be examined at least once. Therefore, our
algorithm is optimal.

D. Fitel. Modified Bayesian classifiers for text messages 45

The amount of extra storage required by the trie is
O(nk) (consider the set of one message). Obviously,
some fractions of the paths will be shared (different
messages with identical feature vectors will share the
whole path). One way to increase the number of shared
nodes is to sort the features in descending order by the
number of messages that have the same value of this
feature, then more messages will share common be-
ginning of the path.

Of course, this is not the only way to store and
perform lookup on feature vectors. We can also use
a hash table. Calculating hash of the feature vector is
O(n). Construction and lookup are O(nk) and O(n)
on average respectively, however they can be O(n2k)
and O(n2) in the worst case. For our purpose it will
be sufficient to focus on the trie approach.

Generalizing Probability of Feature Vectors. In
case of a naive approach only probabilities of sepa-
rate features need to be stored. They are sufficient to
determine the overall probability of the feature vector
for all 2n combinations, regardless of whether they are
present in the training set. In the approach described
above, however, only the information about concrete
feature vectors from the training set is stored. While
it is possible to calculate probability of any feature
vector in the training set by the algorithm above, in its
current version probability of any feature vector that
is not in the training set to be in either L or S is 0. In
fact, probability of any message m to belong to c will
be non-zero if and only if the training set contains at
least one message with identical feature vector.

This can be interpreted as excessive “formality”,
i.e. the algorithm produces the optimal result, but in
the context of given training set. We would naturally
want to get a reasonable approximation of the proba-
bility of messages that are not present in the training
set. Note that out of 2n possible feature vectors at most
k will be present in the constructed trie, and the prob-
ability that the algorithm will produce the expected
result is k

2n at best. Therefore, without providing an
alternative probability for unrecognized feature vec-
tors these modifications will be useless in practice.

One possible solution is to fall back to naive
Bayesian classifier for all feature vectors that are not
present in the training set. In this case, our modified
classifier will only produce different results for a small
fraction of possible messages (k

2n), making these mod-
ifications negligible in practice. For example, even if
we assume that the training set contains ku unique
feature vectors, for

ku ≤ 230,

(i.e. the training set is very unlikely to contain more
than 1 billion messages in practice) n has to be not
larger than log2(k) = 30. Obviously, we want to
include significantly more features.

Semi-Naive Bayesian Classification

At this point we have an optimal algorithm for any
message such that its feature vector is present in the
training set. In this section we will describe a num-
ber of ways to give an approximation of conditional
probabilities for all possible feature vectors.

Chain rule. We can express probability P (x|c),
c ∈ {L, S} in terms of conditional probabilities using
the chain rule:

P (x|c) = P (x1|c)P (x2|x1, c)×

× P (x3|x1, x2, c) · · · ×

× P (xn|x1, x2, . . . , xn−1, c) =

=

n∏

i=1

P

(
xi

∣∣∣
i−1⋂

j=1

xj , c

)
.

Let us first consider any of the probabilities
P (xi|x1, x2, . . . , xi−1, c) for given values of x1, . . . ,
xi−1 and c. The constraint of c limits the set of mes-
sages to either only legitimate messages or only spam.
The constraints on the fist i − 1 features require the
first i−1 components of the feature vector to be equal
to given values (x1, x2, . . . , xn−1).

We will now extend the function M from the
previous section to be able to compute the number
of features with constraints on some indexes. Let
M(c, x1, x2, . . . , xl), 1 ≤ l ≤ n denote the power of
subset of c with the first l features equal to x1, x2, . . . ,
xl. Then

P (xi|x1, x2, . . . , xi−1, c) =

=
M(c, x1, x2, . . . , xi)

M(c, x1, x2, . . . , xi−1)
.

The value of M(c, x1, . . . , x|i) is the number of
messages in the training set of legitimate or spam
messages (depending on c) feature vectors of which
start with x1, x2, . . . , xi. One way to find this value
is to go through all training messages of category c
and count the number of those with feature vectors
that match x1, . . . , xn. This would mean O(nk) time
complexity for each probability in the chain, and over-
all complexity for P (x|c) would be

O(
n∑

i=1

nk) = O(n2k),

which is, of course, not feasible in practice.
However, we can reuse the trie that we already

are using for calculating M(c, x1, . . . , xn), only in
this case we need to retrieve the number of messages
feature vector of which matches the first i given co-
ordinates. This can be done in O(n) if in each node
we store the sum of values of all terminal nodes in

46 НАУКОВI ЗАПИСКИ НаУКМА. 2017. Том 201. Фiзико-математичнi науки

the subtree rooted at that node. This will give us ex-
actly the number of messages feature vector of which
satisfies the constraints on the first i coordinates.

In fact, as we follow the path in the trie, on each
step we will calculate exactly one of the probabilities
in the chain. Taking their product gives us the final
probability with overall complexity of O(n). Essen-
tially, this approach is just a different computation of
the same non-Bayesian classifier, but it can be modi-
fied more easily.

Chain Rule Bayesian Classification Algorithm.

Let us outline the final version of semi-naive Bayesian
classifier based on chain rule computation.
Theorem 3. Chain rule Bayesian classification algo-

rithm

Training process

1. Calculate |L| and |S|. Time complexity: O(k).
2. Calculate likelihood ratio

λ
P (L)

P (S)
.

Time complexity: O(1).
3. For both L and S construct corresponding tries

that allow to perform lookup of M(c, x1, x2, . . . , xi),
1 ≤ i ≤ n. Time complexity: O(nk). Space complex-

ity: O(nk).
Time complexity: O(nk). Space complexity:

O(nk).
Classification process

1. Determine feature vector x for message m. Time

complexity: O(|m|) where |m| is the number of words

in m.

2. Calculate

P (x|L) =
n∏

i=1

P

(
xi

∣∣∣
i−1⋂

j=1

xj , L

)

and

P (x|S) =
n∏

i=1

P

(
xi

∣∣∣
i−1⋂

j=1

xj , S

)

using the corresponding paths in the tries. Time com-

plexity: O(n).
3. Calculate

Λ(x) =
P (x|S)
P (x|L) .

Time complexity: O(1).
4. Use Bayes’s decision rule to determine class of the

message. Time complexity: O(1).
Time complexity: O(n). Space complexity: O(1).
Note that the asymptotic complexity of classifica-

tion is the same as in case of naive Bayesian algorithm.
Proof. The chain rule allows us to compute the exact
value of P (x|c), but it does not solve the problem of
feature vectors that are not in the training set having
zero probability. In the previous section we suggested

that a priori probability (like in naive Bayesian classi-
fier) can be used for the whole feature vector.

We can apply the same idea, but to each of the
probabilities in the chain separately: if any of the
probabilities P (xi|x1, . . . , xi−1, c) are equal to zero,
they are replaced with a priori P (xi|c).

As before, probabilities of all feature vectors that
are present in the training set will not change after
such modification. To prove this, let us consider each
of the probabilities in the chain rule for some message
m ∈ c for fixed c. For 1 ≤ i ≤ n:

P (xi|x1, . . . , xi−1, c) =

=
|m ∈ Tc : x

m
1 = x1, . . . , x

m
i = xi|

|m ∈ Tc : xm1 = x1, . . . , xmi−1 = xi−1|
.

Note that 1 ≤ ∀i ≤ n neither the nominator nor
the denominator are equal to 0 since the corresponding
subsets of Tc contain at least the message m. There-
fore, the chain rule Bayesian classifier compared to
non-naive classifier only changes the probability of
messages that would otherwise have zero probability.

One can notice that after the feature with zero con-
ditional probability, the chain rule classifier behaves
identically to naive Bayesian classifier, i.e. for the rest
of the features it only considers the a priori probability.
It is still possible to compute the a posteriori proba-
bility while ignoring some features, therefore avoiding
the situation with zero probability. However, such an
approach can be extremely expensive since for each
component of the chain O(2n) potential subsets of
conditions can be considered. Also, recall that while
the trie allows to compute any of the probabilities in
the chain in O(n) time, it is only the case for all
features in order.

Limited Number of Conditional Probabilities.

Some scenarios might require additional constraints on
time or space complexity of the training phase. The
proposed algorithm does allow for trade-offs between
the number of conditions and speed/space.

The first modification that can significantly im-
prove training and classification speed of chain rule
classifier is to only calculate a limited number of con-
ditional probabilities, using naive assumption for the
rest. It is similar to what the classifier is already doing
for most messages, but with a strictly defined limit on
the number of extra calculations.

Let d, 1 ≤ d ≤ n be the limit on features for which
we will calculate conditional probabilities. For the first
d features in the feature vector we will construct the
trie, for the rest we will compute unconditional prob-
abilities.
Theorem 4. Chain rule Bayesian classification algo-

rithm with limited number of conditional probabilities

Training process

1. Calculate |L| and |S|. Time complexity: O(k).

D. Fitel. Modified Bayesian classifiers for text messages 47

2. Calculate likelihood ratio

λ
P (L)

P (S)
.

Time complexity: O(1).

3. For all wi ∈ W calculate and store P (xi),
d+ 1 ≤ i ≤ n. Time complexity: O(k(n− d)), space

complexity: O(n− d).

4. For both L and S construct corresponding tries

that allow to perform lookup of M(c, x1, x2, . . . , xi),
1 ≤ i ≤ d. Time complexity: O(dk). Space complex-

ity: O(dk).

Time complexity: O(nk). Space complexity:

O(dk).

Classification process

1. Determine feature vector x for message m. Time

complexity: O(|m|) where |m| is the number of words

in m.

2. Calculate
n∏

i=d+1

P (xi)

using the stored values. Time complexity: O(n− d).

3. Calculate

P (x|L) =
d∏

i=1

P

(
xi

∣∣∣
i−1⋂

j=1

xj , L

)

and

P (x|S) =
d∏

i=1

P

(
xi

∣∣∣
i−1⋂

j=1

xj , S

)

using the corresponding paths in the tries. Time com-

plexity: O(d).

4. Calculate

Λ(x) =
P (x|S)
P (x|L) .

Time complexity: O(1).

5. Use Bayes’s decision rule to determine class of the

message. Time complexity: O(1).

Time complexity: O(n). Space complexity: O(1).

Proof. The only difference in asymptotic time and
space from the previous algorithm is that instead of
having a trie with each path from root of length n the
constructed trie will have limited depth d. Therefore,
the time and space complexity for constructing and
storing the trie will require k steps, each creating a
path of length d. Thus, the time and space complexity
are O(dk).

The classification algorithm remains unchanged
since for each feature of the vector we only perform
one operation: either moving down the trie or looking
up the a priori feature probability, thus time complex-
ity is O(n), with no additional space required.

The above modification allows to limit the space
requirements regardless of the number of features.
This can be useful for applications with multiple cus-
tomized classifiers each based on a separate training
set.

Limited Number of Conditions. Another possi-
ble modification is to limit the number of conditions
for each probability in the chain with some constant
d. The easiest example would be to exclude features
xd+1, . . . , xn from conditions.
Theorem 5. Chain rule Bayesian classification algo-

rithm with limited number of conditions

Training process

1. Calculate |L| and |S|. Time complexity: O(k).

2. Calculate likelihood ratio

λ
P (L)

P (S)
.

Time complexity: O(1).

3. For both L and S construct corresponding tries

that allow to perform lookup of M(c, x1, x2, . . . , xi),
1 ≤ i ≤ d. Time complexity: O(nk). Space complex-

ity: O(dk).

Time complexity: O(nk). Space complexity:

O(dk).

Classification process

1. Determine feature vector x for message m. Time

complexity: O(|m|) where |m| is the number of words

in m.

2. Calculate

P (x|L) =
n∏

i=1

P

(
xi

∣∣∣
min(i−1,d)⋂

j=1

xj , L

)

using the corresponding paths in the tries. Time com-

plexity: O(n)

3. Calculate

P (x|S) =
n∏

i=1

P

(
xi

∣∣∣
min(i−1,d)⋂

j=1

xj , S

)

using the corresponding paths in the tries. Time com-

plexity: O(n).

4. Calculate

Λ(x) =
P (x|S)
P (x|L) .

Time complexity: O(1).

5. Use Bayes’s decision rule to determine class of the

message. Time complexity: O(1).

Time complexity: O(n). Space complexity: O(1).

Proof. The algorithm would be almost identical to the
previous case. Calculation of probabilities of the first d
elements of the chain remains unchanged. Calculation
of the rest is the same as in default chain rule classifier,

48 НАУКОВI ЗАПИСКИ НаУКМА. 2017. Том 201. Фiзико-математичнi науки

however conditions after xd are ignored. This results
in the following conditional probability:

P (x|c) =
d∏

i=1

P

(
xi

∣∣∣
i−1⋂

j=1

xj , c

)
×

×
n∏

i=d+1

P

(
xi

∣∣∣
d⋂

j=1

xj , c

)
.

The core algorithm remains the same, the only dif-
ference is that the depth of the search trie will be
limited by d.

One potential modification in this direction would
be to split the features (words in our case) into
groups with high correlation within each group but
weak correlation between groups, and then compute
conditional probabilities between features of the same
group.

Feature Selection

It was mentioned earlier that performance of the
classifier is limited by the selection of words that
compose the feature vector. Performance of all meth-
ods directly depends on the number of features, so
we can not afford to include all words encountered
in the training set. The first reason is, obviously,
performance and storage requirements. The second
reason is compatibility between different versions of
the same classifier. In fact, the training set can be
updated after discovery of each new distinct spam
message, and in practice this is happening every sec-
ond. In order to achieve the best performance, the
algorithm has to be updated regularly with the latest
data. Addition or exclusion of features or chang-
ing their order requires the whole training process
to be repeated. On the contrary, if the feature vec-
tor is fixed, many of the algorithms described can
be easily updated with new elements of the train-
ing set.

Finally, the main problem of feature selection
is to find a subset of words that would maximize
effectiveness of the classifiers and contain the most
relevant data. Most common words are likely to
have equal presence in both S and L, so they
are not the best candidates. So are the most rare
words, in fact, words that occur only in a small
number of messages (e.g. 3 or less) are often ex-
cluded as they do not provide statistically reliable
data. Intuitively we would want to find the words
that are significantly more common in either S
or L.

Essentially we want to select words that contain
the maximum amount of information about the class
of an average message. The measure of mutual infor-

mation is commonly used for that purpose [7]. Mutual

information between the feature xi and the class c is
given by

MI(xi, c) =
∑

xi=0,1

∑

c=L,S

P (xi, c) log
P (xi, c)

P (xi)P (c)
,

where log denotes natural logarithm.
Before we proceed with the full algorithm, recall

that the modified versions of Bayesian classifier start
with the conditional probability of the first features,
but might use the unconditional probabilities of the
last features if the corresponding conditional probabil-
ity drops to 0. We would naturally want to start with
the most relevant features and leave the least important
ones in the end. In other words, we need the features
to be sorted by relevance. The mutual information
may serve as the perfect measure of relevance, so we
can sort the top n features by it. Note that it does not
affect other algorithms in any way.

Let us outline the whole algorithm. Suppose we
are given the training set T with the set of words W ,
|W | = N and the limit on the number of features
n. We now have sufficient information to detail the
selection algorithm.

Feature selection process
1. Calculate P (c), c ∈ {L, S}. Time complexity:
O(k).
2. For all xi ∈ W calculate P (xi). Time complexity:
O(kN).
3. For all xi ∈ W and c ∈ {L, S} calculate P (xi, c).
Time complexity: O(kN).
4. Find the top n features xi with largest
max(MI(xi, L),MI(xi, S)) sorted by mutual in-
formation in descending order. Time complexity:
O(N log(n)).

Total complexity: O(kN +N log(n)).
Let us provide an algorithm that meets the out-

lined specifications. For P (c), c ∈ {L, S} we only
need to know the sizes of TL and TS , which may be
either known (thus yielding O(1)) or computed while
iterating through T (O(k)).

P (xi) involves the number of messages with given
xi and the total number of messages k. Both can be
counted while doing a loop through all messages in T
and for each 1 ≤ i ≤ N storing the number of mes-
sages with xi = 1 in the table. The same applies for
P (xi, c), only this time two tables are required, one
for legitimate messages and one for spam.

Finally, once we have all probabilities computed,
finding the n features with maximum mutual in-
formation in descending order can be done using
a minimum priority queue. The algorithm be-
gins with an empty queue. For each feature xi
MI(xi, L) and MI(xi, S) are calculated, and xi with
max(MI(xi, L),MI(xi, L)) is pushed into the prior-
ity queue. If the queue size exceeds n, one message is
removed from it. That way the top n features are kept

D. Fitel. Modified Bayesian classifiers for text messages 49

in the queue throughout the process. Because the size
of the queue stays between 0 and n+1, each operation
takes O(log(n + 1)). The number of operations per-
formed on the queue is N , thus the overall complexity
of this step is O(N log(n)).

Once all xi are processed, the elements are popped
from the queue and added to the feature vector in re-
verse order. This gives us the n distinct features with
maximum mutual information sorted from largest to
smallest.

It is noting that although this process allows to
select the limited number of most relevant features,
it still does not completely solve the problem of out-
dated feature vectors. As the training set expands, the
changes in mutual information of certain features can
change the optimal feature vector. Of course, for sub-
stantially large initial training sets this is not a problem,
however it still makes sense to re-select feature vector
after significant updates to the training set.

Performance Comparison

The PU1 corpus spam database created by Ion An-
droutsopoulos [8] was used for testing of the modified
Bayesian classifier against naive Bayesian classifier.
The corpus contains 1099 messages, out of which 481
are spam. The messages are divided into 10 parts,
which allows to perform cross-validation with using 9
parts for training and 1 for testing.

The messages come in preprocessed form contain-
ing only the words from subject and body, each word
is encoded with an integer. The database allows to
choose among 4 flavors: the original messages, mes-

sages processed with stop-list filter (100 most frequent
English words removed), messages processed with the
lemmatizer (each word converted to the base form)
and finally the version with both lemmatizer and stop-
list filter applied. In practice the database processed
with both lemmatizer and stop-list performs best for
most of the algorithms [1], so we will only use this
version. The dataset contains 21611 distinct words.

Let N denote the total number of test messages,
NL — the number of legitimate messages and NS —
the number of spam messages. When comparing per-
formance of classifiers, we will be interested in the
following characteristics:
• False negative rate: NS→L — the number of spam
messages classified as legitimate.
• False positive rate: NL→S — the number of legiti-
mate messages classified as spam.
• Error rate: E = NL→S

N
— percentage of incorrectly

classified messages.
• Precision: P = 1 − E — percentage of correctly
classified messages.
• Legitimate message fallout: FL = NL→S

NL
— per-

centage of legitimate messages classified as spam.
• Spam message fallout: FS = NS→L

NS
— percentage

of spam messages classified as legitimate ones.
Because of significantly higher requirements to

storage (O(kn) instead of O(n)) the non-naive
Bayesian classifier was not tested with all 21611 pos-
sible features. Instead, it was tested with a number
of configurations with up to 10000 features. Usage
of all available words would require a more complex
storage system for the trie than in-memory storage.

Figure 1. Precision

50 НАУКОВI ЗАПИСКИ НаУКМА. 2017. Том 201. Фiзико-математичнi науки

Figure 2. Legitimate Fallout

Figure 3. Spam Fallout

Overall precision of the classifier does not change
noticeably. It drops slightly for n between 100 and
1000, but for smaller and larger values it sees a com-
parable improvement.

Non-naive Bayesian classifier has slightly worse
legitimate fallout score for n between 100 and 5000,
but is equal to or better than naive classifier’s score
for smaller and larger values. Performance of both
classifiers converges as n increases.

In case of spam fallout the non-naive version
performs better for most values and like in case of
legitimate fallout it converges to naive classifier’s
fallout.

The average performance does not change to a sig-
nificant amount, which means that the assumption of
feature independence does not impact the classifier’s
performance enough to consider non-naive version of
the classifier in practice. For the same configuration

D. Fitel. Modified Bayesian classifiers for text messages 51

of loss function the naive classifier actually tends to
perform better in terms of false negatives.

Another interesting point is that usage of all avail-
able features does not increase, but instead hurts the
total precision of the naive classifier. This can be
seen in Figure 1, where the precision reaches its maxi-
mum value at around 1000 features (4,6 % of available
words), where both classifiers show equal precision
of 90,1 %.

The maximum depth of search in the trie for the
given test set was 35%, while the average stayed at just
0,025 %. This explains the close results of both classi-
fiers since only a small number of conditional probabil-
ities have different values in non-naive classifier, there-
fore the overall probability P (x|c) did change much
from an approximation in naive approach. The aver-
age depth of trie search can potentially be improved
by putting the features with close values P (xi = 1|c)
and P (xi = 0|c) for both c = L and c = S. However,
the mutual information value for these features will be
lowest, therefore there is not much use of having pre-
cise conditional probabilities for these features instead
of features with higher mutual information.

In case of other classifiers, they have been tested
on the same spam corpus in [1]. In case of all available
21700 features the simple perceptron demonstrates the
best precision of 98,5 %, followed by SVM with preci-
sion of 98,1 %. k Nearest Neighbors and Naive Bayes
perform worse with precision of 90,8 % and 87,4 %
respectively. However, despite having the worst pre-
cision, naive Bayesian classifier has 0 legitimate fall-
out, which makes it a great choice for spam filtering
with minimal to no effort in tweaking the loss func-
tion. Also, note that its performance is not optimal for
the large number of features, as it reaches precision
of 90,1 % at n = 1000 on the same dataset.

Conclusion

The problem targeted in this thesis is statistical ap-
proaches to spam filtering in the most generic case,
without domain specific properties. These constraints
allowed to apply a number of different approaches un-
der identical requirements, which both makes the so-
lutions more universal and enables direct comparisons
of different methods.

In particular we analyzed the simplest and most
common method of spam detection — naive Bayesian
classifier. While it guarantees to minimize the av-
erage classification risk, it does rely on an incorrect
assumption of independence of features. A number
of improvements that tackle this assumption were pro-
posed, including partial optimizations that allow to
balance guarantees and classification speed.

The results obtained in practice show no signifi-
cant difference between the original classifier and the
proposed modification which takes feature dependence
into account. The primary reason behind this is that
on average only a small fraction (0,025 %) of ac-
tual conditional probabilities of separate features were
computed, while the others were approximated with
their naive values. This can be interpreted as an effect
of Bayesian classifier being optimal in the context of
its training set, which means that formal probability
for feature vectors which are not present in the train-
ing set is zero. Therefore, increased effect requires a
significantly larger training set.

Therefore, in practice the benefit of non-naive
versions of Bayesian classifier are negligible com-
pared to additional requirements to the storage sub-
system. Storing O(nk) data structure that allows
efficient calculations of chain probabilities is not al-
ways feasible in practice. In our case it limited the
number of features that could be used for classifica-
tion. However, modifications with limited depth of
the search trie are also possible, allowing to achieve
performance close to non-naive classifier with little
overhead.

Finally, when compared to other approaches, the
updated Bayesian classifier does produce similar or
better results than k nearest neighbors, while usually
being behind the perceptron and SVM. Still, it has a
number of benefits over alternative methods. Firstly,
it is the best default option in case of expensive false
positives, which can be a critical requirement in spam
filtering. Secondly, the quality of classification only
improves with larger training sets, when for other
classifiers it might cause problems with non-separable
data. Finally, it reaches maximum performance with
relatively small number of available features, allowing
to use significantly larger training sets with the same
speed and storage requirements.

References

1. Tretyakov K. Machine learning techniques in spam filtering /
K. Tretyakov // Institute of Computer Science, University of
Tartu. Data Mining Problem-oriented Seminar, MTAT.03.177. —
2004. — P. 60–79.

2. Christina V. Email spam filtering using supervised machine
learning techniques / V. Christina, S. Karpagavalli, G. Suganya //
International Journal on Computer Science and Engineering. —
2010. — Vol. 02, no. 09. — P. 3126–3129.

3. Kecman V. Learning and Soft Computing / V. Kecman. — Cam-
bridge : The MIT Press, 2001. — 541 p.

4. Zhang H. The optimality of naive Bayes / H. Zhang // In Pro-
ceedings of the Seventeenth Florida Artificial Intelligence Re-
search Society Conference. — Menlo Park, California : The
AAAI Press, 2004. — P. 562–567.

5. Cristianini N. An Introduction to Support Vector Machines and
other kernel-based learning methods / N. Cristianini, J. Shawe-
Taylor. — Cambridge : Cambridge University Press, 2003. —
189 p.

6. Haykin S. Neural Networks: A Comprehensive Foundation /
S. Haykin. — Singapore : Prentice Hall, 1998. — 823 p.

52 НАУКОВI ЗАПИСКИ НаУКМА. 2017. Том 201. Фiзико-математичнi науки

7. A Bayesian approach to filtering junk email / M. Sahami, S. Du-
mais, D. Heckerman, E. Horvitz // AAAI Technical Report
WS-98-05. — 1998. — P. 55–62.

8. Androutsopoulos I. An experimental comparison of
naive Bayesian and keyword-based anti-spam filtering

with personal e-mail messages / I. Androutsopoulos //
Proceeding SIGIR ’00 Proceedings of the 23rd an-
nual international ACM SIGIR conference on Research
and development in information retrieval. — 2000. —
P. 160–167.

Фiтель Д. Р.

МОДИФIКОВАНI БАЄСIВСЬКI КЛАСИФIКАТОРИ ДЛЯ
ТЕКСТОВИХ ПОВIДОМЛЕНЬ

У роботi дослiджено традицiйнi методи статистичної класифiкацiї текстового спаму. Для наїв-

ного баєсiвського класифiкатора запропоновано ряд модифiкацiй, якi дозволяють позбутися формально

некоректного припущення про незалежнiсть параметрiв. На основi цих модифiкацiй описано альтерна-

тивний алгоритм та здiйснено аналiз його часової й просторової складностi.

Ключовi слова: статистичнi класифiкатори, баєсiвськi класифiкатори, алгоритм, часова складнiсть,
просторова складнiсть.

Матерiал надiйшов 13.11.2017

