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THE BOUNDARY PROBLEM BY VARIABLE ¢ FOR EQUATION OF
FRACTAL DIFFUSION WITH ARGUMENT DEVIATION

For a quasilinear pseudodifferential equation with fractional derivative by time variable t with order
a € (0,1), the second derivative by space variable x and the argument deviation with the help of the step
method we prove the solvability of the boundary problem with two unknown functions by variable t.
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Formulation of the problem

We should determine the solution of the boundary
value problem

2% — B(t)p(t,x) +

+ f(t,z,u(t — h,x)), t>haxeR, (1)

Diu(t,z) =a

u(t, z)lo<t<h = uo(t,x), z€R, (2)
u((k+1h,x) =p(z), z€R, (3)
where
1
D?U(t,l') = m X
a [ d
<[ [T - 0un(he)

is a regularized fractional Riemann—Liouville deriva-
tive of « € (0,1) order, t > h, x € R, h is a number,
k €N, f, ug, p are known functions, u, p are un-
known functions.

The problem (1)~(3) contains fractal integro-
differential equations, which are used in physical,
mechanical, and other disciplines. We note that the
Cauchy problem for an equation with fractional deriva-
tives is sufficiently complete and thoroughly analyzed
in the papers of A. N. Kochubey and S. D. Eidel-
man [1-3] and many of their later papers.

As a solution of the problem (1)—(3) we mean a pair
of functions u(t, z), p(t, ) with such properties [4]:
l.u e C2(I), I = (0,T) xR, T = (k+ 1)k
p € KC(II);
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2. fractal integral

1 b (T, x)
I u(t,z) = = d
o) = g [ S
belongs to class Ctlg? (ID);

3. function u(t,z) satisfies equation (1) and condi-
tions (2) and (3).

Definition and properties of Green function.
The formula of convolution

We denote
Gilt:z,0,h) = F, 2 [Qult o b)), i = 1,2, (4)
where F; 1 is an inverse Fourier transform,
Qi(t,0,a,h) = Eq1(—a®|c]*(t — b)),
t>h,0 €R,
Qa(t, 0,0, h) = D} Eq1(—a?|o|*(t — h)®),
t>h,oeR,

are expressed in the Mittag—Leffler function

Ea t) = T 1. A\ t ) ’
() ;F(ak+ﬁ) >0,a>0,8>0

[4, p. 25]. For functions G;, i = 1,2, from (4) such
estimates are true [2, lemmas 1, 2]:

a(14m)

| DGy (t,z,a,h)| <Ct™ 2 X

x exp{—cp(t,z,h)}, m <3, (5)
|DEGy(t, 2,0, h)| < C(t — h)™ 2 x

x exp{—cp(t, z)}, (6)
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alitm) g,

|DI'Ga(t, z,a,h)| < C(t—h)™ 2
x exp{—cp(t,x,h)}, m <3, (7)
|DEGo(t,z,a,h)| < C(t—h)"271 x
x exp{—cp(t,x,h)}, (8)

where p(t,x,h) = (|z|(t — h))>==,t >0,z € R.

Vector-function (G1, G2) is called Green function
for Cauchy problem without the deviation of the argu-
ment:

X

5 0%u(t, z)
Ox?
+ f(t, z,up(t — h,x)),

u(t, x)|t=p = uo(h,z),z € R,

Diu(t,z) =a
h<t<2hazcR, (9)

(10)

which is obtained from the problem (1), (2) when it
is solved by the steps method when B(t) = 0. Let
us prove the convolution formula for Green function’s
component. The Cauchy problem for homogenious
equation (9) with initial condition u (¢, z)|:=0 = ¥ (z),
z € R have only one solution in continuously and
bounded functions [2] which is represented as convo-
lution

uto) = [ Gile= 0.0 a0pule)ds. (D)
Let us write initial condition as

u(t, ¥)le=p = G1(B,z,a, h),

The Cauchy problem with this condition corre-
sponds to a solution of the form (11)

z € R.

ul(f,ZC):/ G1(t—57$—y7a7h)x

X Gl(ﬂvyaaah)dy' (12)

On the other hand, when ¢ > [ the function

us(t,x) = G1(t,x,a, h) is also the solution of equa-
tion (9) when f = 0 with initial condition

uz(t, )= = G1(B,z,a, h),

From the theorem of uniqueness of Cauchy prob-
lem from [2] follows that uy(t,z) = ua(t, ), 0 <
< B < t,x € R. So the formula (12) takes the view

x € R.

Gl(t,ZC,Oé,h):/ Gl(t—ﬁ,ZC—y,Oé,h)X

X Gl(ﬁ7yaaah)dya (13)

where 0 < 8 < t, z € R.

Since Go(t,z,o,h) = D} “Gy(t,x,a, h) using
operator Dtl_a to (13) we obtain the convolution for-
mula for Green functions

GQ(f,ZC,O&,h):/ Gg(t—ﬁ,ZC—y,Oé,h)X

X Gl(ﬁ7yaaah)dya (14)

where 0 < B < t,z € R.

The classical solution of (1)—(3) problem

Let us construct a classical solution of the original
problem (1)-(3) when kh <t < (k4 1)h, x € R in
the band IT = (h, (k + 1)h) x R [4]

u(t,z) = /OO Gi(t,x — & a, kh)ug(kh, £)d§ +
t e’}
—l—/khdr/_ooGg(t—T,x—f,a,kh)x

X [f(Tagv kh) - B(T)p(’r,f)]df, (15)

where the term B(t)p(t,z) moved to the right-hand
side of equation. Let us assume we satisfied the con-
dition (3) from (15), then we obtain the equation

(k4+1)h 00
/ dT/ Go((k+1)h—1,2 =&, a,kh) X
kh —o00

x B(r)p(r,§)d§ = [G1(t, x, o, kh)uo (kh, z) +
+ Ga(t,x, 0, kh) f(t, 2, kR)]|i= (s 1)n — @(x) =

= U(z,a,kh, (k + 1)h), (16)

which is an integral Fredholm equation of first kind for
definition of function p(¢, z). The solution of equation
(16) we find as

p(t,x) = G1(t, z, a, kh)C, (17)

where C is constant.
If we substitute (17) in (16) we obtain linear equa-
tion for definition of C, whose solution is

(k+1)h

C = U(a, a, kh, (k + 1)h){/k B(r)dr

h

/OO Go((k+1)h — 71,2 — &, a, kh) x

— 00

-1
x G1(1,&, a, kh)df} .

If we take into account the convolution formula
(14), we obtain

C=9(z,a,kh,(k+1)h) x
(k+1)h -1
X {Gg(t,x,a,h)/ B(T)dT} .

k

h

So from (17) we obtain

p(t,z) = G1(t, z, a, kh)U(x, o, kh, (k + 1)h) x
(k+1)h -1
X {Gg(t,x,a,h)/ B(T)dT} . (18)

kh
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If we substitute (18) in (15) we obtain the for-
mula for u(t,z). So the pair of functions u(¢,x)
from (15) and p(¢,x) from (18) defines the clas-
sical solution of the problem (1)-(3). Based on
the inequalities (5)-(8) for Green functions, we
estimate pair (u(t,z),p(t,z)) of searched func-
tions

Ct%|B|(Juolc + |¢lc + | flc),
C(luwolc + | fle +|Ble +l¢le),

)l
)l

Ip(t

|u(t

(19)

<
< (20)

, L
, L

where | - |¢ denotes norm in space continuously func-
tions.

Note that function p(¢, ) is not uniquely defined,
since in (17) we can add a multiplier m(¢).

The two-point boundary value problem for the dif-
fusion equation with the operator of fractional differ-
entiation with respect to the ¢ is considered in [5]. So
we have the following theorem.

The classical solution of the problem (1)—(3) de-
fines by pair of functions (15), (18) for which the
estimates (19), (20) are correct.
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I'PAHUYHA TTPOBJIEMA 3A 3MIHHOIO ¢ VIS PIBHAHHSA
®PAKTAJIBHOI JU®Y3Ii 3 BIIXUJEHHSM APTYMEHTY

s a KeasiniHiiHo20 NncegdoougepeHyiarbHo20 pisHsAHHA 3 Opob0B0OI NOXIOHOK 34 YacoM t NOpSAOKY
a € (0,1), opyeoio noxionoio 3a RPOCMOPOBOIO 3MIHHOIO X I 3 GIOXULEHHAM AP2YMEHIMY MEmMOoOOM KPOKI6 Mu
00800UMO PO36 SI3HICMb SPAHUYHOI 3A0ayi 3 080MA HeGIOOMUMU YHKYIAMU 3 3MIHHOI t.

Kirouosi cioBa: rpanndHa npoOieMa, GppakranbHa qudysis, BIAXIWICHHS apryMEHTY.
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