
Захоженко П. О., Синявський О. Л. BLATOCOL – розподілений мікроблоґґінговий сервіс для ранніх прибічників 69

M. Privalov, O. Derkach

bUILDING OF 3D-SHELL MODEL OF HUMAN bRAIN AxIAL CUT
bY THE METHOD OF DIGITAL IMAGE PROCESSING

Discribed algorithm of building a 3D-shell model of human brain, based on shell paths at different levels
of axial cuts. Discribed algorithm for transferring the digital image pixel to coordinates of points in a curve
in Cartesian coordinates. Experimental researches are spent. On the basis of research findings concluded
the suitability of the proposed algorithm for building 3D-models of the brain. Directions of the further
researches are defined.

Keywords: 3D-model, digital image processing, axial slices, cover of the brain.

© P. Zahozhenko, O. Syniavsky, 2011

УДк 004.055

P. Zahozhenko, O. Syniavsky

bLATOCOL: DISTRIbUTED MICRObLOGGING SERVICE
FOR EARLY ADOPTERS

Having recently become mainstream, microblogging services face several challenges due to their
implementation constraints. First, their centralised architecture means each service has scalability and
reliability issues; second, signal to noise ratio tends to degrade as more people are joining the service and
it becomes exploited by spammers and marketing experts; third, public microblogging services, particularly
Twitter, is effectively a form of mass media, which raises the question whether such an influential news
source should be allowed to be controlled by a single for-profit corporation.

This paper describes the architecture of a niche distributed microblogging service, targeting early
adopters, which addresses all of the major shortcomings of current microblogging solutions. This service is
fully distributed, so it doesn’t have a single point of failure, nor does it need investments in its infrastructure
in order to scale. Its niche nature and features allow it to maintain high signal-to noise ratio throughout all
stages of its lifecycle. The proposed service is also open-source, has documented specification and open
data format, that nullifies the possibility of its monopolic control by a single organisation.

Keywords: microblogging, signal to noise ratio, scalability, community, open-source, distributed
systems.

Introduction
Having appeared less than 5 years ago [9], mi

croblogging already became mainstream with the
leading microblogging service Twitter amassing al
most 200 million users [5]. Microblogging also
made an encroachment into enterprise with Yammer
used by more than 100 000 businesses worldwide
[14].

Let us list the main reasons of such enormous
popularity.

1. 140 symbols message length limitation. Due
to message length limitation microblog post usually
requires less time and effort to write, thus making
users likely to post microblog messages much more
frequently than blog posts. Additionally, short mes
sage format forces to express one’s thoughts clearly,

and thus microblog messages are not only easy to
write, but easy to read.

2. Asymmetric directed social graph. Traditional
social network services, such as Facebook, use sym

Fig 1. Twitter Alexa rating. Daily reach (percent of global
Internet users who visit twitter.com)

Матеріал надійшов 20 травня 2011 р.

70 НАУКОВІ ЗАПИСКИ НаУКМА. Том 125. Комп’ютерні науки

metrical directed social graph, where each graph
edge, or “friendship”, is bidirectional. For all practi
cal purposes such a graph may be considered equiv
alent to a simple undirected graph. Contrary to that,
microblogging services use directed social graph,
where each edge, or “follow” relation, doesn’t need
to be have the corresponding inverted edge. This
feature greatly improves noise filtering capabilities
of microblogging services: user doesn’t need to fol
low all his followers, but choose to follow only
those whos tweets he finds interesting.

3. Ubiquitous availability. From their very be
ginning, microblogging services, particularly Twit
ter, could have been accessed via both web interface
and SMS. (SMS is used by 4 billion people world
wide [11]). As time passed, native Twitter clients
were developed for every major desktop and mobile
operating system. This was made possible by Twit
ter’s simple and clean REST API.

4. Broadcasting vs narrowcasting. Microblog
ging allows both broadcasting and narrowcasting of
messages. When a user tweets, he "narrowcasts" a
message to his followers. If they find that the nar
rowcasted message might be of interest to their fol
lowers, they "retweet" it either by using in-built
functionality or by simply copying the message add
ing the reference to original author. Thus, important
message quickly propagates through the social
graph. There are examples of extremely important
messages, such as early reports of earthquakes or
revolutions, propagating through the social graph
very quickly, having hundreds of retweets per
minute, reaching the other end of the world within
minutes. For example, during May 2008 earthquake
in China Robert Scoble spotted earthquake-related
tweets from China and retweeted them to his fol
lowers before earthquake report appeared on USGS
and an hour before CNN breaking news [12]. On the
other hand, messages of local importance became
propagated only through certain area, and messages
of little-to-no importance aren't propagated at all,
thus not spreading the noise throughout the system.

These features allowed microblogging services
to become the fastest news source on the planet
(Twitter), or within the boundaries of particular or
ganization (Yammer), as well as valuable mean of
communication. However, current microblogging
solutions have a number of problems, listed in the
next chapter.

Shortcomings of current
microblogging services

1. Centralized architecture. Current microblog
ging services are centralized and thus sometimes
suffer from outages due to performance bottlenecks
and single point of failure (as shown by Twitter fre
quent outages in 2008-2009). They are also vulner
able to DoS attacks and can be relatively easily

blocked by a single corporation or government. As
described in [8], services such as Twitter waste lots
of traffic and other resources because clients are
constantly polling the central server. Although we
traditionally listed this limitation as the first one, it
can be solved by existing microblogging services
without radical changes to their underlying princi
ples. As shown by Google, web service scalability is
practically limitless if one abandons classical archi
tecture and uses specialized tools, e.g. abandoning
RDBMS and using key-value datastore instead,
such as Google’s BigTable or its open-source equiv
alent Cassandra [4]. Nevertheless, even though scal
ing centralized web service is possible, it requires
substantial investment into its infrastructure.

2. Signal to noise ratio decay throughout micro
blogging service’s lifecycle (information overload).
The more people are joining the service, the more
messages they generate, the harder it becomes to
find relevant information in message flow. The sin
gle most popular microblogging service - Twitter -
suffers from this problem the most. Twitter has sev
eral tools to help its users increase the relevancy of
their tweet streams. First of all, its asynchronous so
cial graph itself makes it easier to follow only those
users whose tweets are relevant. Second, lists func
tionality provides a way to group users by topic and
subscribe to lists, created by other users. Third,
hashtags allow one to follow all messages, contain
ing a specific hashtag. Forth, some tweets contain
geographical information which allows to limit
searches by a certain geographical location; how
ever, this feature is not wide-spread, as not all Twit
ter clients are location-aware and only a fraction of
users post their location from location-aware clients
due to privacy concerns. Fifth, “trending topics”
functionality provides an overview of current glo
bally popular hashtags. Although somewhat effec
tive, all these means are unable to deal with the glo
bal trend of decaying signal to noise ratio.

3. The need to earn revenue. As stated in micro
blogging problem #1, Twitter requires a huge and
expensive infrastructure, and thus a stable revenue
stream to support itself. To reach its revenue goals,
Twitter already uses promoted trending topics. To
meet the increased infrastructure expenses, it might
introduce sponsored tweets or some form of contex
tual ads, thus further decreasing its signal to noise
ratio.

4. Twitter long-term plan is to become “the pulse
of the planet” . They also plan to become the first
web service to reach 1 billion registered users (this
confidential information was leaked by TechCrunch,
[13]). Given their current growth (see fig. 1), such
scenario is not impossible. If Twitter plan becomes
reality, they will have the tremendous power, which
they might exploit in order to increase their reve
nue.

Захоженко П. О., Синявський О. Л. BLATOCOL – розподілений мікроблоґґінговий сервіс для ранніх прибічників 71

blatocol
In this article we present the service that solves

all of the above-mentioned problems. This service is
not general-purpose microblogging solution, as it is
not intended for everybody. We believe that “one
tool fits all” approach will not work for microblog
ging. Instead, we propose a number of interoperable
services, each of them serving the needs of a par
ticular niche. This article focuses on the first of these
services: distributed microblogging service for early
adopters, codenamed “Blatocol”.

Distributed
architecture

Many alternative microblogging solutions focus
on centralization as the main problem of current of
ferings and propose various distributed architec
tures. Status.net offers a model in line with that of
Wordpress, with both an open-source microblog
ging software, which can be installed on any LAMP
server, and a cloud solution running similar software
(Identi.ca) [7]. SMOB project [2] proposes a differ
ent approach: the service consists of a number of
hubs, that communicate with each other to exchange
microblog posts and follower notifications [3].
Cuckoo project demonstrates another approach:
peer-to-peer architecture backed by a set of central
ized servers [8]. The system we describe in this pa
per is also peer-to-peer, although it lacks any cen
tralized servers and thus is purely peer-to-peer.
However, in the article we are calling our peers
“servers” to distinguish them from “clients” - tools,
used to interact with peers, as each peer (“server”)
does not have any sort of interface beside its REST
API.

Target audience
Blatocol is designed for early adopters, even for

a specific niche of early adopters: programmers,
computer scientists, and system administrators.

Being a part of this specific niche ourselves, we
understand its needs. The question arises, how it is
better to limit service users to its target audience. In
this case, it cannot be solved by the specific themat
ics of the service, cause microblogging is in itself
general-purpose, not bound to any specific topic.
We believe that the best solution is to make the serv
ice function in a way that it will be unusable by
someone not from our intended target audience. In
this case, the task is relatively easy: make it acces
sible only by programmers. Programmers are very
specific people, they use tools no one else is able to
use.

The whole architecture of our service is designed
in a way that it can only be used by the target audi
ence. Each registered user is required to run his own
software server. This server resources consumption
is very low, so it can be easily run on a typical per

sonal computer or an old server, or a single Heroku
Dyno, using only a fracture of its resources. How
ever, setting up such a server requires certain degree
of technical skill and a real IP address (otherwise,
one’s communication will be limited to one’s LAN).
Such a requirement serves 2 purposes: 1) it allows
the system to be distributed, with each user storing
all of the messages on his own server and pushing
newly posted messages to all of his followers’ serv
ers 2) it greatly limits service’s target audience, as
only a tiny fracture of global Internet users under
stand what software server is, let along know how to
set it up.

The service architecture is such that each user’s
server is responsible for pushing his newly posted
message to all his followers’ servers, which means
that one has to maintain his server and guarantee its
uptime in order to spread information. More so, the
more followers user has, the more powerful server
he has to use in order to cope with the load. Thus,
user influence within the system is always propor
tional to his contribution to system’s hardware re
sources. It is in line with meritocracy found in open-
source communities: one’s influence is proportional
to one’s contribution.

To make the service even more usable for its tar
get audience (and unusable for everyone else) we
decided that the tools (clients) to access the service
should be either command line or as a library for
some programming languages. Currently, the only
way to communicate with the service is via curl, but
we’re adding Ruby library and command line tool,
libraries and tools in other programming languages
will follow.

By strictly limiting the service to its intended tar
get audience we hope to achieve high signal to noise
ratio throughout the whole service lifecycle. Should
this service ever become popular outside the bound
aries of its intended target audience, which we high
ly doubt, we will consider it a failure. The ideal state
of this service is permanent early-adopter stage.

Current implementation
and future work

Current service implementation is the work in
progress. The first server is implemented in Ruby on
Rails. Basic messaging and distributed architecture
is ready, but there are still a number of open ques
tions:

1. Security. We’ve got several different possible
security schemes, but haven’t yet decided which
one to implement.

2. Software updates. Ideally, all future versions
of our service’s software should be backwards
compatible on API level. However, new features
may be introduced, so we either need a way to force
software updates or leave this responsibility to
users.

72 НАУКОВІ ЗАПИСКИ НаУКМА. Том 125. Комп’ютерні науки

Service implementation is open-source, current
stable version is available on Github: https://github.
com/buru/blatocol

The focus is to make API as simple as possible,
so that it can be easily implemented in any web
framework. As soon as API stabilizes, we will
release its detailed specification.

Summary
Summing up the main principles of the proposed

service, it’s main features are:
1. Distributed architecture. Each registered user

runs his own server.

2. Unusable for technically illiterate users.
3. Simple REST API.
4. Heterogeneous system. Servers implemented

in different programming languages and frameworks,
running on different platforms.

5. Open-source implementation.
6. Uncontrollable system. No single organization

is able to control such a service.
7. Potentially interoperable with other similar

services if/when they appear.

1. Ahonen Tomi. Insider’s Guide to Mobile, Free Edition.
2. Alexandre Passant, Tuukka Hastrup, Uldis Bojars, John Breslin,

Tuukka Hastrup, Uldis Bojars, John Breslin. Microblogging : A
Semantic and Distributed Approach // Proceedings of the 4th
Workshop on Scripting for the Semantic Web, Jun 2008.

3. A. Passant, U. Bojars, J. G. Breslin, T. Hastrup, M. Stankovic,
and P. Laublet. An Overview of SMOB 2: Open, Semantic and
Distributed Microblogging // 4th International Conference on
Weblogs and Social Media, ICWSM 2010. AAAI, 2010.

4. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable // ACM Transactions on
Computer Systems. – 2008. – 26. – 2:26.

5. Meaningful Growth // Twitter Blog. Web. – Режим доступу:
<http://blog.twitter.com/2010/12/stocking-stuffer.html>. – Наз-
ва з екрана.

6. Scott John. Social Network Analysis: a Handbook. – London :
SAGE Publications, 2000.

7. StatusNet | Your Network. Web. – Режим доступу: <http://
status.net>. – Наз ва з екрана.

8. Tianyin xu, Yang Chen, Lei Jiao, Ben Y. Zhao, Pan Hui,
xiaoming Fu. “Cuckoo: Decentralized and Socio-Aware Online
Microblogging Services” Technical Report No. IFI-TB-2011-

01, Institute of Computer Science, University of Goettingen,
Goettingen, Germany. Jan 2011. Print.

9. "Twitter | CrunchBase Profile". CrunchBase, The Free Tech
Com pany Database. Web. – Режим доступу: <http://www.
crunchbase.com/company/twitter>. – Наз ва з екрана.

10. "Twitter Is Censoring the Discussion of #Wikileaks | Safety
First." Safety First | This Site Is about Things Thought through.
Web. – Режим доступу: <http://bubbloy.wordpress.com/2010/
12/05/twitter-is-censoring-the-discussion-of-wikileaks/>. – Наз ва
з екрана.

11. "Twitter.com Site Info". Alexa the Web Information Company.
Web. – Режим доступу: <http://www.alexa.com/siteinfo/
twitter.com>. – Наз ва з екрана.

12. "Twittering the Earthquake in China – Scobleizer." Scoblei-
zer – Searching for World-changing Technology. Web. – Режим
доступу: <http://scobleizer.com/2008/05/12/quake-in-china>. –
Наз ва з екрана.

13. "Twitter's Internal Strategy Laid Bare: To Be "The Pulse Of The
Planet"" TechCrunch. Web. – Режим доступу: <http://
techcrunch.com/2009/07/16/twitters-internal-strategy-laid-
bare-to-be-the-pulse-of-the-planet/>. – Наз ва з екрана.

14. Yammer : The Enterprise Social Network. Web. – Режим до
ступу: <http://yammer.com>. – Наз ва з екрана.

Захоженко П. О., Синявський О. Л.

bLATOCOL – РоЗпоДіЛенИЙ мікРоБЛоҐҐінГоВИЙ СеРВіС
ДЛЯ РАнніх пРИБіЧнИкіВ

Нещодавно ставши популярними, мікроблоґґінгові сервіси зіткнулися з певними складностями.
По-перше, їхня централізована архітектура призводить до проблем із масштабованістю; по-друге,
рівень сигнал-шум в системі зменшується разом із зростанням популярності сервісу; по-третє,
публічні мікроблоґґінгові сервіси (зокрема, Твіттер) є засобами масової інформації, отже, небажа-
но, щоб їх контролювала одна корпорація.

Ця робота розглядає архітектуру нішевого мікроблоґґінгового сервісу, призначеного в першу чер-
гу для ранніх прибічників (найбільш прогресивних користувачів, які постійно шукають щось нове),
що покликаний вирішити всі труднощі сучасних мікроблоґґінгових систем. Сервіс повністю розпо-
ділений, а отже, легше масштабується і не потребує значних інвестицій в інфраструктуру. Завдя-
ки своїй нішевості та іншим особливостям сервіс здатний забезпечити стабільний рівень сигнал-
шум впродовж всіх стадій свого життєвого циклу. Крім того, запропонований сервіс є продуктом
із відкритим вихідним кодом, задокументованою специфікацією та відкритим форматом даних, що
унеможливлює монопольний контроль даного сервіса будь-якою організацією.

Ключові слова: мікроблоґґінг, рівень сигнал-шум, масштабованість, спільнота, відкритий
вихідний код, розподілені системи.

Матеріал надійшов 11 травня 2011 р.

Literature

