YIK 004.415.2

1. Sydorov

DOMAIN ANALYSIS METHOD AS A SERVICE OF CLOUD-
ENABELED SERVICE ORIENTED PLATFORM

The problems of building PaaS and SaaS applications are covered. Reference architecture is offered for
building cloud-enabled platform to host a number of SaaS applications and support general characteristics
of a cloud such as rapid elasticity, on-demand self-service, multi-tenancy, resource pooling and measured
service. General directions of adopting cloud computing in aviation industry are mentioned. Domain
analysis as a service of cloud-enabled service oriented platform is presented. The method is realized with
the help of two controllers. The task - to create software patten for object communication device of the
legacy aircraft simulator is decided. Formalization of processes description is carried out by means of Real
Time Process Algebra (RTPA). Description of processes in RTPA is input for the mean that creates the
service (domain analysis controller) for cloud-enable service oriented platform. Domain analysis service
can be use not only for reengineering aviation simulator software.

Keywords: software as a service, cloud-enabled platform, domain analysis, RTPA, aircraft simulator.

During recent years the term “cloud” just ex-
ploded the internet and became a very popular, not
to say fashionable, trend in IT industry. Most influ-
ential vendors like Microsoft, Google and Amazon
presented their platforms for building cloud applica-
tion. In this article discussed and proposed a pattern
for building cloud enabled applications built on
concepts of Service Oriented Architecture.

The term “cloud” is used as a metaphor for the
Internet, based on the cloud drawing used in the past
to represent the telephone network, and later to de-
pict the Internet in computer network diagrams as
an abstraction of the underlying infrastructure it
represents. Today cloud is widely used to represent
an abstraction of technology, resources and its loca-
tion used build integrated computer infrastructure,
including networks, systems and applications. In
80s and 90s during the pre-web enterprise era, ap-
plications where very monolithic. Companies had a
number of very complex and self-reliable systems;
any interfacing between those was basically done
via batch dumps.

Seems that web changed it all, but not really. Yes
most enterprises are now using web based applica-
tion, but still they are inherently monolithic and
very tricky to change, extend and integrate with
each other. The answer to that challenge is Service
Oriented Architecture, which is about building an
application based on set of services that can be eas-
ily extended, reorganized to meet ever-changing
business requirements. As we know the mainte-
nance stage of a software development lifecycle
takes up to 60 % of effort and SOA that provides
atomic enterprise building blocks can significantly
reduce future cost on software adaptation.

© I Sydorov, 2014

So as for Cloud applications, most of them are
fundamentally built with the same “monolithic” ar-
chitectural principles with a little concern of Enter-
prise Architectural patterns.

One of the key characteristics for cloud applica-
tion is the ability to manage resources efficiently.
Such efficiency should be translated into natural
elasticity of the resources, where in a given moment
you will need to scale up or down, based on un-
planned peak of work, but minimizing investments
in infrastructure.

Traditional capacity planning assumes that cus-
tomer has a certain infrastructure capacity. During
most of the day the service may remain sub-utilized,
wasting capacity because demand is less than require-
ments. In any given moment capacity could be exceed-
ed, ending up with frustration for end users because of
slowness and application errors. Typically to solve
this, more resources are added to the data center, which
means more cost and waste of valuable resources.

In a cloud deployment scenario a minimum re-
sources are provisioned to the customer. As the de-
mand increases additional on-demand resources are
added and as soon as the need in resources decreas-
es the data center capacity decreased.

Cloud deployment in turn can be classified as
[1, p. 75]: private — deployed in a customer’s own
datacenter; public — deployed on a public cloud
provider; hybrid — is a combination of both public
and private with a secure bridge between them.

No matter the type of deployment the company
decides on for the future, the cloud services plat-
form should enforce the core characteristics of cloud
architecture. Those characteristics are defined by
the National Institute of Standards and Technology:

60

HAYKOBI 3AITMCKU. Tom 163. Komm’toTepHi Haykn

on-demand self-service: A consumer can
unilaterally provision computing capabilities such
as server time, network storage, as needed
automatically without requiring human interaction
with a service provider;

— broad network access: Capabilities are availa-
ble over the network and accessed through standard
mechanisms that promote use by heterogeneous thin
or thick clients such as workstations, laptops, slates,
mobile phones etc. as well as other traditional or
cloud-based software services;

— resource pooling: The provider’s computing
resources are pooled to serve multiple consumers
using multi-tenant model. Different physical and
virtual resources are dynamically assigned and
reassigned according to demand. There is a certain
degree of location independence so customer is often
has no control over exact location of resources but may
have an ability to specify location at a higher level of
abstraction, for example county, region or datacenter;

— rapid elasticity: capabilities can be rapidly and
elastically provisioned (in some cases automatically)
to quickly scale up and shrink down;

— measured service: Cloud systems automatically
control and optimize resources usage by leveraging a
metering capability at some level of abstraction appro-
priate to the type of a service (storage, processing,
bandwidth, or active users). Resources usage can be

monitored, controlled and reported, providing trans-
parency for both provider and consumer;

— multi-tenancy: Many organizations (tenants)
can use cloud with mechanisms to protect and isolate
each tenant from all others securing company’s
sensitive information.

Although this seems to be straightforward, this re-
quires a different application architecture paradigm
that can leverage these characteristics. Proposed archi-
tecture option is based on Event-Driven architecture
framework, as well as use of Message-Oriented mid-
dleware to interconnect processes and ensure:

—extreme loose coupling and well distributed
workload;

— horizontal scalability;

— shared-nothing processes.

The component of the architecture that enables this
capability is named Controller and has the following
characteristics (Fig. 1):

— is able to post and receive notifications;

— is able to receive remote configuration parameters;

— has embedded security components;

—is able to notify every event or transaction for
auditing purposes;

— is able to run multiple processes at the same time,
without conflicting with the management of the
requirements (self-balanced);

— is able to support multi-tenancy;

(mm]{m-e)(mmu)()
Browser Browses App Dawsir e

] Gec-location Route

ONE. oKS
Edge 1 [USA) Edge 2 (EMEA)
I

oS
Edge 3 {APAC)

co.,,w Elastic Load
acroes Raw . Eafancer{per regian)
L

Elastic Load
Batancer(pes regian)

B

Metadata

Mu Sarver

Common
across Regions.

{]

Orchestration Queue (ESB)

I

Requast Queues (by Services)

=
User
Authsentication Profle
e'.IIL al)

Austhwertication

Common
acmas

Regions

LJ

Bilrg
{external,

Metoring Motificaion

Projoct

.E ,

(o)

Tommon
across
Regons

Commoen
=
;

Cr_w-\mm
Bcrs

Regions Ry

ti

Storage

Region 1

Region N

Fig. 1. Platform architecture

I. Sydorov. Domain analysis method as a service of cloud-enabeled service oriented platform

61

—1if needed is able to interact with external
applications in their native form or based on the
provided integration mechanisms.

So the platform consists from small atomic busi-
ness components — controllers. Each controller is re-
sponsible for a subset of business operations (e.g. us-
er management, logging, billing, etc.). Interaction be-
tween controllers is done via message bus. Message
bus implementation can be different according par-
ticular project needs. It can be privately deployed
Apache ActiveMQ or public cloud services can be
used such as Amazon Simple Queue Service or Win-
dows Azure Queue Storage. An orchestration layer
makes it possible to apply custom business rules to
enrich application capabilities. Application and web
servers hidden behind elastic load balancers provide
access to the system by heterogeneous clients such as
web browsers, mobile phones, thick and thin clients.
Unified message format for the bus and abstracted
API for interaction with the bus makes it possible to
develop controllers in a various programming lan-
guages (such as C#, Java, C++, NodelJs) host them on
various platforms (Windows, Linux). This flexibility
is also very beneficial in integration scenarios so the
best approach can be chosen for a particular system.

Aviation industry is slow to change, very risk
averse. Software solutions are complex and not easi-
ly tackled [2, p. 68]. Therefore some companies start-
ed adoption of a cloud computing for the need of avi-
ation industry. Xerox is launching its cloud platform
to help airlines to seamlessly share important data
and key transmissions from airline to other carriers
and flight authorities. In areas where data sharing, in-
stant and effective distribution is important cloud
platforms and applications can be very beneficial.
Seamless integration between systems, B2B interac-
tion, scalability and fault tolerance can help cloud
computing to make its way into aviation industry.

Domain analysis method as a service

Domain analysis is the effective method when
legacy software is rebuilded [3, p. 239]. We have
case study domain analysis method for legacy soft-
ware of aviation simulator on the base of cloud-en-
able service oriented platform [4.1.10.36]. The do-
main analysis method is realized with the help of
two controllers (Fig. 2).

The first controller by name builder is predefined.
The second controller by name domain analiser is

Domain
engineering User
i Controller i
Dorlnal.n Controller Domain > Dorlnam
.
analysis —_—P (Builder) analysis
diagram analyser «——— results
Fig. 2. Using controllers
Organization Project
context R1 constraints R2
I N
I Dopl_ai_n
bratl Plan | -defunition » Domain definition
Organ ization domain i &
information DP1 Prg;ec:t 01
11 1™ objectives
Domain
stakeholder
maodel B3
Domain ﬁ?&omﬂ Y vy Domain
stakeholder Medel model o .
knowledge ——® domain > Dom‘ﬂ maodel
System D2,
artifaats
n Domain
dossier
2
p Engineer
\ assel base
\. ™ Aseete base
DP3 5 03

Fig. 3. Domain analysis detailed diagram

62

HAYKOBI 3AITMCKU. Tom 163. Komm’toTepHi Haykn

built. The first controller builds domain analysis con-
troller by domain analysis diagram. The user utilizes
the second controller for domain analysis.

There is the following task: create software pat-
tern for object communication device of the legacy
aircraft simulator.

The example of domain analysis for builder con-
sists of three processes (DP1, DP2, DP3). Diagram
is presented on Fig. 3.

Inputs for this processes are the following: orga-
nization information is the trainer center informa-

Static description

tion (I1); system artifacts are the simulator compo-
nents definition, communication device information
(I2). Outputs are the following: domain definition
ontology (O1); domain model is communication de-
vice architecture (02); assets base consists of reus-
able components (O3). Control constraints policies
are the following: organization context — R1; project
constraints — R2.

Formalization of processes description is carried
out by means of Real Time Process Algebra (RTPA)
is the following:

(Process Schema DOMAIN ENGENEERING = PN 0
{Process ID: DOMAIN ENGENEERING ({I:I1,12};
{0:01, 02,03}; {R: R1,R2,R3})} {Detailed Processes:

DP1, DP2, DP3}

(Process Schema PLAN DOMAIN = PN 1
|| {ProcessID: PLAN DOMAIN ({I: Organization information};{O: Domain
definition, Project objectives, Stakeholder dossier, Domain stakeholder model};

{R: Organization context, Project constrains})}
|| {DetailedProcesses: DP1, DP2, DP3, DP4}

)

(Process Schema MODEL DOMAIN = PN 2

|| {ProcessID: MODEL DOMAIN ({I: Stakeholder dossier, Domain stakeholder
model, Domain stakeholder knowledge, Exemplar system artifacts};{O: Domain
model, Domain dossier};{R:

Domain definition, Project constraints, Project objectives})}

|| {DetailedProcesses: DP1, DP2, DP3}

)

(Process Schema ENGINEER ASSET BASE = PN 3

|| {ProcessID: ENGINEER ASSET BASE ({I: Domain model, Domain dossier,
Domain stakeholder model,
artifacts};{O: Asset base};{R:

Domain definition, Project constraints, Project objectives})}
|| {DetailedProcesses: DP1, DP2, DP3 }

)

(Process DOMAIN ENGINEERING Relations =
PN1:02—PN2:R3;
PN1:03—PN2:11;
PN2:01—PN3:11;
PN2:02P—N3:12

)

Organization information, Exemplar system

PN1:01—PN2:R1;

PN1:03—PN2:12; PN1:01—PN3:R1; PNI1:02—PN3:R3;

Dynamic description

Process Dispatch = § —

(@Event] DOMAIN ENGINEERING — {PN1:DP1,DP2,DP3}
| @Event2 DOMAIN ENGINEERING — {PN2:DP1,DP2,DP3}
| @Event3 DOMAIN ENGINEERING —{PN3:DP1,DP2,DP3}

)

1. Sydorov. Domain analysis method as a service of cloud-enabeled service oriented platform 63

Conclusion troller) for cloud-enable service oriented platform.
Description of processes in RTPA is input for the ~ Domain analysis service can be use not only for re-
mean that creates the service (domain analysis con- engineering aviation simulator software.

References
1. Cunmopor H. A. MeToa HOCTpOSHHUS CPENCTB JOMEHHOTO aHaJIH- 3. Xomenko B. A. IlabmoH mnporpaMMHOTO OOECIICUCHUS
3a Ha ocHoBe (opmanpHbIX cneuudukauuii B RTP A. / ycTpoiicTB cBsi3u ¢ 00bekToM / B. A. Xomenko, E. H. Cunopos,
H. A.Cunopos, H. b. Mennzeoposckuii, 10. H. Pa6oxons // N. b. Mennzebposckuit // IlpobnemMu mnporpamyBaHHsA. —
BicHUK cXifHOyKpaiHChKOTO Hall. YH-Ty iM. B. lams. — 2012. — 2008. — Ne 2-3. — C. 239-248.
Ne 12. - C. 75-80. 4. Architecture of a cloud-enabled service oriented platform The
2. PeuHxeHepHs HACIELyeMOro IPOrpaMMHOIO 00ECIIeUCH s HH- Fifth world congress “Aviation in the XXI-st century” : Mare-
(opManmoHHO-MOzenHpyIomuX TpeHaxepos / H. A. Cunopos, pianu xoHrpecy [“Asianis B 21 cromirri”], Kuis, 25-27 Bep. /
B.T. Henosenees, U. I1. Ceparok, B. A. Xomenko, E. H. Cuno- National Aviation University ; 1. Sydorov. — K. : National
pos // YCuM. —2008. — Ne 4. — C. 68-75. Aviation University, —2012. — C. 1. 10. 36 — 1. 10. 38.

Cuoopos €. M.

METO/J JOMEHHOI'O AHAJII3Y SIK CEPBIC XMAPHOI
CEPBIC-OPIEHTOBAHOI IVIAT®OPMHU

Y emammi posensnymo pose’sizanns 3aedanns nobyoosu PaaS and SaaS sacmocysans. Haseoeno apxi-
mexmypy 011 no6yoosu xmapno-opienmosanoi niamgpopmu SaaS 3acmocysans, sKa 3a06e3ne4ye 0CHOGHI
Xapakxmepucmuku cepsicis. Apximexmypy npoOeMOHCMPOBano 8 KOHMeKCmi 3aCmMOoCy8aH A XMAPHUX 00-
yucnens. Jlomennull ananiz 3as61eHo K cepeic xmapho-opienmosanoi niameopmu. Memoo domennoco
aHanizy peanizoeano 3a OONOMo2010 080X KOHmpoaepie niam@popm. Po3e’si3yemobcst 3a60anns — cmeopumu
npocpamHuil WabioH a5 NPUCMPOIo KOMYHIKayii ycnadkosanoeo asiayitino2o mpancnopmy. @opmanizayis
ONUCY Npoyecie GUKOHAHHS 13 3ACTNOCYBAHHAM aneebpu npoyecie peanvroeo yacy (RTPA). Onuc npoyecis y
RTPA € 6x000Mm 01151 3ac06y, sKUll CMEOPIOE service (KOHmpoaep 0OMEHHO20 AHANI3Y) XMAPHO-OPIEHMOBAHOT
nramgopmu. Cepsic OOMEHHO20 AHANIZY MOdce OYymu 3aCMOCO8AH0 He MINbKU 05 peiHiceHepii npoepam-
HO20 3a0e3neueHts asiayitiHux mperHaxicepie.

Karwouosi cioBa: mporpamue 3a0e3leueHHs K CEpBIiC, XMapHO-Opi€HTOBaHA IIaTGOpMa, TOMEHHUH
anani3, RTPA, aBiamiiiHuii TpeHaxep.

Mamepian nadiviwos 15.05.2014

