© 2011 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 61.50.Nw, 61.66.Fn, 61.72.Hh, 68.37.Hk, 74.62.Bf, 74.62.Dh, 74.72.Hs

Зависимость физико-химических свойств ВТСП-соединений от размера кристаллитов

Д. Д. Наумова, Т. А. Войтенко, С. А. Недилько

Киевский национальный университет имени Тараса Шевченко, ул. Владимирская, 60, 01033 Киев, Украина

Керамическим методом с предварительным получением прекурсора синтезированы материалы состава $\operatorname{Bi}_2\operatorname{Sr}_2\operatorname{Ca}_{1-x}\operatorname{Ln}_x\operatorname{Cu}_2\operatorname{O}_y$ (Ln — La, Nd, Y, Ho, Lu) и $\operatorname{Bi}_2\operatorname{Sr}_{2-x}\operatorname{Ln}_x\operatorname{Ca}\operatorname{Cu}_2\operatorname{O}_y$ (Ln — La, Nd, Ho, Lu). Исследованы микроструктура, область гомогенности, электрофизические характеристики, кислородная стехиометрия систем $\operatorname{Bi}_2\operatorname{Sr}_2\operatorname{Ca}_{1-x}\operatorname{Ln}_x\operatorname{Cu}_2\operatorname{O}_y$ (Ln — La, Nd, Y, Ho, Lu) и $\operatorname{Bi}_2\operatorname{Sr}_{2-x}\operatorname{Ln}_x\operatorname{Ca}\operatorname{Cu}_2\operatorname{O}_y$ (Ln — La, Nd, Ho, Lu) в зависимости от степени замещения x и температуры перехода в сверхпроводящее состояние T_c^{on} . Изучено влияние условий термической обработки на размеры кристаллитов, величину кислородного индекса и критическую температуру. Получены наноразмерные частицы ($D_{cp} = 0,5-1,5$ мкм). Показано, что границы области гомогенности уменьшаются от $0 \le x \le 0,3$ по $\operatorname{Lu}^{3+} \kappa \ 0 \le x \le 0,05$ по La^{3+} .

Керамічною методою з попереднім одержанням прекурсору синтезовано матеріяли складу Ві₂Sr₂Ca_{1-x}Ln_xCu₂O_y (Ln — La, Nd, Y, Ho, Lu) та Ві₂Sr_{2-x}Ln_xCaCu₂O_y (Ln — La, Nd, Ho, Lu). Досліджено мікроструктуру, область гомогенности, електрофізичні характеристики й кисневу стехіометрію систем Ві₂Sr₂Ca_{1-x}Ln_xCu₂O_y (Ln — La, Nd, Ho, Lu) і Ві₂Sr_{2-x}Ln_xCaCu₂O_y (Ln — La, Nd, Ho, Lu) залежно від ступеня заміщення x та температури переходу в надпровідний стан T_c^{on} . Вивчено вплив умов термічного оброблення на розмір зерна, величину кисневого індексу та критичну температуру. Одержано нанорозмірні частинки ($D_{\text{сер}} = 0,5-0,15$ мкм). Показано, що межі гомогенности зменшуються від $0 \le x \le 0,3$ за Lu³⁺

The samples of $\text{Bi}_2\text{Sr}_2\text{Ca}_{1-x}\text{Ln}_x\text{Cu}_2\text{O}_y$ (Ln—La, Nd, Y, Ho, Lu) and $\text{Bi}_2\text{Sr}_{2-x}\text{Ln}_x\text{Ca}\text{Cu}_2\text{O}_y$ (Ln—La, Nd, Ho, Lu) are synthesized using the ceramic technique with precursor. For $\text{Bi}_2\text{Sr}_2\text{Ca}_{1-x}\text{Ln}_x\text{Cu}_2\text{O}_y$ (Ln—La, Nd, Y, Ho, Lu) and $\text{Bi}_2\text{Sr}_{2-x}\text{Ln}_x\text{Ca}\text{Cu}_2\text{O}_y$ (Ln—La, Nd, Ho, Lu) systems, the dependences of microstructure, homogeneity region, electrophysical properties, and oxygen nonstoichiometry on their composition (*x*) and T_c^{on} value are studied. Influence of heat-treatment conditions on the sizes of crystallites, value of oxygen

855

index, and critical temperature is studied. As shown, the homogeneity region becomes narrower when going from $0 \le x \le 0.3$ for Lu³⁺ to $0 \le x \le 0.05$ for La³⁺.

Ключевые слова: висмутсодержащие купраты, редкоземельные элементы, кислородная стехиометрия, микроструктура.

(Получено 21 ноября 2010 г.)

1. ВВЕДЕНИЕ

Использование ВТСП-устройств позволяет создавать уникальные на сегодняшний день технические устройства в энергетике, авиации, судостроении, космосе. Но самое большое внимание уделяется разработке и строительству силовых электрических линий большой мощности с использованием ВТСП-технологий [1]. Нанотехнологии дают возможность значительно продвинуться вперёд на пути улучшения эксплуатационных характеристик кабельных изделий, повышения экономической эффективности и упрощения технологических процессов при их производстве [2]. Вместе с тем, наряду с проблемами технологического характера, имеют место и исследования, связанные с чисто научными задачами в области ВТСПсоединений. Одной из особенностей сверхпроводника Bi₂Sr₂CaCu₂O₄ является слабый пиннинг магнитного потока при температурах близких к критической температуре перехода в сверхпроводящее состояние [3]. Несверхпроводящие включения в состав сверхпроводника могут существенно повысить пиннинг. Кроме того, наиболее эффективные центры пиннинга должны иметь нанометровый размер (соответствующий поперечному размеру вихря), но создание таких дефектов является непростой задачей и требует особых инструментов [4-6]. Одним из перспективных путей создания таких включений является введение дополнительных химических элементов в систему $Bi_2Sr_2CaCu_2O_u$ [4, 7, 8]. Важным моментом этих исследований является нахождение и установление зависимостей между размером кристаллитов, структурными характеристиками и физико-химическими свойствами ВТСП-материалов путем варьирования катионного состава, в частности, замещения Ca/Ln и Sr/Ln [7, 8].

Целью данной работы является изучение возможных зависимостей между размером зерен, кристаллографическими характеристиками, электрофизическими свойствами и кислородной стехиометрией Bi-содержащих ВТСП-материалов.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Поликристаллические образцы сложных купратов Ві составов

856

 $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_y$ (Ln — La, Nd, Y, Ho, Lu) и $Bi_2Sr_{2-x}Ln_xCaCu_2O_y$ (Ln — La, Nd, Ho, Lu) получали керамическим методом с использованием прекурсора [9].

Все исходные вещества были квалификации не ниже «х.ч». Содержание катионов кальция, стронция, редкоземельных элементов и меди определяли трилонометрическим титрованием [10].

Параметры кристаллических решеток и фазовый состав определяли рентгенографическим методом на порошках (Shimadzu LabX XRD-6000; $\lambda(CuK_{a1}) = 1.54056$ Å с Ni-фильтром).

ИК-спектры поглощения продуктов отжига записывали на спектрофотометре Spectrum BX FT-IR (Perkin Elemer) в области 1200–1800 см⁻¹, с использованием методики прессования таблеток с KBr.

Резистивные измерения выполняли в интервале температур 300– 78 К стандартным четырехконтактным методом с использованием индий-галлиевой эвтектики.

Содержание кислорода определяли методом йодометрического титрования [11].

Микроструктура полученных образцов исследовалась на электронном микроскопе Hitachi S-2400.

3. ОБСУЖДЕНИЯ РЕЗУЛЬТАТОВ

Рентгенографические исследования показали, что в системе $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_y$ (Ln — La, Nd, Y, Ho, Lu) в случае Ln = La с увеличением степени замещения x наблюдается увеличение параметра a и уменьшение параметра c (табл. 1). Наряду с этим происходит уменьшение объема элементарной ячейки. Для Ln = Nd, Y, Ho, Lu с увеличением степени замещения x параметры a и c уменьшаются (табл. 1), что приводит к уменьшению и объема элементарной ячейки. Это связано с меньшими значениями ионных радиусов La³⁺ (r = 1,16 нм), Nd³⁺ (r = 1,109 нм), Y³⁺ (r = 1,019 нм), Ho³⁺ (r = 1,015 нм), Lu³⁺ (r = 0,977 нм) по сравнению с ионным радиусом Ca²⁺ (r = 1,12 нм).

В случае с образцами состава $\operatorname{Bi}_2\operatorname{Sr}_{2-x}\operatorname{Ln}_x\operatorname{CaCu}_2\operatorname{O}_y$ (Ln — La, Nd, Ho, Lu) наблюдается увеличение параметра *a* и уменьшение параметра *c*, для замещения Ln = La, Но параметр *c* уменьшается. Однако наряду с этим происходит увеличение объема элементарной ячейки ΔV (табл. 1).

Рентгенографические исследования $\text{Bi}_2\text{Sr}_2\text{Ca}_{1-x}\text{Ln}_x\text{Cu}_2\text{O}_y$ -образцов, показали, что границы области гомогенности зависят от порядкового номера РЗЭ, так для Ln = La область гомогенности составляет $0 \le x \le 0,15$, для Ln = Nd — $0 \le x \le 0,2$, для Ln = Y — $0 \le x \le 0,2$, для Ln = Ho — $0 \le x \le 0,25$, для Ln = Lu — $0 \le x \le 0,3$. Для образцов состава $\text{Bi}_2\text{Sr}_{2-x}\text{Ln}_x\text{CaCu}_2\text{O}_y$ (Ln — Nd, Ho, Lu) область гомогенности составляет $0 \le x \le 0,1$, а в случае Ln = La — $0 \le x \le 0,2$. При больших

ТАБЛИЦА 1. Параметры элементарной ячейки, кислородная стехиометрия, температура перехода в сверхпроводящее состояние, средний размер зерна для образцов состава $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_y$ (Ln — La, Nd, Y, Ho, Lu) и $Bi_2Sr_{2-x}Ln_xCaCu_2O_y$ (Ln — La, Nd, Ho, Lu).

Состав	а, нм	С, НМ	V, Å ³	y	δ	$T_c^{ m on}$
$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Ca}\mathrm{Cu}_{2}\mathrm{O}_{y}$	0,3818	3,070	447,5	8,20	0,20	94
$Bi_2Sr_2Ca_{0,9}La_{0,1}Cu_2O_y$	0,3829	3,080	451,6	8,17	0,12	92
$Bi_2Sr_2Ca_{0,85}La_{0,15}Cu_2O_y$	0,3832	3,078	451,9	8,18	0,11	92
$Bi_2Sr_2Ca_{0,9}Nd_{0,1}Cu_2O_y$	0,3825	3,067	448,7	8,16	0,1	92
$Bi_2Sr_2Ca_{0,85}Nd_{0,15}Cu_2O_y$	0,3825	3,064	448,2	8,18	0,105	92
$Bi_2Sr_2Ca_{0,8}Nd_{0,2}Cu_2O_y$	0,3825	3,063	448,1	8,18	0,08	91
$Bi_2Sr_2Ca_{0,9}Y_{0,1}Cu_2O_y$	0,3825	3,063	448,1	8,15	0,1	92
$Bi_2Sr_2Ca_{0,8}Y_{0,2}Cu_2O_y$	0,3821	3,058	446,4	8,16	0,06	92
$\operatorname{Bi}_{2}\operatorname{Sr}_{2}\operatorname{Ca}_{0,9}\operatorname{Ho}_{0,1}\operatorname{Cu}_{2}\operatorname{O}_{y}$	0,3821	3,060	446,7	8,12	0,07	92
$\operatorname{Bi}_{2}\operatorname{Sr}_{2}\operatorname{Ca}_{0,8}\operatorname{Ho}_{0,2}\operatorname{Cu}_{2}\operatorname{O}_{y}$	0,3816	3,058	445,3	8,16	0,06	91
$Bi_2Sr_2Ca_{0,75}Ho_{0,25}Cu_2O_y$	0,3815	3,046	442,7	8,16	0,04	91
$Bi_2Sr_2Ca_{0,9}Lu_{0,1}Cu_2O_y$	0,3818	3,057	445,6	8,12	0,07	92
$Bi_2Sr_2Ca_{0,8}Lu_{0,2}Cu_2O_y$	0,3816	3,047	443,7	8,15	0,05	91
$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Ca}_{0,7}\mathrm{Lu}_{0,3}\mathrm{Cu}_{2}\mathrm{O}_{y}$	0,3814	3,039	442,1	8,16	0,1	90
$Bi_2Sr_{1,95}La_{0,05}Ca_1Cu_2O_y$	0,3825	3,100	453,5	8,15	0,01	92
$Bi_2Sr_{1,95}Nd_{0,05}Ca_1Cu_2O_y$	0,3818	3,085	449,7	8,17	0,01	92
$Bi_2Sr_{1,9}Nd_{0,1}Ca_1Cu_2O_y$	0,3851	3,080	456,8	8,18	0,03	91
$Bi_2Sr_{1,95}Ho_{0,05}Ca_1Cu_2O_y$	0,3825	3,083	451, 1	8,18	0,01	92
$\operatorname{Bi}_{2}\operatorname{Sr}_{1,9}\operatorname{Ho}_{0,1}\operatorname{Ca}_{1}\operatorname{Cu}_{2}\operatorname{O}_{y}$	0,3853	3,074	456,3	8,10	0,04	92
$Bi_2Sr_{1,95}Lu_{0,05}Ca_1Cu_2O_y$	0,3822	3,081	450,0	8,16	0,01	91
$Bi_2Sr_{1,9}Lu_{0,1}Ca_1Cu_2O_y$	0,3853	3,066	455,2	8,14	0,004	90

значениях (x) на дифрактограммах наряду с фазой Bi-2212 появляются примесь фазы Bi-2201, а также $Ln_xSr_{2-x}CuO_y$, $La_xCa_{2-x}CuO_y$, $CaCu_2O_3$, CuO. При увеличении степени замещения (x) происходит изменение параметров элементарной ячейки по сравнению с чистой Bi-2212 фазой.

Для подтверждения данных рентгенофазового анализа микроструктуру образцов $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_y$ (Ln — La, Nd, Y, Ho, Lu) и $Bi_2Sr_{2-x}Ln_xCaCu_2O_y$ (Ln — La, Nd, Ho, Lu) исследовали при помощи электронного микроскопа.

Как известно, с морфологической точки зрения данная ВТСПкерамика представляет собой совокупность сверхпроводящих кристаллитов различных форм, размеров и кристаллографических ориентаций, находящихся в механическом контакте друг с другом.

Исходя из данных СЕМ (рис. 1), керамика состоит в основном из наноразмерных зерен тетрагональной фазы ($D_{cp} = 0,5-1,5$ мкм).

ЗАВИСИМОСТЬ СВОЙСТВ ВТСП-СОЕДИНЕНИЙ ОТ РАЗМЕРА КРИСТАЛЛИТОВ 859

Рис. 1.

Кроме того, с увеличением степени замещения *х* имеются вкрапления других фаз различного состава, которые мы идентифицируем как примесные, что практически полностью подтверждает результаты рентгенофазового анализа.

Из СЕМ-фотографий видно, что значительная часть кристаллитов представляет собой относительно тонкие пластины (неправильной, чаще всего вытянутой в одном из направлений, формы), плоскость которых близка к плоскости (001). Это связано с тем, что преимущественным направлением роста кристаллитов является направление [100]. Кроме того, в результате термической обработки, происходит спекание зерен с последующим образованием крупных зерен — агломератов.

Измерение электрического сопротивления образцов в системах $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_y$ (Ln — La, Nd, Y, Ho, Lu) и $Bi_2Sr_{2-x}Ln_xCaCu_2O_y$ (Ln — La, Nd, Ho, Lu) при температурах 77–300 К показали, что для гомогенных образцов (табл. 1) при температуре выше 77 К наблюдается сверхпроводящий переход. Образцы, содержащие примесные фазы, при температурах выше 77 К в сверхпроводящее состояние не переходят.

Подавление сверхпроводимости в образцах можно объяснить уменьшением концентрации носителей заряда. В сверхпроводящих соединениях типа Bi-2212 носителями электрического тока являются дырки, а при гетеровалентном замещении двухвалентного кальция на трехвалентный катион редкоземельного элемента, последние поставляют в кристаллическую решетку дополнительные электроны, вследствие чего уменьшается концентрация носителей заряда — дырок.

Так, температура перехода в сверхпроводящее состояние для замещенных образцов снижается, по сравнению с чистой Bi-2212 фазой. Кроме того, также наблюдается уменьшение критической температуры при увеличении степени замещения x для образцов $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_y$ (Ln — La, Nd, Y, Ho, Lu) и $Bi_2Sr_{2-x}Ln_xCaCu_2O_y$ (Ln — La, Nd, Ho, Lu).

Для изучения взаимосвязи между содержанием О и степенью замещения x было определено общее содержание кислорода и содержание мобильного кислорода в образцах $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_{y+\delta}$ (Ln — La, Nd, Y, Ho, Lu) и $Bi_2Sr_{2-x}Ln_xCaCu_2O_{y+\delta}$ (Ln — La, Nd, Ho, Lu). Как известно, общее содержание кислорода y состоит из оксидного и мобильного кислорода (δ), наличие которого обусловлено присутствием меди со степенью окисления +3 и висмута со степенью окисления +5.

Из таблицы 1 видно, что для образцов Bi₂Sr₂Ca_{1-x}Ln_xCu₂O_{u+δ} (Ln — La, Nd, Y, Ho, Lu) увеличение x (x = 0,1) сопровождается снижением общего содержания кислорода (y) до y = 8,17 для Ln = La, y = 8,16для Ln = Nd, *y* = 8,15 для Ln = Y, *y* = 8,12 для Ln = Ho, *y* = 8,12 для Ln = Lu по сравнению с чистой Bi-2212 фазой при незначительном изменении δ . Дальнейшее увеличение x (x > 0,1) приводит к уменьшению содержания активного кислорода б теперь при относительном постоянстве y, и только в случае Ln = Lu при x = 0,3 наблюдается некоторое увеличение величины б. Относительно постоянное значение у, в данном случае, указывает на вхождение стехиометрического кислорода в освобожденные в результате замещения двухвалентного иона Ca²⁺ на трехвалентный катион редкоземельного элемента в структурные позиции в кислородной подрешетке и постепенному насыщению вакантных позиций в слоях Bi₂O₂ кислородом. Кроме того, вхождение избыточного кислорода в данные позиции приводит к значительному уменьшению расстояния между висмуткислородными слоями и параметра с в целом.

Необходимо также отметить, что, уменьшение δ при относительном постоянстве *у* возможно вследствие того, что, в отличие от чистого Bi-2212, на величину кислородного индекса в данной фазе влияет степень замещения двухвалентного кальция на трехвалентный лантаноид.

Для гомогенных образцов состава $Bi_2Sr_{2-x}Ln_xCaCu_2O_{y+\delta}$ (Ln — La, Nd, Ho, Lu) при увеличении x увеличивается общее содержание кислорода (y) по сравнению с чистой Bi-2212 фазой (табл. 1). Это можно объяснить заменой катиона двухвалентного стронция на катион трехвалентного редкоземельного элемента. Так как известно, что вхождение сверхстехиометрического кислорода в плоскость (Ca \Box) маловероятно из-за возникающих аномально коротких расстояний Cu–O.

Установлено, что изменение величины кислородного индекса не влияет на структуру кристаллической решетки. Величина кислородного индекса изменяется в соответствии с изменением ионного радиуса катиона редкоземельного элемента.

ТАБЛИЦА 2. Электрофизические свойства и содержание О в зависимости от режимов охлаждения образцов состава Bi₂Sr₂Ca_{0,9}Ln_{0,1}Cu₂O_{8+δ}, где Ln — La, Nd, Y, Ho, Lu.

Состав	T_{c1}	y_1	δ_1	T_{c2}	${m y}_2$	δ_2	T_{c3}	y_3	δ_3
$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Ca}\mathrm{Cu}_{2}\mathrm{O}_{8+z}$	94	8,20	0,20	94	8,20	0,20	94	8,19	0,19
$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Ca}_{0,9}\mathrm{La}_{0,1}\mathrm{Cu}_{2}\mathrm{O}_{8^{+}z}$	92	8,17	0,12	92	8,16	0,1	92	8,17	0,12
$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Ca}_{0,9}\mathrm{Nd}_{0.1}\mathrm{Cu}_{2}\mathrm{O}_{8+z}$	92	8,16	0,1	92	8,16	0,1	92	8,17	0,12
${\rm Bi}_{2}{\rm Sr}_{2}{\rm Ca}_{1.9}{\rm Y}_{0,1}{\rm Cu}_{2}{\rm O}_{8+z}$	92	8,15	0,1	92	8,15	0,1	92	8,14	0,09
$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Ca}_{0,9}\mathrm{Ho}_{0,1}\mathrm{Cu}_{2}\mathrm{O}_{8^{+}z}$	92	8,12	0,07	92	8,12	0,07	92	8,12	0,07
$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Ca}_{0,9}\mathrm{Lu}_{0,1}\mathrm{Cu}_{2}\mathrm{O}_{8+z}$	92	8,12	0,07	92	8,12	0,07	92	8,12	0,07

Примечание: T_{c1} , y_1 , δ_1 — быстрое охлаждение на воздухе; T_{c2} , y_2 , δ_2 — быстрое охлаждение в жидком азоте; T_{c3} , y_3 , δ_3 — медленное охлаждение.

Таким образом, однозначной связи между температурой перехода в сверхпроводящее состояние и содержанием кислорода не наблюдается.

Исследование влияния условий термообработки, в частности, режима прокаливания образцов $\operatorname{Bi}_2\operatorname{Sr}_2\operatorname{Ca}_{1-x}\operatorname{Ln}_x\operatorname{Cu}_2\operatorname{O}_y$ (Ln — La, Nd, Y, Ho, Lu) в токе кислорода на кислородную стехиометрию выполняли на образцах с x = 0,1 как наиболее оптимальных по содержанию редкоземельного элемента.

В таблице 2 приведены значения критической температуры T_c , общего содержания кислорода y и активного кислорода δ в зависимости от режимов охлаждения.

Результаты исследований показали, что существенного влияния на критические характеристики и содержание кислорода скорость охлаждения не имеет. Однако медленное охлаждение приводит к увеличению интервала температурного перехода в сверхпроводящее состояние по сравнению с быстрым охлаждением на воздухе (рис. 2). Возможно, это связано с тем, что медленное охлаждение приводит к неполной кристаллизации зерен или нарушению контакта между зернами сверхпроводящей фазы в кристаллических структурах образцов $Bi_2Sr_2Ca_{1-x}Ln_xCu_2O_y$ (Ln — La, Nd, Y, Ho, Lu). Кроме того, это, может быть причиной того, что кривая 2 на рисунке не достигает нулевого значения сопротивления при T = 77 K (рис. 2).

Значения общего содержания кислорода y и активного кислорода δ практически не изменяются при различных режимах охлаждения. Изменение значений y и δ , в некоторых случаях, происходят в пределах ошибки титрования.

Таким образом, твердофазным методом с предварительным получением прекурсора были получены сложные купраты с размером зерен 0,5–1,5 мкм. Показано, что изменение режимов и скорости

Рис. 2.

охлаждения не оказывает существенного влияния на величину кислородного индекса и значение критической температуры. Однако при медленном охлаждении наблюдается увеличение ширины температурного интервала.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. Ю. Д. Третьяков, Е. А. Гудилин, Успехи химии, 89, № 1:1 (2000).
- 2. Сверхпроводники для электроэнергетики (Ред. В. С. Круглов) (Издательство РНЦ «Курчатовский институт»: 2009), т. 6.
- 3. Ю. Д. Третьяков, Е. А. Гудилин, Д. В. Перышков, Д. М. Иткис, *Успехи химии*, **73**, № 9: 954 (2004).
- 4. P. E. Kazin, V. V. Poltavets, M. S. Kuznetsov, D. D. Zaytsev, Yu. D. Tretyakov, M. Jansen, and M. Schreyer, *Supercond. Sci. Technol.*, **11**: 880 (1998).
- 5. A. Polasek, L. A. Saléh, C. V. de Sena, M. A. Sens, E. T. Serra, and F. Rizzo, *Physica C*, **460–462**: 1349 (2007).
- 6. Sun-Li Huang, M. R. Koblischka, K. Fossheim, T. W. Ebbesen, and T. H. Johansen, *Physica C*, **311**, Iss. 3–4: 172 (1999).
- 7. H. Fujii, H. Kumakura, and K. Togano, *Physica C*, **355**, Iss 1–2: 111 (2001).
- 8. M. Karppinen, M. Kotiranta, T. Nakane et al., Phys. Rev. B, 67: 134522 (2003).
- 9. С. А. Недилько, Т. А. Войтенко, Украинский химический журнал, № 8:80 (2007).
- 10. Г. Шварценбах, Г. Флашка, Комплексонометрическое титрование (Москва: Химия: 1970).
- 11. Н. Ф Захарчук, Т. П. Федина, Н. С. Борисова, Сверхпроводимость: физика, химия, техника, 4, № 7: 1391 (1991).