© 2012 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

 $PACS \, numbers: 63.22.Kn, 78.30.-j, 78.40.-q, 81.70.Pg, 82.80.Gk, 82.80.Ha, 87.64.km$

Колебательные спектры и термические превращения дифосфатов ${\rm Mn}_{2-x}{\rm Co}_x{\rm P}_2{\rm O}_7{\cdot}5{\rm H}_2{\rm O}$

В. Л. Карбовский, С. С. Смоляк * , Ю. А. Загородний, В. Х. Касияненко, Н. В. Ткачова ** , О. П. Димитриев ***

Институт металлофизики им. Г. В. Курдюмова НАН Украины, бульв. Акад. Вернадского, 36, 03680, ГСП, Киев-142, Украина *Технический центр НАН Украины, ул. Покровская, 13, 04070 Киев, Украина **Национальный аграрный университет, ул. Героев обороны, 15, 03041 Киев, Украина ***Институт физики полупроводников им. В. Е. Лашкарёва НАН Украины, просп. Науки, 41, 03028 Киев, Украина

Выполнен анализ ИК-полос поглощения, характеризующих колебания функциональных групп, составляющих структуру дифосфатов Мп и Со $\mathrm{Mn}_{2-x}\mathrm{Co}_x\mathrm{P}_2\mathrm{O}_7\cdot 5\mathrm{H}_2\mathrm{O}$, который показал, что угол POP для ряда исследуемых образцов имеет нелинейную конфигурацию (меньше 180°). Посредством корреляции между симметричными и асимметричными валентными колебаниями моста $\mathrm{P-O-P}$ и величиной угла выполнена оценка изменения углов POP. Приводятся результаты термогравиметрических исследований ряда образцов $\mathrm{Mn}_{2-x}\mathrm{Co}_x\mathrm{P}_2\mathrm{O}_7\cdot 5\mathrm{H}_2\mathrm{O}$ (x=0,0,6,1,0,1,9,2,0), для которых ход термических процессов носит индивидуальный характер — наблюдаются различное количество стадий потери массы и различные температуры начала эндотермических и экзотермических процессов. Эндотермические процессы сопровождаются потерей массы и обусловлены выходом молекул воды из структуры дифосфатов. Экзотермические процессы вызваны кристаллизацией аморфных продуктов.

Виконано аналізу ІЧ-смуг вбирання, що характеризують коливання функціональних груп, які складають структуру дифосфатів Mn і Co $\mathrm{Mn_{2-x}Co_xP_2O_7\cdot 5H_2O}$. Аналіза показала, що кут POP для низки досліджуваних зразків має нелінійну конфіґурацію (менше 180°). За допомогою кореляції між симетричними і асиметричними валентними коливаннями мосту $\mathrm{P-O-P}$ і величиною кута виконано оцінку зміни кутів POP. Наведе-

но результати термоґравіметричних досліджень низки зразків $\mathrm{Mn}_{2\text{--x}}\mathrm{Co}_{x}\mathrm{P}_{2}\mathrm{O}_{7}\cdot 5\mathrm{H}_{2}\mathrm{O}$ (x=0,0,6,1,0,1,9,2,0), для яких хід термічних процесів носить індивідуальний характер — спостерігається різна кількість стадій втрати маси, різні температури початку ендотермічних і екзотермічних процесів. Ендотермічні процеси супроводжуються втратою маси і обумовлені виходом молекуль води зі структури дифосфатів. Екзотермічні процеси викликані кристалізацією аморфних продуктів.

Analysis of infrared absorption bands characterizing the vibrations of functional groups, which constitute the structure of the Mn and Co diphosphates, $\mathrm{Mn_{2-x}Co_xP_2O_7\cdot5H_2O}$, reveals that the POP angle for a number of the samples has a nonlinear configuration (less than 180°). Assessment of POP angles changes is carried out through the correlation between the symmetrical and asymmetrical stretching vibrations of the P–O–P bridge and the angle magnitude. For a number of the $\mathrm{Mn_{2-x}Co_xP_2O_7\cdot5H_2O}$ samples (where x=0, 0.6, 1.0, 1.9, 2.0), the results of thermogravimetric studies are presented. The course of thermal processes has an individual features such as different number of weight loss stages and the different temperature of starting of the endothermic and exothermic processes. Endothermic processes are accompanied by the weight loss and are caused by the release of water molecules from the structure of diphosphates; exothermic processes are caused by the crystallization of amorphous products.

Ключевые слова: инфракрасные спектры, термический анализ, дифосфаты кобальта и марганца.

(Получено 29 сентября 2011 г.)

1. ВВЕДЕНИЕ

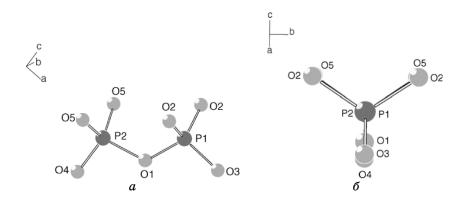
Актуальность изучения особенностей строения и термических свойств дифосфатов определяется разнообразным спектром их применения: в качестве экологически безопасных ингибиторов коррозии металлов, сорбентов ионов тяжелых металлов и т.д.

Структурные исследования безводных дифосфатов представлены рядом работ, в частности, [1–4]. Данные о строении и свойствах гидратированных дифосфатов $\mathrm{Mn}_{2-x}\mathrm{Co}_x\mathrm{P}_2\mathrm{O}_7\cdot 5\mathrm{H}_2\mathrm{O}$ малочисленны. Молекулы $\mathrm{H}_2\mathrm{O}$, входящие в их структуру, принимают участие во взаимодействии с анионной и катионной подрешетками, таким образом оказывая существенное влияние на их свойства. Более того, представляется интересным с точки зрения изменения физико-химических свойств присутствие в структуре дифосфатов одновременно двух типов катионов (Co и Mn) в сравнении с индивидуальными дифосфатами. Улучшение эксплуатационных свойств для эффективного использования гидратированных полифосфатов в промышленности требует систематических экспериментальных исследований.

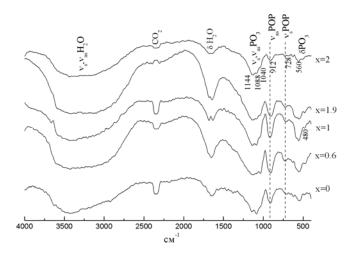
Целью данной работы являются спектральные исследования

дифосфатов $Mn_{2-x}Co_xP_2O_7\cdot 5H_2O$ (x=0,0,6,1,0,1,9,2,0), а также исследование термических превращений.

2. ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЙ


ИК спектры исследуемых образцов регистрировались в области частот от $4000~{\rm cm^{-1}}$ до $400~{\rm cm^{-1}}$ на двухлучевом спектрофотометре 'Specord M80' (область регистрации $4000-250~{\rm cm^{-1}}$). Для получения ИК-спектров из материала образцов готовились таблетки.

Термограммы записаны на дериватографе Q-1500D фирмы МОМ. Образцы, массой $\cong 40-50$ мг, исследовались термогравиметрически в платиновых тиглях в температурном интервале от комнатной температуры до 1000° C со скоростью нагрева 5° C/мин, в атмосфере воздуха (ограниченное пространство), в условиях свободного конвекционного обмена.


3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Рентгенометрическими и ИК-спектроскопическими исследованиями установлено, что пентагидраты $Mn_2P_2O_7\cdot 5H_2O$ и $Co_2P_2O_7\cdot 5H_2O$ являются изоструктурными и кристаллизируются в орторомбической и моноклинной сингонии соответственно [5, 6]. Анионная подрешетка образована ионами $P_2O_7^{4-}$, которые рассматриваются как два тетраэдра PO_4 , связанные одним общим атомом кислорода, причем связь P-O-P сильно отличается от прямой линии и, по данным работы [6], для $Mn_2P_2O_7\cdot 5H_2O$ угол POP равен $128,6^\circ$. Пространственное распределение P_2O_7 -групп представлено на рис. 1.

На рисунке 2 приведены ИК-спектры дифосфатов $Mn_{2-x}Co_xP_2O_7$: $5H_2O(x=0,0,6,1,0,1,9,2,0)$, интерпретация которых основывается на характеристических колебаниях молекул воды, PO_3 -групп и моста

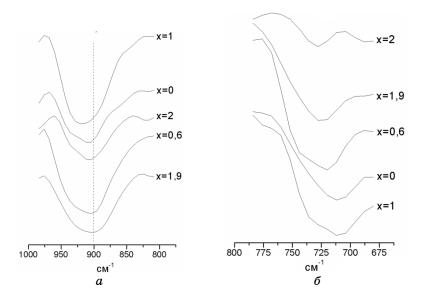
Рис. 1. Проекция P_2O_7 -группы $(P_1O_1P_2)(a)$ и вдоль P_1 – $P_2(\delta)$.

Рис. 2. Спектры ИК-поглощения дифосфатов $\mathrm{Mn_{2-x}Co_xP_2O_7\cdot 5H_2O}$, где x=0, 0,6, 1,0, 1,9, 2,0.

P-O-P.

Как показывает анализ известных данных [6, 7, 8], частоты ИК-поглощения в диапазоне $\cong 400-1200~{\rm cm}^{-1}$ отвечают проявлению колебаний аниона P_2O_7 . Колебательные моды, наблюдаемые в низкочастотной области $\cong 440-584~{\rm cm}^{-1}$, можно отнести к деформационным колебаниям PO_3 -групп. Это подтверждается результатами работ [9–12], согласно которым деформационные колебательные моды δPO_3 и внешние деформационные моды $\rho O-PO_3$ проявляются в области $\cong 400-600~{\rm cm}^{-1}$.

Валентным колебаниям моста P–O–P отвечают две полосы поглощения — $766~(\nu_s)$ и $929~(\nu_{as})$ см $^{-1}$, причем наличие моды ν_s указывает на изгиб P–O–P моста [13–15].


Поскольку количество активных колебательных мод определяется симметрией молекулы [16], наличие соответствующих полос поглощения служит инструментом для определения топологического строения исследуемого вещества. Так наличие в ИК-спектрах поглощения, исследуемых в данной работе дифосфатов (рис. 2, табл. 1), полосы v_s POP в области (708–728 см⁻¹), однозначно свидетельствуют о нецентросимметричной (угол POP < 180°) конфигурации аниона P_2O_7 , в результате чего симметрия иона P_2O_7 не может быть выше C_{2v} [8].

Согласно [8], при увеличении угла РОР частота ν_s РОР должна понижаться, однако повышение динамического коэффициента связи P–O(P), обычно сопровождающее рост угла РОР, может компенсировать изменение этой частоты. При этом оба фактора, и кинематический, и динамический, действуют в одном направлении на ν_{as} РОР, приводя к повышению ее частоты.

ТАБЛИЦА 1. Спектральные положения ${
m UK}$ -полос поглощения $({
m cm}^{-1})$ образцов ${
m Mn}_{2-x}{
m Co}_x{
m P}_2{
m O}_7\cdot 5{
m H}_2{
m O}~(x=0,~0,6,~1,0)$ 1,9,2,0) в исходном состоянии и после отжига (1000° С).

Функпиональные			Спектр: д	альные п тя образц	оложени: ов с разл	я полос п тичным з	Спектральные положения полос поглощения (см $^{-1}$) для образцов с различным значением x	$_{\mathcal{X}}^{LR}$ (см $^{-1}$)		
группы	· x	x = 0	=x	x = 0,6	=x	x = 1,0	x = 1,9	1,9	x = 2,0	2,0
	исх.	OTOЖ.	исх.	OTOЖ.	исх.	OTOЖ.	исх.	OTOЖ.	исх.	OTOЖ.
O IIS	1656		1656		1680		1680		1664	
$0H_2O$					1632		1648			
	1144	*	1136	*	1136	*	1136	*	1136	*
$\mathbf{v}_{_{\alpha}}\mathbf{PO}_{_{3}}+\mathbf{v}_{_{6}}\mathbf{PO}_{_{3}}$	1088	*	1080	*	1088	*	1088	*	1088	*
	1032	*	1040	*	1040	*	1040	*	1040	*
${\rm v}_{as}{\rm POP}$	912	*	606	*	911	*	806	*	806	*
$v_{\rm s}{ m POP}$	208		717		602		724	728	728	728
$\rho_{\rm H_2O}$	624		632						628	I
$\delta PO_s + \rho PO_s$	544	576	584 544	572	$\begin{array}{c} 584 \\ 552 \end{array}$	572	584 544	584	$\begin{array}{c} 560 \\ 496 \end{array}$	552
-	480	020	472	020	480	87.c	480	240	448	

 $II\,p\,u\,m\,e\,u\,a\,n\,u\,a$: погрешность измерений — $3\,\,\mathrm{cm}^{-1}$; "спектральные положения полос поглощения отожжённых образцов, соответствующих данным функциональным группам, не приводятся ввиду их сильного размытия.

Рис. 3. Спектры ИК-поглощения дифосфатов: валентные асимметричные (a) симметричные (b) колебания P-O-P моста $Mn_{2-x}Co_xP_2O_7$ · $5H_2O$ с различными значениями x.

Как видно из рис. 2, табл. 1, колебательные моды v_s POP моста для образцов $Mn_{2-x}Co_xP_2O_7\cdot 5H_2O$, где x=0, 0,6 и 1,0 сдвигаются в низкочастотную область на $11-20~{\rm cm}^{-1}$ по отношению к модам образцов с большим содержанием кобальта. В то же время соответствующие им асимметричные валентные колебания ($\cong 910~{\rm cm}^{-1}$) сдвигаются в область высоких частот (рис. 3), что связано с влиянием катиона кобальта на угол POP.

Представляет интерес возможность спектроскопической оценки величины угла РОР в группе P_2O_7 , используя связь между углом РОР и величиной расщепления колебания тетраэдра PO_4 . Последнюю характеризуют значением $\Delta = [v_{as} - v_s POP]/[v_{as} + v_s POP]$ [8]. Так как с увеличением значения Δ угол POP растет [8], то полученные значения Δ для ряда дифосфатов $Mn_{2-x}Co_xP_2O_7 \cdot 5H_2O$ с различным значением x, говорят о том, что с увеличением в их структуре содержания кобальта, угол уменьшается (табл. 2).

Согласно исследованиям подобных соединений [7], колебания, наблюдаемые в ИК спектрах в области $1000-1136~{\rm cm}^{-1}$, относятся к симметричным и асимметричным валентным колебаниям PO_3 -групп и свидетельствуют о наличии неравноценных связей P-O.

Высокочастотные колебания в областях $\cong 3250$ см⁻¹ и $\cong 1670$ см⁻¹, согласно [17], относятся к связанной кристаллической воде. Так асимметричные и симметричные валентные колебания О–H–O, характерные для связанной кристаллической воды, наблюдаются в

ТАБЛИЦА 2. Значения эмпирического фактора Δ для ряда исследуемых образцов $\mathrm{Mn_{2-x}Co_xP_2O_7}$: $\mathrm{5H_2O}$ (x=0,0,6,1,0,1,9,2,0).

	x = 0	x = 0,6	x = 1,0	x = 1,9	x = 2,0
$v_{as}POP(cm^{-1})$	912	909	911	908	908
$v_s POP (cm^{-1})$	708	717	709	724	728
$\boldsymbol{100\Delta}$	12,6	11,8	12,4	11,2	11,0

ТАБЛИЦА 3. Положения пиков термических (энергетических) эффектов (°C) для $Mn_{2-x}Co_xP_2O_7$ · $5H_2O$.

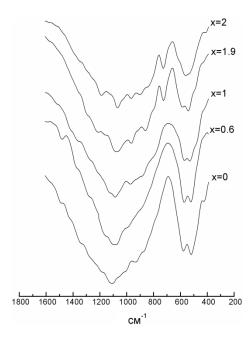
	Энергетические эффекты, сопровождающиеся потерями массы			Энергетические эффекты без потери массы		Потеря массы,
x t , °C	Эндо	Эндо	Эндо	Эндо	овяЄ	вес.%
0	145	188	230	_	475	23,4
0.6	150	206		_	531	25,0
1.0	152,5	218	303	_	562	25,7
1.9	171	302	348	525^*	$\begin{array}{c} 500 \\ 582 \end{array}$	24,8
2.0	172	313	360	498*	494 500	25,3

Примечание: *слабая интенсивность.

области $\cong 2900-3600~{\rm cm}^{-1}$ в виде широких перекрывающихся полос. Это, по всей видимости, говорит о том, что в образцах присутствуют различным образом координированные оксигидрильные группировки с неодинаковой силой и длиной водородных связей. Данное предположение согласуется с результатами исследований соединения $Mn_4(P_2O_7)_2\cdot 10H_2O$, приведенных в работах [6, 7].

Деформационным колебаниям H–O–H (мода δ) для образцов дифосфатов со значениями x=0 и x=0,6 соответствует полоса поглощения, которая состоит из нескольких перекрывающихся пиков при $\cong 1656$ см $^{-1}$ (табл. 1, рис. 2), что также может быть объяснено формированием различных водородных связей. При этом для образцов с большим содержанием кобальта — x=1,0 и x=1,9,2,0, наблюдается смещение полос поглощения в область больших частот. Это указывает на более прочные водородные связи молекулы воды в данных образцах, что согласуется с результатами термогравиметрических исследований данных соединений, которые обсуждаются ниже. А также указывают на то, что с увеличением концентрации кобальта в образцах температурный интервал начала потери массы сдвигается в область высоких температур (табл. 3). Для

образцов со значениями x = 1,0 и x = 1,9 наблюдается четкое разделение ИК-полос поглощения на две составляющие — 1632, 1680 см⁻¹ и 1648, 1680 см⁻¹ соответственно.


Согласно с ранее изученными колебаниями гидратированных дифосфатов, либрационная и деформационная (ρ) моды воды должны наблюдаться в области $\cong 812$ и $644~{\rm cm}^{-1}$ соответственно. Однако для исследуемого в данной работе ряда образцов не представляется возможным говорить о положеннии либрационных колебаний воды в виду их сильного размытия.

Термолиз ряда дифосфатов $Mn_{2-x}Co_xP_2O_7\cdot 5H_2O$ изучался в интервале температур от $\approx 20^{\circ}$ С до 1000° С. Ход термических процессов, характерный для ряда $Mn_{2-x}Co_xP_2O_7\cdot 5H_2O$ (x=0,0,6,1,0,1,9,2,0), носит индивидуальный характер — существуют отличия в их термической устойчивости, количестве термических эффектов и последовательности превращений. Так, для большинства исследуемых образцов наблюдается трехступенчатый процесс потери массы, исключение составляет образец со значением x=0,6, потеря массы при нагреве которого происходит в два этапа. Ступенчатая зависимость удаления кристаллогидратной воды из соединения при нагреве определяется ее различным кристаллографическим и энергетическим состоянием. Удаление воды из структуры соединений на термограмме проявляется в виде эндотермических эффектов.

Как видно из табл. 3, с увеличением концентрации Со в соединении, температурные интервалы, в которых происходит потеря массы, сдвигаются в высокотемпературную область, что указывает на более сильные связи молекул воды в указанных соединениях и подтверждается ИК-спектроскопическими исследованиями данных соединений. Отсюда следует, что значительное влияние на процесс обезвоживания имеет природа катиона и его концентрация.

При температурах от 475 до 582° С происходит кристаллизация продуктов отжига, структура которых при дальнейшем отжиге вплоть до 1000° С не изменяется. Сопровождается это одним мощным экзотермическим эффектом для образцов со значениями x=0, 0,6, для образца с x=1,0 наблюдается один размытый экзоэффект гораздо меньшей интенсивности. Двумя экзоэффектами сопровождается кристаллизация продуктов отжига образцов со значениями $x=1,9,\ 2,0\ -\ 500^{\circ}$ С, 582° С и 494° С, 500° С, соответственно. При этом максимум второго экзоэффекта накладывается на меньший по энергии эндотермический эффект при $\cong 525^{\circ}$ С для образца с x=1,9 и 498° С для образца с x=2,0.

Изучение конечных продуктов термолиза было произведено на основании ИК-спектров образцов, отожженных при 1000° С. Анализ ИК-спектров исследуемых соединений, представленных на рис. 4, дает основания утверждать, что конечные продукты термолиза образцов с различным значением x представляют собой различные

Рис. 4. Спектры ИК-поглощения дифосфатов ${\rm Mn_{2-x}Co_xP_2O_7\cdot 5H_2O}$, отожжённых при 1000°С.

соединения. Это согласуется с выполненными термогравиметрическими исследованиями, согласно которым процесс обезвоживания серии образцов происходит в различных интервалах температур, кристаллизация продуктов отжига носит индивидуальный характер.

Так в области колебаний PO_3 -групп отожженных образцов имеются существенные отличия по отношению к их исходному состоянию. Большое число размытых полос в интервале $1028-1161~{\rm cm}^{-1}$ для образцов $Mn_{2-x}Co_xP_2O_7\cdot 5H_2O$ со значениями x=1,9 и x=2,0 указывает на расщепление вырожденных колебаний PO_3 -группы. При этом присутствие полосы v_s POP на частоте $728~{\rm cm}^{-1}$ свидетельствуют о существовании нелинейной конфигурации P-O-P моста в продуктах отжига только для значений x=1,9 и x=2,0, тогда как для остальных соединений, по всей видимости, характерна линейная конфигурация.

Как показано в [7], конечный продукт отжига $\mathrm{Co_2P_2O_7.6H_2O}$ имеет вид $\alpha\text{-}\mathrm{Co_2P_2O_7}$, и величина POP угла составляет 142.6° . Поэтому, можно предположить, что в результате отжига образцов с большим содержанием кобальта мы имеем $\alpha\text{-}\mathrm{Co_2P_2O_7}$. Симметрия же изогнутого иона $\mathrm{P_2O_7}$ в этом случае, как отмечалось, не может быть выше C_{2v} [8].

Отсутствие особенности, соответствующей v_sP-O-P моста (рис.

4), для образцов с большим содержанием марганца, вероятно, объясняется образованием конечного продукта отжига в виде дифосфата $\mathrm{Mn_2P_2O_7}$, которому, согласно [14], свойственна линейная конфигурация моста $\mathrm{P-O-P}$, при этом, согласно ИК-спектроскопических данных, не происходит образования соединения α - $\mathrm{Co_2P_2O_7}$. Наблюдаемая линейная конфигурация моста $\mathrm{P-O-P}$ способствует повышению симметрии иона $\mathrm{P_2O_7}$ до D_{3d} , которое происходит без изменения относительной ориентации групп $\mathrm{PO_3}$.

4. ВЫВОДЫ

Исследуемая серия образцов характеризуется изогнутой конфигурацией P-O-P моста и низкой симметрией аниона P_2O_7 .

В образцах дифосфатов $Mn_{2-x}Co_xP_2O_7\cdot 5H_2O$ с увеличением концентрации атомов кобальта уменьшается угол POP и увеличивается связь молекул воды в решетке.

Для образцов с высоким содержанием марганца при термической обработке (до 1000° C) отсутствует полоса v_s POP, что свидетельствует о линейной его организации в конечном продукте отжига, предположительно, в виде $Mn_2P_2O_7$.

Показано, что значительное влияние на процесс обезвоживания имеет природа катиона и его концентрация.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. B. Boonchom and R. Baitahe, Materials Letters, 63: 2218 (2009).
- 2. J. B. Forsyth, C. Wilkinson, S. Paster, and B. M. Wanklyn, J. Phys.: Condens. Matter, 1: 169 (1989).
- 3. T. Stefanidis and A. G. Nord, Acta Cryst., C40: 1995 (1984).
- 4. N. Krishnamachari and C. Calvo, Acta Cryst., B28: 2883 (1972).
- 5. Н. В. Ткачова, Синтез і термоліз твердих розчинів гідратованих дифосфатів мангану(II), кобальту(II), цинку (Автореферат ... дис. канд. наук: 02.00.01) (Київ: Національний аграрний університет: 2009).
- 6. H. Assaaoudi, I. Butler, and J. Kozinski, *Journal of Chemical Crystallography*, **36**, No. 11: 723 (2006).
- 7. M. Harcharras, A. Ennaciri, F. Capitelli, and G. Mattei, *Vibrational Spectroscopy*, 33: 189 (2003).
- 8. А. Н. Лазарев, Колебательные спектры и строение силикатов (Ленинград: Наука: 1968).
- 9. M. Harcharras, A. Ennaciri, H. Assaaoudi, G. Mattei, V. D'Orazio, and A. G. G. Moliterni, *J. Solid State Chem.*, **172**: 160 (2003).
- M. Harcharras, A. Ennaciri, A. Rulmont, and B. Gilbert, Spectrochim. Acta, A53: 345 (1997).
- 11. M. Harcharras, A. Ennaciri, and H. Assaaoudi, Can. J. Anal. Sci. Spectrosc., 46, No. 3: 83 (2001).
- 12. N. Khay, A. Ennaciri, and M. Harcharras, Vibrat. Spectrosc., 27, No. 2: 119

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ И ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ДИФОСФАТОВ 133

(2001).

- 13. K. Brouzi, A. Ennaciri, M. Harcharras, and F. Capitelli, *Journal of Raman Spectroscopy*, 35, No. 1: 41 (2003).
- 14. K. Brouzi, A. Ennaciri, and M. Harcharras, *Phosphorus*, *Sulfur*, and *Silicon* and the Related Elements, 179, No. 7: 1329 (2004).
- 15. A. Simon and H. Richter, Zeitschrift für Anorganische und Allgemeine Chemie, 301: 154 (1959).
- 16. К. Накамото, Инфракрасные спектры неорганических соединений (Москва: Мир: 1966).
- 17. Г. И. Гайдидей, О. В. Гоменюк, С. Г. Неделько, Физика твердого тела, 47, вып. 8: 1486 (2005).