© 2013 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 78.40.Ha, 78.67.Bf, 78.67.Sc, 81.07.Wx, 81.15.Fg, 81.16.Mk, 81.40.Wx

Особливості спектрів дифузного відбивання нанопорошків ТіО₂, леґованих 3*d*-іонами

В. Н. Шевчук, Д. І. Попович^{*}, В. М. Белюх, Ю. М. Усатенко

Львівський національний університет ім. Івана Франка, вул. Драгоманова, 50, 79005 Львів, Україна *Інститут прикладних проблем механіки і математики НАН України, вул. Наукова, 3б, 79060 Львів, Україна

Спектри дифузного відбивання (ДВ) нанопорошків TiO₂ (домінантна фаза — рутил), V₂O₅ та нанокомпозитів TiO₂/Cr₂O₃, TiO₂/MnO₂, TiO₂/V₂O₅ досліджено в спектральному діапазоні 400–750 нм за кімнатної температури. З*d*-йони контролювалися методою електронного парамагнетного резонансу. Результати мірянь ДВ проаналізовано в межах теорії Кубелки–Мунка. У леґованому TiO₂ спостерігався зсув краю інтенсивного оптичного поглинання, поява смуг додаткового поглинання в домішковій області та просвітлення в нанокомпозиті TiO₂/MnO₂ в області спектра 400–460 нм. Різними методами оцінено ширину забороненої зони нанопорошків TiO₂, V₂O₅ та композитів на їх основі.

Diffuse-reflectance spectra (DR) of TiO₂ nanopowders (rutile is a dominate phase), V_2O_5 , and the TiO₂/Cr₂O₃, TiO₂/MnO₂, TiO₂/V₂O₅ nanocomposites in spectral region 400–750 nm at room temperature are investigated. The 3*d*-ions are controlled by electron paramagnetic resonance method. The experimental data are analysed within the scope of the Kubelka–Munk theory. In doped TiO₂, the shift of intense optical absorption edge, the appearance of addition absorption bands in impurity range and clarification in spectral area 400–460 nm for nanocomposite TiO₂/MnO₂ are registered. The band gap of TiO₂, V_2O_5 , and nanocomposites based on these powders are evaluated by different methods.

Спектры диффузного отражения (ДО) нанопорошков TiO₂ (доминирующая фаза — рутил), V_2O_5 и нанокомпозитов TiO₂/Cr₂O₃, TiO₂/MnO₂, TiO₂/V₂O₅ исследованы в спектральном диапазоне 400–750 нм при комнатной температуре. З*d*-ионы контролировались методом электронного парамагнитного резонанса. Результаты измерений ДО проанализированы в рамках теории Кубелки–Мунка. В легированном TiO₂ наблюдался сдвиг

99

края интенсивного оптического поглощения, появление полос дополнительного поглощения в примесной области и просветление в нанокомпозите TiO_2/MnO_2 в области спектра 400–460 нм. Различными методами оценена ширина запрещённой зоны нанопорошков TiO_2 , V_2O_5 и композитов на их основе.

Ключові слова: нанопорошок, TiO₂, V₂O₅, 3*d*-йон, спектри дифузного відбивання, лазерне оброблення.

(Отримано 25 червня 2012 р.)

1. ВСТУП

Сполуки на основі двоокису титану (TiO_2), зокрема, в нанопорошковому варіанті, завдяки своїм фізико-хімічним властивостям, мають широке технічне застосування в сучасних галузях електронної техніки та новітніх технологій [1–3]. Нанотрубки на основі ТіО₂ можуть бути використані також як каталізатор для знищення ракових клітин [4]. Цілеспрямоване формування необхідних для використання фізико-хімічних властивостей нанокристалічного TiO₂, зокрема, модифікація його оптичних характеристик технологічним шляхом – одна з найактуальніших задач. На оптичні характеристики TiO₂ впливають: відхил від стехіометрії та пов'язане з цим власно дефектне розупорядкування, стан поверхні, яка в нанопорошку є значною, адсорбційні процеси, введення в процесі синтезу як металів (перехідних [5-7] і рідкісноземельних [8-9]), так і неметалічних іонів [10], тощо. Однак, фізичні процеси при утворенні нанокомпозита та супровідне дефектоутворення в нанокристалічному TiO_2 , незважаючи на наявні дослідження [5-10] в поєднанні з технологією одержання, вивчено недостатньо. Дослідження нанорозмірних ефектів знаходяться на стадії накопичення експериментальних даних.

Входження перехідних іонів суттєво впливає як на край оптичного поглинання, так і викликає певні особливості в домішковій області оптичних спектрів композита на основі нано-TiO₂. Такі зміни важливі для цілеспрямованого формування властивостей нанопорошку двоокису титану відповідно до практичних потреб. У даній роботі виконано дослідження спектрів дифузного відбивання (ДВ) нанокристалічного TiO₂, номінально чистого та з домішками перехідних металів Cr, Mn, або V а також нанокристалічного V_2O_5 . У роботах [11, 12] нами опубліковані попередні результати досліджень спектрів ДВ нанопорошків оксидів.

2. МЕТОДИКА ЕКСПЕРИМЕНТУ

Міряння виконано за кімнатної температури на повітрі. Спектри

ДВ одержані за двопроменевою методикою з використанням інтегрувальної сфери на базі спектрофотометра СФ-10 в діапазоні довжин хвиль $\lambda = 400-750$ нм. У межах спектроскопії ДВ, застосовуваної до нанопорошків, залежність коефіцієнта ДВ $R(\lambda)$ в моделі Кубелки–Мунка [13, 14] трансформували у функцію:

$$F(R) = (1 - R)^2 / 2R = k/s,$$
(1)

де k і s — коефіцієнти поглинання і розсіяння світла дисперсної системи відповідно, які вважаємо однаковими для прямого та зворотнього потоків світла. Як випливає з (1), форма кривої спектральної залежності функції F(R) в припущенні оптично товстого шару і слабкої залежності $s(\lambda)$ близька до спектра оптичного поглинання зразка.

Ширину забороненої зони E_g для досліджених зразків, як і в роботах [15, 16], визначали двома способами: за спектрами ДВ та за спектральною залежністю функції F(R). Беручи до уваги застереження авторів [15, 16], можемо стверджувати, що в першому випадку одержуємо оцінку верхньої межі значення E_g , а відповідно в другому — нижньої.

Зразки для досліджень були одержані золь-ґель-методою. Введення модифікувальних домішок виконували двоетапним шляхом імпульсного лазерного опромінення леґувальної домішки та відпалу мішені матеріалу [17]. Застосована методика дозволяє виготовляти композитний порошок із середньогеометричним діаметром зерна 5–10 нм і питомою поверхнею 80–190 м²/г. Схеми лазерного напилення леґувальної домішки та відпалу нанопорошкового матеріалу подані на рис. 1. Процес імпульсного випаровування матеріалу мішені здійснювався з використанням лазера ЛТИ-205 (YAG:Nd, довжина хвилі випромінення — 1,06 мкм, тривалість імпульсу — 10 нс, густина енергії – 10^6 –5· 10^7 Вт/см², частота імпульсів — 14–56 Гц, діаметр пучка — 5 мм, енергія в імпульсі — 0,1– 0,35 Дж). Лазерне випромінення фокусувалося на мішень (рис. 1,

Рис. 1. Схема лазерного напорошення леґувальної домішки на нанопорошковий матеріал (*a*) та лазерного відпалу нанопорошку (б).

а), яка знаходилася у вакуумі (залишковий тиск газів — 10^{-5} тор), що дозволяло одержувати хімічно чисті матеріали. Для рівномірного нанесення плівки на поверхні порошку кювету з оброблюваною речовиною розміщували на вібраційному пристрої, змонтованому на базі звукового динаміка з живленням від низькочастотного генератора 10–40 Гц. Для рівномірної імплантації леґувальної домішки в нанокристали виконувався їх лазерний відпал (рис. 1, δ). Час лазерного оброблення становив 5 хв., частота проходження імпульсів при цьому — 56 Гц, густина енергії — 0,2 Дж/см².

У даній роботі досліджено нанопорошки ТіО₂ (домінуюча фаза рутил), нанокомпозити TiO₂/Cr₂O₃, TiO₂/MnO₂, TiO₂/V₂O₅ та V₂O₅. Присутність d-ioнів у нанокомпозитах контролювалась методом електронного парамагнітного резонансу (ЕПР), радіоспектрометр Х-діапазону типу РЕ-1306. Вміст модифікувального складника в TiO₂ становив 3 ваг.%. Нанокомпозит TiO₂/V₂O₅ досліджено також з вмістом 10 ваг.% V₂O₅. Площа питомої поверхні досліджених зразків становила близько 150 м²/г. Дослідження у випадку нанопорошку V₂O₅ розміри зерен були різними. Для виявлення розмірного ефекту на спектри ДВ V₂O₅ вимірювання виконані на порошках з розмірами зерен <d>= 80-100 нм та на суміші з широким набором розмірів об'єктів ДВ. Фракції нанопорошків з визначеним розміром зерна одержували заснованим на законі Стокса седиментаційним методом [18] осадження порошку в дистильованій воді. Після осадження порошку протягом розрахункового часу виконували відбір проби з наступним висушуванням.

3. РЕЗУЛЬТАТИ ВИМІРЮВАНЬ ТА ЇХ ОБГОВОРЕННЯ

При кімнатній температурі в нанокомпозитах TiO_2/Cr_2O_3 , TiO_2/MnO_2 , TiO_2/V_2O_5 зафіксовані сиґнали ЕПР, які за попереднім аналізом можуть бути зіставлені з центрами Cr^{5+} , Mn^{4+} , V^{4+} відповідно. У чистому V_2O_5 також спостерігався сиґнал ЕПР, форма якого близька до такого в нанокомпозиті TiO_2/V_2O_5 .

Спектри ДВ нанопорошків TiO₂, TiO₂/Cr₂O₃, TiO₂/MnO₂, TiO₂/V₂O₅, V₂O₅ показано на рис. 2. Відбивна здатність у домішковій області спектра чистого TiO₂, як бачимо, найбільша в порівнянні з іншими зразками. Введення *d*-іонів (Cr, Mn, V) викликає зміни в спектрі ДВ нанокомпозита щодо чистого TiO₂. При цьому в домішковій області 440–700 нм формуються широкі неелементарні смуги відбивання/поглинання (рис. 3, 4). З цього огляду особливо ілюстративний нанокомпозит TiO₂/V₂O₅. Зростання відбивної здатності, розмиттю краю поглинання вихідної сполуки та перехід до спектра стовідсоткового п'ятиокису ванадію, який має меншу ширину забороненої зони порівняно з двоокисом титану. У таблиці 1

Рис. 2. Спектри ДВ нанопорошків Рис. 3. Спектральні залежності фу-ТіО₂ та нанокомпозитів на його ос- нкції Кубелки-Мунка для нанопонові при 295 К. Крива 1 — ТіО₂; 2 — рошків ТіО₂ — крива 1; ТіО₂/МпО₂ ТіО₂/MnO₂; 3 — ТіО₂/Cr₂O₃; 4 — 2; ТіО₂/Cr₂O₃ — 3; ТіО₂/V₂O₅ — 4. ТіО₂/V₂O₅.

зведено експериментальні дані з визначення ширини забороненої зони досліджених композитів і нелеґованого ${\rm TiO}_2$, а для порівняння вказано також значення E_g , взяті з відповідних публікацій.

В області власного поглинання леґованого TiO₂ спостерігаємо

Рис. 4. Додаткове поглинання зразка TiO₂ після лазерного оброблення. Крива одержана за різницею функції Кубелки–Мунка для опроміненого і вихідного нанопорошку.

ТАБЛИЦЯ 1. Значення ширини забороненої зони E_g нанопорошків TiO₂ та нанокомпозитів на його основі при 295 К, одержані за спектрами ДВ (E_{g1}), за спектральною залежністю F(R) (E_{g2}) та подані за публікаціями різних авторів (E_{g3}).

№ п/п	Зразок	E_{g1} , eB	E_{g2} , eB	E_{g3} , eB
1	TiO_2	3,13	2,97	3,2[8], > 3,0[10], 3,1[17], 2,96–2,97[19]
2	TiO_2/MnO_2	3,23	3,03	_
3	TiO_2/Cr_2O_3	3,18	3,02	—
4	$\mathrm{TiO}_2/\mathrm{V}_2\mathrm{O}_5$	3, 19	3,02	—

ТАБЛИЦЯ 2. Максимуми поглинання в спектрах F(R) нанопорошків TiO₂ чистого і з добавкою 3 ваг.% леґувальних компонентів *d*-металів (див. рис. 2).

№ п/п	Зразок	Обл. додатк. погл., нм	Локальні смуги, нм
1	TiO_2		551, 615, 670, 718
2	$^{*}\mathrm{TiO}_{2}$	$\lambda > 430$	440,575
3	TiO_2/MnO_2	$(400 - 460)^{**}$	_
4		460 - 750	520, 590, 650
5	TiO_2/Cr_2O_3	440 - 750	456, 585, 646
6	TiO_2/V_2O_5	440 - 750	485, 515, 567, 630

Примітка: * — зразок після лазерного оброблення; ** — область просвітлення.

зсув кривої $R(\lambda)$ в короткохвильову область — ефект Бурштейна-Мосса. У цьому випадку необхідно припустити збільшення концентрації носіїв заряду, заповнення енергетичних рівнів біля дна зони провідності та достатньо великі часи локалізації [20]. У наноматеріалах свій внесок у зсув краю може також давати значний поверхневий заряд. При великих концентраціях домішки, внаслідок появи квазінеперервного набору локальних рівнів біля краю, величина E_g зменшується. Тобто зміни E_g визначатимуться компромісом вказаних чинників. Ефект короткохвильового зсуву краю інтенсивного поглинання є добре спостережуваний в нанокомпозиті TiO₂/MnO₂, і для зазначеної концентрації домішки становить (за даними табл. 1) близько 0,1 еВ. У прикрайовій ділянці спектра 400–450 нм спостерігаємо (рис. 1) збільшення значень $R(\lambda)$ для нанопорошку TiO₂/MnO₂ в порівнянні з TiO₂. На спектрі поглинання (рис. 3) це відповідає просвітленню зразка у вказаній спектральній ділянці.

Введення 3 ваг.% інших *d*-металів (Cr, V), як показали дослідження, викликає додаткове поглинання, а зсув краю при цьому незначний. Подібні закономірності в спектрах ДВ одержані авторами в [5, 6, 7] по дослідженню $\text{TiO}_2/\text{Cr}_2\text{O}_3$, $\text{TiO}_2/\text{MnO}_2$, $\text{TiO}_2/\text{V}_2\text{O}_5$ відповідно, для нанопорошків, одержаних відмінними від застосованого нами способами.

Зміни положення краю зона-зонних переходів, як це показано

[21] для високодисперсного TiO₂, можуть зумовлюватися також розмірним ефектом за рахунок значної питомої поверхні нанопорошку та механічними напруженнями, властивими нанодисперсним системам. В експериментах питома поверхня для зразків була однакова, тому внесок розмірного ефекту в зсув краю припускаємо близьким для кожного зразка. Йонні радіуси титану та досліджених *d*-іонів (важливо при заміщенні в ґратниці) відрізняються незначно [22]: для Ti⁴⁺ його величина становить 0,0605, V⁵⁺ — 0,0540, $Cr^{3+} = 0.0615$, $Mn^{4+} = 0.0540$. Основні відмінності, очевидно, в особливостях зовнішніх електронних оболонок катіонів, їхньому валентному стані, активності зовнішніх електронів, а також можливій наявності в певному співвідношенні Зд-йонів різної валентності в нанопорошках, що підтверджують також попередні результати досліджень ЕПР. З іншого боку, ширина забороненої зони в нанокомпозитах чутлива до енергетики електронно-діркових переходів та розмірів зерен у кожному складнику, зокрема, (див., напр., роботу [23]), що, в свою чергу, дає можливість формувати системи з прогнозованою енергетикою електронно-діркових переходів.

Для нанокомпозита TiO_2/V_2O_5 при детальному розгляді широкої смуги додаткового поглинання 435–700 нм (рис. 3) можна виділити елементарні локальні максимуми, спектральне положення яких подано в табл. 2. Смуга додаткового поглинання 440–750 нм для нанопорошку TiO_2/MnO_2 містить три розмиті локальні максимуми (див. табл. 2). У випадку TiO_2/Cr_2O_3 , при вказаному значенні вмісту леґувальної домішки, спостерігаємо майже безструктурне зростання поглинання в прикрайовій ділянці спектра з формуванням неінтенсивних смуг у домішковій області. Встановлення природи локальних смуг у домішковій області спектрів ДВ, леґованого TiO_2 , потребує додаткових досліджень.

Для виявлення ефектів впливу імпульсного лазерного випромінювання, застосовуваного в процесі леґування нанопорошку, виконано вимірювання наведеного лазерним обробленням (5 хв.) спектра додаткового поглинання зразка неактивованого TiO₂ (рис. 4). Спостерігаємо широку неелементарну слабкоструктуровану смугу ($\lambda > 430$ нм) з тенденцією зростання поглинання і поширення в червоній області спектра. Значення деяких локальних максимумів занесені в табл. 2. Незначні значення коефіцієнта $\Delta F(R)$ свідчать про невеликий вплив такого оброблення на вигляд спектра ДВ. Однак, при підвищенні тривалості опромінення цей вплив може бути суттєвим. З іншого боку, навіть нетривале оброблення дає можливість фіксувати зміни в спектрі ДВ, що може послужити методом дослідження природи дефектів структури нанопорошків і цілеспрямованого впливу на їхні властивості.

При збільшенні добавки ванадію (рис. 5) спостерігаємо розмиття смуг мінімуму і максимуму відбивання, аномальне затягування рі-

зкого зменшення значень *R*(λ) у прикрайовій ділянці спектра та перехід кривої ДВ у спектр для чистого V₂O₅. Закономірно, що точка $(\lambda \cong 520$ нм) початку різкого зростання значень $R(\lambda)$ (рис. 5, криві 4– 6) відповідає мінімуму на кривій $R(\lambda)$, що відповідає $TiO_2/(3\% V_2O_5)$.

Як показали експерименти, спектри ДВ (рис. 5, криві 4–6) залежать від розміру зерна. Для виділених фракцій в області $\lambda > 550$ нм спостерігаємо зміну значень $R(\lambda)$ нанопорошку V_2O_5 порівняно з сумішшю фракцій, при $\lambda < 550$ нм функція $R(\lambda)$ змінюється мало. Відмінність <d> для досліджених фракцій порошку V₂O₅ не відбивається на кривій $R(\lambda)$ в ділянці 620–710 нм. У всіх випадках V_2O_5 спостерігаємо в цій ділянці спектра постійні значення $R(\lambda)$.

Рисунок 6 ілюструє спосіб визначення значень E_g (табл. 3) нанопорошків V_2O_5 . Видно, що спектральна залежність функції F(R) в напівлогарифмічних координатах в області зона-зонних переходів має прямолінійну ділянку. Це узгоджується із загальним висновком [24], що при даній температурі Т динаміка оптичних електронних збуджень підкоряється експоненційному співвідношенню

фракцій з різними значеннями <d>.

Рис. 5. Спектри ДВ нанопорошків Рис. 6. Функція Кубелки-Мунка для TiO_2/xV_2O_5 при 295 К. Крива 1 — нанопорошків V_2O_5 у напівлогарифx=0; 2 — x=3 ваг.%; 3 — x=10 мічних координатах. Крива 1 відповаг.%. Криві 4–6 відповідають $\mathrm{V_2O_5}$ відає $\mathrm{V_2O_5}$ з широким набором зназ різним розміром зерна: 5 — чень <d>, 2 — <d>= 100 нм. Показано <d>=100 нм; 6 — 80 нм; 4 — суміш спосіб визначення ширини забороненої зони (E_{g0}) за проекцією точки початку експоненційної ділянки на вісь енергій.

ТАБЛИЦЯ 3. Числова оцінка ширини забороненої зони E_g нанопорошків V_2O_5 при 295 К. Значення E_{g1} — за спектром $R(\lambda)$, E_{g0} — за початком прямолінійної ділянки залежності $\ln F = f(E)$, E_{g3} — літературні дані.

№ п/п	<d>, нм</d>	E_{g1} , eB	E_{g0} , eB	$E_{g^3},{ m eB}$
$\begin{array}{c}1\\2\\3\\4\end{array}$	суміш фракцій 100 80 літературні дані	2,10 2,08 2,10 —	2,19 2,20 2,19 —	 2,05[7], 2,2[26], ≅2,3(ехр.) та ≥3,0(calc.)[27] — монокристал.

(правилу Урбаха):

$$k = k_0 \exp\left[-\sigma(\hbar\omega - \hbar\omega_0)/(k_B T)\right], \qquad (2)$$

де $\hbar\omega = E$ — енергія фотонів; k_0 , $\hbar\omega_0$ — сталі; k_B —Больцманнова стала; σ — параметр, загалом залежний від T і енергії фононів, які беруть участь у формуванні краю поглинання. Одержані згідно методики [25] та за експоненційною ділянкою (табл. 3) значення E_g можемо, як і для TiO₂, вважати оцінками знизу та зверху відповідно.

4. ВИСНОВКИ

Виконані дослідження стверджують, що введення за допомогою запропонованої імпульсної лазерної методики 3d-іонів у нанопорошок TiO_2 суттєво впливає на його оптичні характеристики, зокрема, на спектри ДВ. Відбивну здатність та ширину забороненої зони одержаного нанокомпозита при такому леґуванні, як показують експериментальні дані, можна змінювати і спостерігати при цьому довгохвильовий (у великих кількостях V_2O_5) та короткохвильовий (≤ 3 ваг.% MnO_2) зсуви інтенсивного поглинання оптичного випромінювання. Оцінка значень ширини забороненої зони нанопорошків дає дещо відмінні результати залежно від способу оброблення даних, вихідної моделі електронних переходів, які формують край, тощо. Тому, з огляду також на чутливість E_g до технології зразків, навіть для одного і того самого хімічного складу нанопорошку, дані різних авторів збігатися не будуть.

ЦИТОВАНА ЛІТЕРАТУРА

1. A. G. Contos, A. Katsanaki, T. Maggos, V. Likodimos, A. Ghicov, D. Kim, J. Kunze, C. Vasilakos, P. Schmuki, and P. Falaras, *Chem. Phys. Letters*, **490**, No.

1-2:58 (2010).

- 2. З. Р. Исмагилов, Л. Т. Цикоза, Н. В. Шикина, В. Ф. Зарытова, В. В. Зиновьев, С. Н. Загребельный, *Успехи химии*, **78**, № 9: 942 (2009).
- 3. А. Я. Бариляк, Х. С. Бесага, Я. В. Бобицький, Я. І. Вахула, Фіз. і хім. тверд. тіла, 10, № 3: 515 (2009).
- 4. M. Kalbacova, J. M. Macak, F. Schmidt-Stein, C. T. Mierke, and P. Schmuki, *phys. stat. sol. (RRL)*, **2**, No. 4: 194 (2008).
- A. Trenczek-Zajac, M. Radecka, M. Jasinski, K. A. Michalow, M. Rekas, E. Kusior, K. Zakrewska, A. Heel, T. Graule, and K. Kowalski, *J. Power Sources*, 194, No. 1: 104 (2009).
- 6. Shunjum Li, Zichuan Ma, Jic Zhang, and Jinge Liu, *Catal. Comm.*, 9, No. 6: 1482 (2008).
- 7. Jianchua Liu, Rong Jang, and Songmei Li, *J. Rare Earths*, **25**, No. 2: 173 (2007).
- 8. S. Pavasuprec, Y. Suzuki, S. Pivsa-Art, and S. Yoshikawa, J. Sol. State Chem., 128: 128 (2005).
- 9. Cai-mei Fan, Qi Tang, Yun-tiang Wang, Xiao-gang Hao, Zhen-hai Liang, and Yan-ping Sun, *Trans. Nonferrous Met. Soc. China*, **17**: s716 (2007).
- 10. S. T. Hussain, K. Khan, and R. Hussain, J. Natural Gas Chem., 18, No. 4:1 (2009).
- V. N. Shevchuk, V. M. Belyukh, D. I. Popovych, and Yu. N. Usatenko, Book of Abstr. Intern. Conf. on Crystals Materials 'ICCM-2010' (Kharkov, Ukraine: 2010), p. 210e.
- 12. В. Н. Шевчук, В. М. Белюх, Д. І. Попович, Ю. М. Усатенко, *Фіз. і хім. тверд. тіла*, **12**, № 1: 51 (2011).
- 13. Г. Кортюм, В. Браун, Г. Герцог, УФН, 85, № 2: 365 (1965).
- 14. В. М. Иванов, И. И. Ершова, *Вестн. Моск. Ун-та, сер. 2. Химия*, **40**, № 1: 22 (1999).
- 15. М. М. Михайлов, Неорганич. материалы, 40, № 10: 1203 (2004).
- 16. М. М. Михайлов, А. С. Веревкин, Изв. вузов. Физика, 47, № 6: 22 (2004).
- 17. Б. К. Котлярчук, І. Ф. Миронюк, Д. І. Попович, А. С. Середницький, Фіз. *хім. тверд. тіла*, 7, № 3: 490 (2006).
- 18. М. М. Михайлов, В. А. Власов, Изв. вузов. Физика, 41, № 12: 52 (1998).
- 19. М. М. Михайлов, Журн. прикл. спектроскопии, 73, № 1: 73 (2006).
- 20. Ю. И. Уханов, Оптические свойства полупроводников (Москва: Наука: 1977).
- 21. Attenuation Grade TiO₂ Dispersion, www.koboproducts.com.
- 22. Ю. Д. Третьяков, Х. Лепис, *Химия и технология твердофазных материа*лов (Москва: Изд-во Моск. Ун-та: 1985).
- А. И. Крюков, С. Я. Кучмий, В. Д. Походенко, *Теорет. и эксперим. химия*, 36, № 2: 69 (2000).
- 24. М. В. Курик, Укр. фіз. журн., 39, № 11–12: 1058 (1994).
- 25. Б. Ф. Біленький, Р. Я. Волощук, Ю. В. Данилюк, Оптика напівпровідників: методи дослідження (Львів: Ред.-вид. відділ Львів. ун-ту: 1998).
- О. П. Виноградов, А. И. Сидоров, В. А. Климов, Е. Б. Шадрин, А. В. Нащекин, С. Д. Ханин, В. Ю. Любимов, Физ. тверд. тела, 50, № 7: 1177 (2008).
- 27. L. Fiermans, P. Clauws, W. Lambrecht, L. Vandenbroucke, and J. Vennik, *phys. stat. sol. (a)*, **59**, No. 2: 485 (1980).