© 2014 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 68.65.Hb, 71.35.Ee, 73.20.Mf, 73.21.La, 73.22.Lp, 73.63.Kv, 81.05.Zx

Экситон из пространственно разделённых электрона и дырки в квазинульмерных наноструктурах

С. И. Покутний, А. П. Горбик

Институт химии поверхности им. А. А. Чуйко НАН Украины, ул. Генерала Наумова, 17, 03164 Киев, Украина

Обнаружен эффект существенного увеличения энергии связи основного состояния экситона из пространственно разделённых электрона и дырки (дырка движется в объёме полупроводниковой квантовой точки, а электрон локализован на внешней сферической поверхности раздела квантовая точка-диэлектрическая матрица) по сравнению с энергией связи экситона в монокристалле CdS.

Виявлено ефект істотного збільшення енергії зв'язку основного стану екситона з просторово розділеними електроном і діркою (дірка рухається в об'ємі напівпровідникової квантової точки, а електрон локалізований на зовнішній сферичній поверхні розділу квантова точка-матриця) порівняно з енергією зв'язку екситона у монокристалі CdS.

The effect of a substantial increase of the binding energy of an exciton with the spatially separated electron and hole as compared with the binding energy of an exciton within the single-crystalline CdS is found out.

Ключевые слова: экситон из пространственно разделённых электрона и дырки, квантовая точка, энергия связи экситона.

(Получено 9 сентября 2013 г.; после доработки — 1 декабря 2014 г.)

1. ВВЕДЕНИЕ

Применению полупроводниковых наносистем, состоящих из полупроводниковых нанокристаллов сферической формы — так называемых квантовых точек (КТ), в качестве активной области нанолазеров препятствует малая энергия связи экситона $E_{ex}(a)$ (a — радиус КТ) в наносистеме [1, 2]. Поэтому исследования направленные на

777

поиск наноструктур, в которых может наблюдаться существенное увеличение энергии связи экситона $E_{ex}(a)$, является актуальными.

В настоящей работе обнаружен эффект существенного увеличения энергии связи основного состояния экситона из пространственно разделённых электрона и дырки (дырка движется в объёме КТ, а электрон локализован на внешней сферической поверхности раздела КТ-диэлектрическая матрица) по сравнению с энергией связи экситона в монокристалле CdS.

2. ПОЛНАЯ ЭНЕРГИЯ И ЭНЕРГИЯ СВЯЗИ ЭКСИТОНА

Рассмотрим модель квазинульмерной наносистемы: нейтральную сферическую КТ радиуса а, которая содержит в своём объёме полупроводник с диэлектрической проницаемостью (ДП) ε_2 , окружённую диэлектрической матрицей с ДП є₁. В объёме КТ движется дырка h с эффективной массой m_b , а электрон e с эффективной массой $m_{_{o}}^{(1)}$ находится в матрице. Предположим, что на сферической поверхности раздела КТ-матрица существует бесконечно высокий потенциальный барьер. Поэтому в изучаемой модели дырка h не может выйти из объёма КТ, а электрон e не может проникнуть в объем КТ. Для простоты, не теряя общности, будем считать, что дырка h расположена в центре КТ. С ростом радиуса a КТ (так что $a >> a_{er}$, где a_{er} — боровский радиус экситона в полупроводнике с ДП ε_{2}) сферическая поверхность раздела КТ-матрица переходит в плоскую поверхность раздела «полупроводник с ДП ε_2 -матрица с ДП є₁». Экситон из пространственно — разделённых электрона и дырки становится двумерным. Вкладом энергии поляризационного взаимодействия электрона и дырки с поверхностью КТ в гамильтониан экситона в первом приближении можно пренебречь. Поэтому в потенциальной энергии гамильтониана экситона остаётся только энергия кулоновского взаимодействия электрона с дыркой [3]:

$$V_{eh}(r) = -\frac{\varepsilon_1 + \varepsilon_2}{2\varepsilon_1\varepsilon_2} \frac{e^2}{r}, \qquad (1)$$

где r — расстояние электрона от центра КТ. Уравнение Шрёдингера с таким гамильтонианом описывает двумерный экситон из пространственно разделённых электрона и дырки (электрон движется в матрице с ДП ε_1 , а дырка — в полупроводнике с ДП ε_2), энергетический спектр которого имеет вид [4]:

$$E_n^{2D} = -\frac{Ry_{ex}^{2D}}{\left(n+1/2\right)^2}, \ Ry_{ex}^{2D} = \left(\frac{\varepsilon_1 + \varepsilon_2}{2\varepsilon_1\varepsilon_2}\right)^2 \left(\frac{\mu_0}{m_0}\right) Ry_0, \qquad (2)$$

где $Ry_0 = 13,606$ эВ — постоянная Ридберга, n = 0, 1, 2, ... —

главное квантовое число экситона, $\mu_0 = m_e^{(1)} m_h / (m_e^{(1)} + m_h)$ — приведённая масса экситона. Боровский радиус и энергия связи основного состояния такого двумерного экситона, согласно (2), принимают вид:

$$a_{ex}^{2D} = \left(2\varepsilon_1 \varepsilon_2 / (\varepsilon_1 + \varepsilon_2)\right) \left(\hbar^2 / \mu_0 e^2\right),\tag{3}$$

$$E_{ex}^{2D} = -4Ry_{ex}^{2D}.$$
 (4)

При этом энергия связи E_{ex}^{2D} (4) основного состояния двумерного экситона (из пространственно разделённых электрона и дырки)

$$E_{ex}^{2D} = \left[1 + \varepsilon_2/\varepsilon_1\right]^2 \left(\mu_0/\overline{\mu}\right) E_{ex}^{2D}$$
(5)

в $\left[1+\epsilon_{_{2}}/\epsilon_{_{1}}\right]^{2}\left(\mu_{_{0}}/\overline{\mu}\right)$ раз больше энергии связи

$$E_{ex}^{2D} = -(\bar{\mu}/m_0)\varepsilon_2^{-2}Ry_0$$
 (6)

основного состояния трёхмерного экситона (где μ — приведённая масса экситона в полупроводнике с ДП ε₂).

Найдём полную энергию $E_0(a)$, а также энергию связи $E_{ex}(a)$ основного состояния экситона в наносистеме вариационным методом. Вариационную радиальную волновую функцию основного состояния экситона (1*s*-состояния электрона и 1*s*-состояния дырки) в наносистеме запишем в виде [3]:

$$\Psi(r,a) = A(r/a) \exp\left[-(\mu(a)/\mu_0)(r/a_{ex}^{2D})\right], \qquad (7)$$

где A нормировочный коэффициент, а приведённая масса экситона $\mu(a)$ является вариационным параметром. Энергия связи $E_{ex}(a)$ основного состояния экситона в такой наносистеме определяется выражением:

$$E_{ex}(a) = E_0(a) - \left\langle \psi(r,a) \middle| V_{hh'}(a) + V_{ee'}(r,a) \middle| \psi(r,a) \right\rangle, \tag{8}$$

где $\langle \psi(r,a) | V_{hh'}(a) + V_{ee'}(r,a) | \psi(r,a) \rangle$ описывает средние значения энергий взаимодействия дырки $V_{hh'}$ и электрона $V_{ee'}$ со своими изображениями на вариационных функциях (7). Поскольку величины средних энергий взаимодействия дырки и электрона со своими изображениями вносят в энергию связи $E_{ex}(a)$ (8) вклады с разными знаками, то они в значительной степени компенсируют друг друга. Поэтому значения энергии связи $E_{ex}(a)$ (8) основного состояния экситона слабо отличаются от соответствующих значений полной энергии $E_0(a)$ основного состояния экПри исследовании образцов стёкол с КТ CdS в экспериментальных работах [5] установлено, что электрон может локализоваться в поляризационной яме вблизи внешней поверхности КТ, а дырка при этом движется в объёме КТ.

Результаты вариационного расчёта полной энергии $E_0(a)$ и энергии связи $E_{ex}(a)$ (8) основного состояния экситона (из пространственно разделённых электрона и дырки) здесь получены для наносистем, содержащих КТ CdS (см. рис.), синтезированных в матрице боросиликатного стекла, которые исследовались в экспериментальной работе [5]. В [5] исследовались образцы стёкол с малыми концентрациями КТ ($\approx 0,003-0,06\%$). Оптические свойства таких наносистем в основном определяются энергетическими спектрами электрона и дырки, локализованных вблизи сферической поверхности одиночных КТ, синтезированных в матрице стекла.

С ростом радиуса *a* КТ наблюдается увеличение полной энергии $|E_0(a)|$ и энергии связи $|E_{ex}(a)|$ (8) основного состояния экситона. В интервале радиусов 5,1 $\leq a \leq 35,5$ нм энергия связи $|E_{ex}(a)|$ (8) основного состояния экситона существенно превышает (в 4,2–79 раз) значение энергии связи экситона $E_{ex}^{2D(1)} \approx -31$ мэВ (6) в монокристалле CdS. Начиная с радиусов КТ $a \geq a^{(1)} \approx 35,5$ нм значения полной энергии $E_0(a)$, а также энергии связи $E_{ex}(a)$ (8) экситона асимп-

Рис. Зависимость энергии основного состояния экситона $E_0(a) - E_g$ (сплошная линия), а также энергии связи основного состояния экситона $E_{ex}(a) - E_g$ (8) (пунктир) от радиуса *a* КТ сульфида кадмия. Здесь $E_g = 2,58$ эВ — ширина запрещённой зоны в монокристалле сульфида кадмия, $E_{ex}^{2D(1)} = 2,435$ эВ (4) и $a_{ex}^{2D} = 0,36$ нм (3) — энергия связи и боровский радиус основного состояния двумерного экситона (из пространственно разделённых электрона и дырки) соответственно.

тотически следуют к значениям $E_{ex}^{2D(1)} \approx -2,435$ мэВ, определяющим энергии связи основного состояния двумерного экситона (из пространственно разделённых электрона и дырки) (см. рис.).

Эффект существенного увеличения энергии связи $|E_{ex}(a)|$ (8) основного состояния экситона (из пространственно разделённых электрона и дырки) в изучаемых наносистемах (по сравнению с энергиями связи экситона в монокристалле CdS) обуславливается двумя факторами: 1) существенным увеличением энергии кулоновского взаимодействия (1) электрона и дырки с поверхностью КТ (эффект «диэлектрического усиления» [8]); 2) пространственным ограничением области квантования объёмом КТ; при этом с увеличением радиусов КТ, начиная с радиусов КТ $a \ge a^{(1)} \approx 35,5$ м, экситон становится двумерным с энергиями связи основного состояния $E_{ex}^{2D(1)}$ и $E_{ex}^{2D(2)}$ (4), значения которых, согласно (5), (6), почти на два порядка превышают энергии связи экситона в монокристаллах CdS (отношение $|E_{ex}^{2D(1)}/E_{ex}^{2D(1)}| \approx 78,6$) (см. рис.). Авторы надеются, что настоящая работа будет стимулировать

Авторы надеются, что настоящая работа будет стимулировать экспериментальные исследования наногетероструктур, которые можно использовать в качестве активной области нанолазеров, работающих на экситонных переходах.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. Ж. И. Алфёров, Успехи физических наук, 172, № 9: 1068 (2002).
- 2. S. I. Pokutnyi, *Phys. Lett. A*, **342**, No. 5: 347 (2005).
- 3. S. I. Pokutnyi, *Phys. Express*, 2: 1 (2012).
- Ю. Е. Лозовик, В. Н. Нишанов, Физика твердого тела, 18, № 11: 3267 (1976).
- В. Я. Грабовскис, Я. Я. Дзенис, А. И. Екимов, Физика твердого тела, 31, № 1: 272 (1989).
- 6. S. I. Pokutnyi, Phys. Lett. A, 203: 388 (1995).
- 7. Л. В. Келдыш, Письма в ЖЭТФ, 29, № 11: 776 (1979).

REFERENCES

- 1. Zh. I. Alferov, Uspekhi Fizicheskikh Nauk, 172, No. 9: 1068 (2002).
- 2. S. I. Pokutnyi, *Phys. Lett. A*, **342**, No. 5: 347 (2005).
- 3. S. I. Pokutnyi, *Phys. Express*, 2: 1 (2012).
- 4. Yu. E. Lozovik and V. N. Nishanov, *Fizika Tverdogo Tela*, **18**, No. 11: 3267 (1976).
- 5. V. Ya. Grabovskis, Ya. Ya. Dzenis, and A. I. Ekimov, *Fizika Tverdogo Tela*, **31**, No. 1: 272 (1989).
- 6. S. I. Pokutnyi, *Phys. Lett. A*, **203**: 388 (1995).
- 7. L. V. Keldysh, Pis'ma v Zh. Eksp. Teor. Fiz., 29, No. 11: 776 (1979).