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This paper is concerned with a second order nonlinear impulsive difference equation with continuous
variable. By using a nonimpulsive inequality sufficient conditions for the oscillation of impulsive difference
equation are obtained.

Розглянуто нелiнiйнi iмпульснi рiзницевi рiвняння другого порядку з неперервним аргументом.
Використовуючи неiмпульсну нерiвнiсть, отримано достатнi умови осциляцiї iмпульсних рiз-
ницевих рiвнянь.

1. Introduction In many applied mathematics problems, it is considered difference equations of
the form

xn = f(n, xn−j), n = 1, 2, . . . , j ∈ N,

which is a discrete equation and it is a special case of the following difference equation with
continuous variable

x(t) = f(t, x(t− k)), t ≥ 0, k is a constant.

Recently, there has been an increasing interest in the study of oscillation of difference equations
with continuous variables [1 – 6]. On the other hand, it is well known that impulsive equations
appear as a natural description of the observed evolution phenomena of several real world
problems [7, 8]. There has been rich literature on the oscillation of impulsive differential equati-
ons. The monographs [9, 10] and the survey papers [11, 12] include many results on the oscillati-
on of impulsive differential equations. But, to the best of our knowledge there has been only
a few works on the oscillation of impulsive difference equations with continuous variables [13,
14], and there is no paper on the second order nonlinear impulsive difference equations with
continuous variables.

In this paper, our aim is to establish sufficient conditions for the oscillation of second order
nonlinear impulsive difference equation with continuous variable. We shall construct a noni-
mpulsive inequality and using it we shall obtain sufficient conditions for the oscillation. This
technique has been used in [15] and it can be applied to higher order impulsive difference
equations with continuous variable.

Let 0 < t1 < t2 < . . . < tn < tn+1 < . . . be fixed points with limn→∞ tn = +∞.
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We consider second order nonlinear impulsive difference equations of the type

∆2
τx(t) + ∆τx(t) + x(t) + f(x(t− σ)) = 0, t 6= tn, (1)

x(t+n )− x(t−n ) = g(x(t−n )), n ∈ N = {1, 2, . . .}, (2)

where ∆τx(t) = x(t+ τ)− x(t), τ, σ are positive constants; x(t+n ) = limt→t+n x(t), and x(t−n ) =
= limt→t−n x(t).

Throughout this paper we shall assume that the following conditions are satisfied:
(i) f ∈ C(R,R), f(u)/u ≥ K, K > 0 is a constant, for u 6= 0;
(ii) g ∈ C(R,R), ug(u) > 0 for u 6= 0.

Definition 1. A function x : [−σ,∞) → R is called a solution of (1), (2) if
(a) for t 6= tn, n ∈ N, x is continuous and satisfies (1),
(b) for t = tn, x(t+n ) and x(t−n ) exist and satisfy (2) with x(t−n ) = x(tn).

Definition 2. If a function x(t) is positive (negative) for all large values of t, then it is said that
x(t) is eventually positive (negative). A solution x(t) of (1), (2) is called oscillatory if it is neither
eventually positive nor eventually negative.

2. Main results. In this section, first we introduce some functions. Denote

F (u) =
u

u+ g(u)
, u ∈ R\{0}.

From the condition (ii) we have u+ g(u) 6= 0 and 0 < F (u) < 1 for u 6= 0.
Let x(t) be a solution of (1), (2). Define

z(t) = x(t)
∏

t0≤tm<t
F (x(tm)), t ≥ t0 > 0.

As usual, the symbol
∏
a≤tm<b am denotes the product of members of the sequence {am} over

m such that tm ∈ [a, b) ∩ {tn : n ∈ N}.
If [a, b) ∩ {tn : n ∈ N} = ∅ or a > b, then we use the convention that

∏
a≤tm<b am = 1.

It can be seen that the function z(t) is continuous at tk ≥ t0. Indeed,

z(t−k ) = x(t−k )
∏

t0≤tm<tk

F (x(tm)) = z(tk)

and
z(t+k ) = x(t+k )

∏
t0≤tm<t+k

F (x(tm)) = x(t+k )
∏

t0≤tm<tk

F (x(tm))F (x(tk)) = z(tk),

where we have used the impulse condition (2).
Define

v(t) =
1

τ

t+2τ∫
t+τ

z(u) du, t ≥ t0. (3)
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Lemma 1. Assume that hypotheses (i), (ii) hold. If x(t) is an eventually positive solution of
(1), (2), then v(t) > 0, and v′(t) ≤ 0 eventually.

Proof. Let x(t) > 0, t ≥ t0. Then it is clear that v(t) > 0 for t ≥ t0. From (3) we obtain

v′(t) =
1

τ
[z(t+ 2τ)− z(t+ τ)] =

=
1

τ

∏
t0≤tm<t+τ

F (x(tm))

x(t+ 2τ)
∏

t+τ≤tm<t+2τ

F (x(tm))− x(t+ τ)

 . (4)

Now from Eq. (1), we have
x(t+ 2τ)− x(t+ τ) < 0.

Since 0 <
∏

t+τ≤tm<t+2τ
F (x(tm)) ≤ 1, we also have

x(t+ 2τ)
∏

t+τ≤tm<t+2τ

F (x(tm)) < x(t+ τ). (5)

Using (4) and (5), we obtain v′(t) < 0 for t ≥ t0, t 6= tm. Since v(t) is continuous, it follows
that v′(t) ≤ 0 for t ≥ t0.

Lemma 1 is proved.

Remark 1. Assume that hypotheses (i), (ii) hold. If x(t) is an eventually negative solution
of (1), (2), then v(t) < 0, and v′(t) ≥ 0 eventually.

Let σ = kτ + θ, k ∈ N, θ ∈ [0, τ).

Lemma 2. Let x(t) be an eventually positive solution of Eqs. (1), (2). Assume that the followi-
ng conditions hold:

(H1) assumptions (i), (ii) are fulfilled;
(H2) f(u) is convex for u > 0, and concave for u < 0;
(H3) ug(u) ≤ Lmu

2 for u ∈ R, where Lm ≥ 0, m = 1, 2, . . . , are constants.
Then v(t) defined by (3) eventually satisfies the inequality

v(t+ 2τ)− v(t+ τ)
∏

t0≤tm<t+3τ

(1 + Lm) + v(t) + f(v(t− kτ)) ≤ 0. (6)

Proof. Let x(t) > 0, t ≥ t0. By using (H1) – (H3) and employing the Jensen’s inequality, we
get

v(t+ 2τ)− v(t+ τ)
∏

t0≤tm<t+3τ

(1 + Lm) + v(t) + f(v(t− σ)) ≤

≤ 1

τ


t+2τ∫
t+τ

x(u+ 2τ) du−
t+2τ∫
t+τ

x(u+ τ) du+

t+2τ∫
t+τ

x(u) du+

t+2τ∫
t+τ

f(x(u− σ)) du

 = 0.

(7)
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Note that from condition (i) and (H2) f is nondecreasing. On the other hand, in view of
Lemma 1, we have

v(t− σ) ≥ v(t− kτ). (8)

Using (8) and the fact that f(u) is nondecreasing, we easily obtain (6) from (7).
Lemma 2 is proved.

Remark 2. Let x(t) be an eventually negative solution of Eqs. (1), (2). Under the hypotheses
of Lemma 2 it is shown that v(t) defined by (3) eventually satisfies the inequality

v(t+ 2τ)− v(t+ τ)
∏

t0≤tm<t+3τ

(1 + Lm) + v(t) + f(v(t− kτ)) ≥ 0.

Theorem 1. In addition to (H1) – (H3), assume that
(H4) lim sup

t→∞

∏
t0≤tm<t+3τ

(1 + Lm) = L < ∞.

If

K > Lk+2 (k + 1)k+1

(k + 2)k+2
, (9)

then every solution of (1), (2) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of (1), (2). We may
assume without any loss of generality that x(t) is eventually positive. From (6), we have

v(t+ 2τ)

v(t+ τ)
−

∏
t0≤tm<t+3τ

(1 + Lm) ≤ −f(v(t− kτ))

v(t+ τ)
=−f(v(t− kτ))

v(t− kτ)

k∏
j=0

v(t− jτ)

v(t− (j − 1)τ)
. (10)

Define

α(t) =
v(t)

v(t+ τ)
, t ≥ t0.

Since v′(t) ≤ 0, it is clear that α(t) ≥ 1. From (ii) and (10), we have

1

α(t+ τ)
+K

k∏
j=0

α(t− jτ) ≤
∏

t0≤tm<t+3τ

(1 + Lm). (11)

In view of (H4) inequality (11) implies that α(t) is bounded. Let β = lim inft→∞α(t). Taking
the inferior limit on both sides of (11), we obtain

1 +Kβk+2 ≤ βL.

This inequality implies that

β >
1

L
and

Kβk+2

βL− 1
≤ 1. (12)
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Using the fact that

min
β> 1

L

βk+2

βL− 1
=

1

Lk+2

(k + 2)k+2

(k + 1)k+1
,

we obtain from (12) that
1

Lk+2

(k + 2)k+2

(k + 1)k+1
≤ 1

K
,

which however contradicts (9). If x(t) is an eventually negative solution of Eqs. (1), (2), we are
lead to a contradiction by a similar argument.

Theorem 1 is proved.

Theorem 2. In addition to (H1) – (H3) assume that the following conditions are satisfied:
(H5)

∑∞
m=1 Lm < ∞,

(H6) lim supu→0

f(u)

u
> 1.

Then every solution of Eqs. (1), (2) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of (1), (2). We may
assume without any loss of generality that x(t) is eventually positive. From (6), we have

v(t+ 2τ) ≤ v(t+ τ)
∏

t0≤tm<t+3τ

(1 + Lm). (13)

Using (13) we obtain

v(t+ τ) ≤ v(t− kτ)

k+1∏
i=1

∏
t0≤tm<t−(i−3)τ

(1 + Lm).

Now using the above inequality from (6), we get

f(v(t− kτ)) ≤ v(t+ τ)
∏

t0≤tm<t+3τ

(1 + Lm) ≤ v(t− kτ)
∏

t0≤tm<t+3τ

(1 + Lm)k+2.

From the last inequality, we have

f(v(t− kτ))

v(t− kτ)
≤

∏
t0≤tm<t+3τ

(1 + Lm)k+2. (14)

Since v(t) > 0 is a continuous function and v′(t) ≤ 0, limt→∞v(t) = v0 ≥ 0. We claim that
v0 = 0. If v0 > 0, then from (4) we get

v(t+ 2τ) + v(t) < v(t+ τ)
∏

t0≤tm<t+3τ

(1 + Lm).

Taking the limit on both sides of last inequality we obtain 2v0 ≤ v0 which is a contradiction. So,
limt→∞ v(t) = 0.
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Now, taking the superior limit on both sides of (14), we obtain

lim sup
t→∞

f(v(t− kτ))

v(t− kτ)
≤ 1,

which however contradicts (H6). If x(t) is an eventually negative solution of Eqs. (1), (2), we
are lead to a contradiction by a similar argument.

Theorem 2 is proved.

Remark 3. If x(t+n ) = x(t−n ) for all n ∈ N, then L = 1 and the assertions of Theorems 1 and
2 are valid for nonimpulsive equation.

Corollary 1. Assume that (H1) – (H3) and (H5) are satisfied. If

lim inf
u→0

f(u)

u
>

(k + 1)k+1

(k + 2)k+2
,

then every solution of Eqs. (1), (2) is oscillatory.

Example 1. Consider the linear impulsive difference equation with continuous variable

∆2
1/2x(t) + ∆1/2x(t) + x(t) +Ax

(
t− 3

2

)
= 0, t 6= tn,

(15)

x(t+n )− x(t−n ) =
1

n(n+ 1)
x(tn), tn = n, n ∈ N,

where τ = 1/2, σ = 3/2, A > 0 is a constant, Ln =
1

n(n+ 1)
, n ∈ N. If A >

44

55
, then by

Corollary 1 every solution of equation (15) is oscillatory.

Example 2. Consider the nonlinear impulsive difference equation with continuous variable

x(t+ 2)− x(t+ 1) + x(t) + x(t− 1)(1 + x2(t− 1)) = 0, t 6= tn,
(16)

x(t+n )− x(t−n ) =
1

3n
x(tn)

1 + x2(tn)
, tn = n, n = 1, 2, . . . ,

where τ = σ = 1, f(u) = u(1 + u2), g(u) =
1

3n
u

1 + u2
. Equation (16) satisfy the conditions

(H1) – (H3), (H5). Moreover, lim inf
u→0

f(u)

u
>

22

33
. So, by Corollary 1, every solution of equation

(16) is oscillatory.
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