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This article is concerned with oscillation of a certain class of fourth-order delay differential equations.
Some new oscillation criteria are presented which include Hille and Nehari type. The results obtained
improve some results obtained earlier in [Zhang C., Li T, Sun B., Thandapani E. On the oscillation of
higher-order half-linear delay differential equations // Appl. Math. Lett. — 2011. — 24. — P 1618-1621].
Two examples are considered to illustrate the main results.

Poseaanymo koausanns 6 deaxomy Kaaci OugepeHuiasbHUX PIBHAHD 4emeepmoz0 NOPAOKY 3 3a2ar08aH-
HAM. 3HATI0eHO HOBI Kpumepii KOAUBAHHA, AKI 8KAOYAIOMb 6 cebe kpumepii muny Xiane ma Hexapi.
Ompumani pezyabmamu nokpauyroms 0eaxi peayavmamu 3 [Zhang C., Li T, Sun B., Thandapani E.
On the oscillation of higher-order half-linear delay differential equations // Appl. Math. Lett. — 2011. —
24. — P 1618-1621]. Pozeaanymo 08a npukaaou, aKi iAlOCMpyiomb OCHOBHI Pe3yAbmamiu.

1. Introduction. In this paper, we are concerned with oscillation of the fourth-order quasilinear
delay differential equation

(r(t) (xm(t))a)l Fq(t)z(r(t) = 0, for > to. (1.1)

We will assume that the following assumptions hold:

(H1) a is a quotient of odd positive integers;

(Hy) r € Cl'tg,00), 7' (t) > 0, r(t) > 0,¢q, 7 € Cltg,00), g(t) > 0, 7(t) < t, and
limy_yo0 7(t) = 0.
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OSCILLATION OF FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS 323

By a solution of (1.1), we mean a function z € C3[T},c0), T, > to, which has the property
r(z")* € CT,,c0) and satisfies (1.1) on [T}, c0). We consider only those solutions z of (1.1)
which satisfy sup{|z(¢)| : ¢ > T} > 0for all T > T,. We assume that (1.1) possesses such a
solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [T}, o) and
otherwise it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are
oscillatory.

In recent decades, the oscillation of second-order and third-order differential equations
have been deeply studied in the literature, we refer the reader to the related books [1,3-5, 13,
15,21] and the papers [2, 612, 14, 16 —20, 22]. In the following, we present some related results
that serve and motivate the contents of this paper. Agarwal et al. [2], Kamo and Usami [11,
12], and Kusano et al. [14] considered the oscillation of the fourth-order nonlinear differential
equation

(T(t) (wll(t))Oé)N 4 q(t)mﬁ(t) —0.

Grace et al. [10] examined the oscillation behavior of the fourth-order nonlinear differential
equation

"

(rt) (+'®)") +a@ (o)) =o.

Agarwal et al. [7] and Zhang et al. [22] studied the oscillatory properties of the higher-order
differential equation

/

(r) (=" ®)") + a2’ (=(1)) = o, (12)

under the conditions

7 1

/rl/a(t) dt = oo,

to
and

/ e (13)

ri/a(t)

to

Zhang et al. [22] obtained some results which ensure that every solution = of (1.2) is either
oscillatory or lim;_,~ z(t) = 0 for the case where (1.3) holds. As a special case when n = 4,
they proved the following result: Let (H;), (H2), and (1.3) hold, and 7(¢) < t. Further, assume
that for some constant \y € (0, 1), the delay differential equation

, < Ao3(t)

Y () + q(t) ))) y(r(t) = 0 (14)

6ri/o(r(t
is oscillatory. If

. / )\1 @ o OzO‘_H 1 N
h?i)iljpto/ [q(s) (272(3)> 0%(s) — (o + 1) 3(s)ri/a(s) ds = o0 (15)
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for some constant A; € (0,1), where §(¢t) := / r~(1/2)(s) ds, then every solution of (1.1) is
t

either oscillatory or converges to zero as t — 0.

Our aim in this paper is to employ the Riccati technique to establish some new conditions
for oscillation of all solutions of (1.1). The results not only differ from the results obtained
in [22], but also improve some of them. Some examples are considered to illustrate the main
results.

2. Main results. In this section, we will derive some new criteria for oscillation of (1.1). To
prove the main results we will need the following lemma.

Lemma 2.1 (see [3], Lemma 2.2.3). Let f € C™([tg,00),RT). Assume that f"(t) is ofﬁxed
sign and not identically zero on [ty, c0), and there exists a t, > tq such that f™=V(t) £ (t) <
forallt > t1. Iflimy_,o f(t) # O, then for every k € (0, 1), there exists ty, € [t1,00) such that

@), for € [t 00).
Now, we are ready to state and prove the main results. For convenience, we denote

R(t) := / %ds, py(t) == max{0,p (t)}, and 6 (t) := max{0,6 (¢)}.

ra(s)
In the sequel, all occurring functional inequalities considered in this section are assumed to
hold eventually, that is, they are satisfied for all ¢ large enough.

Theorem 2.1. Let (Hy), (H2), and (1.3) hold. Assume that there exists a positive function
p € Cltg, 00) such that

yi 2(s)\“ 2% r(s)(p. (s))>T!
/ !q<5)< ) 2 G et | = D

to

for some constant ky € (0,1). Assume further that there exists a positive function § € Cl[tg, o0)
such that

e e
to s 9

if
[ foo (] [ s QI T2 PR
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and

/OO[Q(S) (12272(3)>QR°‘(3) e 1)af1a;(ls)r1/a(s> ds = oo, (2.4)

for some constant ky € (0, 1), then every solution of (1.1) is oscillatory.

Proof. Assume that (1.1) has a nonoscillatory solution z. Without loss of generality we may
assume that x is eventually positive. It follows from (1.1) that there exist four possible cases for
t > t1, where t; > tgis large enough:

/ " /

Casel: z(t) > 0,z (t) > 0,z (t) > 0,z (t) > 0,z (t) <0, (r(x

/ " /

Case?2: z(t) > 0,z (t) > 0,z (t) < 0,2 (¢t) > 0,24 (t) <0, (r(x

" /

Case3: z(t) > 0,z (t) < 0,z (t) > 0,2 (t) < 0,(r(z" )¥) (t) < 0.

/ " !

Cased : z(t) > 0,z (t) > 0,z (t) > 0,2 (¢t) < 0,(r(z" )¥) (t) < 0.

Assume that Case 1 holds. By Kiguradze Lemma [13], we have x(t) > (£/2)z'(t), and so

x(7(t T2(¢
), 70 0s)
Define
w(t) := p(t) M, t > t. (2.6)
z*(t)
Then w(t) > Ofort > ¢;, and
o () (@) (r(=")*) (1) 2 () ()r () (&) (1)
w(t)=pt) =3 o P —3 O ap(t) 229 (1) (2.7)
From Lemma 2.1, we have
2 () > gt%’” 0 2.8)

for every k € (0, 1) and for all sufficiently large ¢. Hence, we obtain by (2.7) and (2.8) that

7

o) < o) " O o TETLO ok 2y 2 0T O
Hence by (1.1), we get
o (PON AW ek R
0= a0 () w0+ e -G ot o, e
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Set
A Mg O
2(r(t)p(t))a p(t)
Using the inequality
By — Ay*a < a f‘;w szl, A, B >0,
we have
P(t) wit) — akt®  an 0 < 2% T(t)(P;(t;)Z“

which implies that

/ 2(s)\“ 2¢ r(s s))atl
/ IQ(S) < 8(2 )> ple) - (o + 1)l ((36(;(2)(82;0‘ ] ds < wlty),

t1

for every k € (0, 1) and for all sufficiently large ¢. This is a contradiction to (2.1). Assume that

Case 2 holds. Integrating (1.1) from ¢ to [, we have

By virtue of z > 0, 2" > 0,and 2" < 0, we get x(t) > (t/2)z (t), and so (2.5) holds. Then by

(2.5), we have

from which follows by z' > 0 that

l
7-25 o
060 )0+ a0 [t (7)) as <o

Letting I — oo, we have
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i.e.,

2" () + x(t) |:7"(1t) 7q(3) (72(28)>a ds] ! <0.

Integrating again from ¢ to co, we get

;ﬂa)+xuxf{ré)72@g<73ﬁ>ad4ﬁkm9<o. (2.10)

Define

@) W) — @)2)
L () Ot g (t)
=05 w et
Hence by (2.10), we get
%) ) é , .
w/lﬁﬁ/q < ) 4 dﬁ+ﬁgdw—;g. (2.11)
t 9

Thus, we have

which yields

[

J

s

10 (7%

9

! .
> ] ﬁ9(%&3](k<56&

It

t1

which contradicts (2.2). Assume that Case 3 holds. Recalling that r(z"')® is nonincreasing, we
have

"

res)z” (s) < PV (), s>t >t
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Dividing the above inequality by /% (s) and integrating the resulting inequality from ¢ to [, we
obtain

l
(1) < 2" (t) + /)" (t) / r=Y(s) ds.

t

Letting [ — oo, we get

' (t) > =Y @t)a" () R(2). (2.12)
Integrating (2.12) from ¢ to co, we have
—z' (t) > /—rl/a(s)ww(s)R( )yds > —rl/o(t) /R (2.13)
t t

Integrating (2.13) from ¢ to oo, we get

z(t) > /—rl/a( /R )dsdu > —r'/(t) //R ) ds du. (2.14)
We define
o(t) == W t >ty (2.15)

Then ¢(t) < 0, fort > ¢;, and by (2.13), we have that

/ (r@)' (M) rE")* (@) (1)

PO T e S
x* (T TQTH z" Yot i( 7
< qy=C (g)) Y xaﬂ —0 [ Resyas (2.16)

Hence by (2.15) and (2.16), we obtain
J (1) < ~a(t) - a0 (1) [ Bl ds 2.17)
t

From (2.14), we get

£) (77}3(5) ds du)a > 1. (2.18)

u
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Multiplying (2.17) by ( / / s)ds du) and integrating the resulting inequality from ¢;

to t, we have

(// dsdu)@ (/ [ dsdu) i)+

t1 u

a—1

+o j 73@) dv (773(1)) dvdu) o(s) ds+

t1 s

+ /tq(s) (77R(v) dv du)a ds+

+a/t<p°‘21(s) (771{@) dv du) /R(v)dv ds < 0.

S

Set
) 00 00 a-1
B /R(v)dv(//R()dvdu) ,
and
A= (//R(v)dvdu) R(v)dv, y:= —¢(s)
Using the inequality
atl a® Ba+1
— o > — .
By + Ay 2 Tt i Aa A, B > 0, (2.19)
we have
00 00 00 a—1 e
/R(U) dv (//R(v) dv du) ©(s) i (// v) dv du) /R(v) dv >

. a® [ R(v) dv
(o 1) FL [ [*° R(v) dv du
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Hence, we obtain by (2.18) that
aotl [ R(v) dv
/ { (// dvdu) T et 0o [P [C Ry dvda | P
< (//R(s) dsdu) o(t1) + 1.

This is a contradiction to (2.3). Assume that Case 4 holds. In view of the proof of Case 3, we
have (2.12). On the other hand, by Lemma 2.1, we get

z(t) > gt%”(t) (2.20)

for every k € (0, 1) and for all sufficiently large ¢t. Now define
o(t) = W t> . (2.21)

Then ¢(t) < 0fort > t;, and by (2.20) and (2.21), we get that

a+1
«a

xa(T(t)) (:L’ (,T t)z)a B (Z)Z(t) < —q(t) <k7—2<t)>a _ a¢

@) @) " 2

1
ro(t

()t). (2.22)

Multiplying the above inequality by R*(t) and integrating the resulting inequality from ¢; to ¢,
we have

R (8)o(t) — R (t1)d(t) +a/rl/a(S)Ra1(8)¢(8) ds <

t1

t

< j a(s) (S 72(s)> ds — a / af/la RO (s) ds.

t1

Set B := r~1/%(s)R*1(s), A := R%(s)/r'/*(s), and y := —¢(s). Using the inequality (2.19)
and (2.12), we have, for every k£ € (0, 1) and for all sufficiently large ¢,

tl/t [Q(S) <§T2(S)>QRO‘(S) " j_af)laﬂ R(s)rll/a(s)] ds < R(t1)o(t1) + 1.

This is a contradiction to (2.4).
Theorem 2.1 is proved.
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It is well known (see [8]) that the differential equation

I

(a()(@ (1)) + q()z(t) = 0, (2.23)

where o > 0 is a ratio of odd positive integers, a,q € C([to,o0), RT) is nonoscillatory if and
only if there exist a number T > t, and a function v € C!([T,00),R) which satisfies the
inequality
0 (8) + aa” V@) (v(t) T L g(t) <0, on [T, o0).
In the following, we compare the oscillatory behavior of equation (1.1) with second-order

half-linear equations of type (2.23). For the oscillation of equation (2.23), there are many
results; see e.g., [1,3-5, 17, 18, 20, 21] which include Hille and Nehari type, Philos type, etc.

Theorem 2.2. Let (H1), (H2), and (1.3) hold. Assume that the equation

r) e B0\
<t2‘1(x (1)) > +q(t) ( 572 x(t) =0 (2.24)
is oscillatory for some constant ky € (0, 1), the equation
oo oo 1
" 1 ’7'2(8) @ :
x (t)+:c(t)/ ) /q(s)( 2 > ds| d¥ =0 (2.25)
t )
is oscillatory, and the equation
/ Ris)ds| (@) +aq®)a®) =0 (2.26)
t
is oscillatory, and the equation
! e ' ka 2 “ e
(rE'@)) +at) (5 70) @) =0 2.27)

is oscillatory for some constant ko € (0,1). Then every solution of (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.1, we have (2.9), (2.11), (2.17), and (2.22).
Letting p(t) = 1in (2.9), we have

L akt? e 2(t)\
(t)+72(r(t))é (t)+q(t)< > > <0

for every constant & € (0,1). Then we can see that equation (2.24) is nonoscillatory for every
constant k; € (0,1), which is a contradiction. Letting #(¢) = 1in (2.11), we have

£ (t)+ &) +7 T(119>7q(s) (Ti(j)>a ds : dy < 0.
3 9
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Then equation (2.25) is nonoscillatory, which is a contradiction. From (2.17), we have
o (1) —i—acpa /R )ds 4+ q(t) < 0.
t

Then we can find that equation (2.26) is nonoscillatory, which is a contradiction. From (2.22),

we have
a+1

60+ q (§r0) <o

for every constant £ € (0,1). Then we can see that equation (2.27) is nonoscillatory for every
constant k2 € (0, 1), which is a contradiction.

Theorem 2.2 is proved.

It is well known (see [18]) that if

o] t o]

1 o 1 1
/a(t)dt = oo, and llt@)(l)lolf /a(s)ds /q(s) ds > 7
t

to to

then equation (2.23) with o = 1 is oscillatory. Also, it is well known (see [20], Theorem 3.3)
that if

00 00 -1 2

1 1 1 1
_ lim inf = = -
/ @ dt < oo, and imin /a(s) ds / / ) dv | q(s)ds > 1

to t t s

(e eIy Ao o]

then equation (2.23) with o = 1 is oscillatory.
Based on the above results and Theorem 2.2, we can easily obtain the following Hille and
Nehari type oscillation criteria for (1.1) when a = 1.

Theorem 2.3. Let o = 1, (Hy), (H2), and (1.3) hold. Assume that

[e%e) t

2 . AN RO
/r()dt oo, and htrgclgf /r(s)ds /q(s) 2 ds > T
t

to to

for some constant k, € (0,1), and

o 0O
liminft//
t—o00

t n

o0

[ a™

0

1
) ds v dy > T (2.28)

and

00 00 t oo o)
1
//R(s) dsdt = oo, and liginf //R(v) dv ds /q(s) ds > "
t t

to to s
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and

litrg(i}olf /'r(ls)ds / /r(lv)dv q(s)7%(s) ds > % (2.29)

t t S

for some constant ky € (0,1). Then every solution of (1.1) with « = 1 is oscillatory.

Theorem 2.4. Let o = 1, (Hy), (H2), (1.3), and (2.28) hold. Assume that

L i 72(s) 1
hgégf /ds / /dv q(s) = ds > T
t

for some constant k, € (0,1), and

-1 2

oo oo OO 1
hmlnf // v) dvds / //R(v) dvdu | q(s)ds > T
t s u

and (2.29) holds for some constant ko € (0,1). Then every solution of (1.1) with « = 1 is
oscillatory.

3. Examples. In this section, we give two examples to illustrate the main results.

Example 3.1. Consider the differential equation

(t%’”(t))/ +Bta(t) =0, t> 1. (3.1)

Here 5 > 0is a constant. Let

Then, we have

1 1 7T 1
R(t) = yrrs /R(v) dv = 1253 //R(v) dvdu = Yk

Letting p(t) = 6(t) = 1, then we have that (2.1) and (2.2) are satisfied. By calculating, we
see that (2.3) and (2.4) hold when § > 12. Hence by Theorem 2.1, every solution of (3.1) is
oscillatory if 5 > 12. However, results of [22] cannot give this conclusion.
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Example 3.2. Consider the delay differential equation

1" ! H \/ 10
(etx (t)) +2v10 etraresin 2 () aurcsinl—O =0, t>1. (32)

It is easy to see that every solution of (3.2) is oscillatory due to Theorem 2.1. One such soluti-
on is z(t) = e'sint. However, [22] (Corollary 2.1) implies that (3.2) may exist nonoscillatory
solutions = which satisfy lim;_,-, z(¢) = 0. Hence our results supplement and improve those
in [22].
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