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Our aim in this work is to study the existence of solutions of a functional differential inclusion with finite
delay. We use the Bohnenblust – Karlin fixed point theorem for the existence of solutions.

Вивчено питання iснування розв’язкiв функцiонально-диференцiальних включень зi скiнченним
запiзненням. Для доведення iснування розв’язкiв було використано теорему Бохнебласта – Кар-
лiна про нерухому точку.

1. Introduction. In this work we are going to prove the existence of solutions of a class of
semilinear functional evolution inclusion with delay. Our investigations will be situated in the
Banach space of real continuous and bounded functions on the real half axis [0,+∞). We will
use Bohnenblust – Karlin’s fixed theorem, combined with the Corduneanu’s compactness cri-
teria. More precisely, we will consider the following problem:

y′(t)−Ay(t) ∈ F (t, yt), a.e. t ∈ J := [0,+∞), (1.1)

y(t) = φ(t), t ∈ [−r, 0], (1.2)

where F : J × C([−r, 0],→ P(E) is a multivalued map with nonempty compact values, P(E)
is the family of all nonempty subsets of E, A : D(A) ⊂ E → E is the infinitesimal generator
of a strongly continuous semigroup T (t), t ∈ J, φ : [−r, 0] → E is a given continuous function,
and (E, |.|) is a real Banach space. For any function y defined on [−r,+∞) and any t ∈ J, we
denote by yt the element of C([−r, 0], E) defined by yt(θ) = y(t + θ), θ ∈ [−r, 0]. Here yt(.)
represents the history of the state from time t− r, up to the present time t.

For modeling scientific phenomena where the delay is either a fixed constant or is given
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as an integral in which case is called distributed delay, we use differential delay equations or
functional differential equations; see for instance the books [14, 15, 18].

An extensive theory is developed for evolution equations [1, 2, 12]. Uniqueness and exi-
stence results have been established recently for various classes of evolution problems in the
papers by Baghli and Benchohra for finite and infinite delays in the Fréchet space setting
in [3 – 6].

The aim of the present paper is to provide sufficient conditions for the existence of global
mild solutions in the Banach space setting. Let us notice that most of the global existing results
are given in Fréchet space setting. Thus the present results can be considered as a contribution
for the global existence of mild solution of problem (1.1), (1.2).

2. Preliminaries. In this section we present briefly some notations, definition, and a theorem
that are used throughout this work.

By B(E) denotes the Banach space of bounded linear operators from E into E, with norm

‖N‖B(E) = sup{|N(y)| : |y| = 1}.

By BC := BC([−r,+∞)) we denote the Banach space of all bounded and continuous
functions from [−r,+∞) into IR equipped with the standard norm

‖y‖BC = sup
t∈[−r,+∞)

|y(t)|.

We need the following definitions in the sequel.
Let (E, d) be a metric space. We use the following notations:

Pcl(E) = {Y ∈ P(E) : Y closed}, Pcv(E) = {Y ∈ P(E) : Y convex},

Pb(E) = {Y ∈ P(E) : Y bounded}.

Consider Hd : P(E)× P(E) −→ R+ ∪ {∞}, given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b).

Let (E, ‖ · ‖) be a Banach space. A multivalued map A : E → P(E) has convex (closed)
values if A(x) is convex (closed) for all x ∈ E. We say that A is bounded on bounded sets if
A(B) is bounded in E for each bounded set B of E, i.e.,

sup
x∈B
{sup{‖y‖ : y ∈ A(x)}} < ∞.

F is said to be completely continuous if F (B) is relatively compact for every B ∈ Pb(E).
If the multivalued map F is completely continuous with non empty values, then F is u.s.c. if an
only if F has a closed graph, i.e., (xn → x∗, yn → y∗, yn ∈ F (xn) implies y∗ ∈ F (x∗)).
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Definition 2.1. A function F : J × C([−r, 0];E) −→ P(E) is said to be a Carathéodory
multivalued map if it satisfies:

(i) y 7→ F (t, y) is upper semicontinuous for almost all t ∈ J ;
(ii) t 7→ F (t, y) is measurable for each y ∈ C([−r, 0];E).
The multivalued map F is said to be L1-Carathéodory if it satisfies (i), (ii) and
(iii) for every a positive constant l there exists hl ∈ L1(J, IR+)

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ hl,

for all |y| ≤ l for almost all t ∈ J.

For each y : [−r,+∞) → E let the set SF,y known as the set of selections of F be defined
by

SF,y = {v ∈ L1(J ;E) : v(t) ∈ F (t, yt), a.e. t ∈ J}.

Lemma 2.1 [16]. Let E be a Banach space. Let F : J ×E → Pcl,cv(E) be a L1-Carathéodory
multivalued map, and let Γ be a linear continuous map from L1(J ;E) into C(J ;E). Then the
operator

Γ ◦ SF : C(J,E) −→Pcp,cv(C(J,E)),

y 7−→(Γ ◦ SF )(y) := Γ(SF,y)

is a closed graph operator in C(J ;E)× C(J ;E).

Finally, we say that A has a fixed point if there exists x ∈ E such that x ∈ A(x).
For more details on multivalued maps we refer to the books of Deimling [9], Denkowski et

al. [10], and Hu and Papageorgiou [13].

Theorem 2.1. (Bohnenblust – Karlin fixed point [7]). Let B ∈ Pcl,cv(E), and N : B →
→ Pcl,cv(B) be an upper semicontinuous operator and N(B) be a relatively compact subset of
E. Then N has at least one fixed point in B.

Lemma 2.2 (Corduneanu [8]). Let D ⊂ BC([0,+∞), E). Then D is relatively compact if the
following conditions hold:

(a) D is bounded in BC;
(b) the functions belonging to D are almost equicontinuous on [0,+∞), i.e., equicontinuous

on every compact of [0,+∞);
(c) the set D(t) := {y(t) : y ∈ D} is relatively compact on every compact of [0,+∞);
(d) the functions from D are equiconvergent, that is, given ε > 0, there exists T (ε) > 0 such

that |u(t)− limt→+∞ u(t)| < ε, for any t ≥ T (ε) and u ∈ D.

3. Existence of mild solutions. Now we give our main existence result for problem (1.1),
(1.2). Before stating and proving this result, we give the definition of a mild solution.

Definition 3.1. We say that a continuous y ∈ [−r,+∞) is a mild solution of (1.1), (1.2) if there
exists a function f ∈ L1(J,E) such that f(t) ∈ F (t, yt), a.e. on J , y(t) = φ(t), t ∈ [−r, 0], and

y(t) = T (t)φ(t)−
t∫

0

T (t− s)f(s)ds, t ∈ J.
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Let us introduce the following hypotheses:
(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly continuous semigroup

T (t), t ∈ J, which is compact for t > 0 in the Banach space E. Let M = sup{‖T (t)‖B(E) : t ≥
≥ 0}.

(H2) The multifunction F : J ×C([−r, 0];E) −→ P(E) is Carathéodory with compact and
convex values.

(H3) There exists a continuous function k : J → [0,+∞) such that:

Hd(F (t, u), F (t, v)) ≤ k(t)‖u− v‖,

for each t ∈ J and for all u, v ∈ C([−r, 0];E) and

d(0, F (t, 0)) ≤ k(t),

with

k∗ := sup
t∈J

t∫
0

k(s)ds < ∞.

Theorem 3.1. Assume that (H1) – (H3) hold. If k∗M < 1, then the problem (1.1), (1.2) has at
least one mild solution on BC.

Proof. Transform the problem (1.1), (1.2) into a fixed point problem. Consider the multi-
valued operator N : BC → P(BC) defined by

N(y) :=

 h ∈ BC : h(t) =


φ(t), if t ∈ [−r, 0],

T (t)φ(0)+

+

∫ t

0
T (t− s)f(s)ds, f ∈ SF,y if t ∈ J

 .

The operator N maps BC into BC for any y ∈ BC and h ∈ N(y) and for each t ∈ J, we
have

|h(t)| ≤ M‖φ‖+M

t∫
0

|f(s)|ds ≤ M‖φ‖+M

t∫
0

(k(s)‖ys‖+ ‖F (s, 0)‖)ds ≤

≤ M‖φ‖+M

t∫
0

k(s)(‖ys‖+ 1)ds ≤ M‖φ‖+M(‖y‖BC + 1)k∗ := c.

Hence, h(t) ∈ BC.

Moreover, let r > 0 be such that r ≥ M‖φ‖+Mk∗

1−Mk∗
, and Br be the closed ball in BC

centered at the origin and of radius r. Let y ∈ Br and t ∈ [0,+∞). Then,

|h(t)| ≤ M‖φ‖+Mk∗ +Mk∗r.
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Thus,

‖h‖BC ≤ r,

which means that the operator N transforms the ball Br into itself.
Now we prove that N : Br → Br satisfies the assumptions of Bohnenblust – Karlin’s fixed

theorem. The proof will be given in several steps.

Step 1. We shall show that the operator N is closed and convex. This will be given in two
claims.

Claim 1. N(y) is closed for each y ∈ Br.
Let (hn)n≥0 ∈ N(y) such that hn → h̃ in Br. Then for hn ∈ Br there exists fn ∈ SF,y such

that

hn(t) = T (t)φ(0) +

t∫
0

T (t− s)fn(s)ds.

Since F has compact and convex values and from hypotheses (H2), (H3), an application of
Mazur’s theorem [19] implies that we may pass to a subsequence if necessary to get that fn
converges to f ∈ L1(J,E) and hence f ∈ SF,y. More details on this matter can be found in
[11]. Then for each t ∈ J,

hn(t) → h̃(t) = T (t)φ(0) +

t∫
0

T (t− s)f(s)ds.

So, h̃ ∈ N(y).

Claim 2. N(y) is convex for each y ∈ Br.
Let h1, h2 ∈ N(y), then there exist f1, f2 ∈ SF,y such that, for each t ∈ J, we have

hi(t) = T (t)φ(0) +

t∫
0

T (t− s)fi(s)ds, i = 1, 2.

Let 0 ≤ δ ≤ 1. Then, we have for each t ∈ J :

(δh1 + (1− δ)h2)(t) = T (t)φ(0) +

t∫
0

T (t− s)[δf1(s) + (1− δ)f2(s)]ds.

Since F (t, y) is convex, one has

δh1 + (1− δ)h2 ∈ N(y).

Step 2. N(Br) ⊂ Br; this is clear.

Step 3. N(Br) is equicontinuous on every compact interval [0, b] of [0,+∞) for b > 0.
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Let τ1, τ2 ∈ [0, b] with τ2 > τ1, we obtain

|h(τ2)− h(τ1)| ≤ ‖T (τ2 − s)− T (τ1 − s)‖B(E)‖φ‖+

+

τ1∫
0

‖T (τ2 − s)− T (τ1 − s)‖B(E)|f(s)|ds+

+

τ2∫
τ1

‖T (τ2 − s)‖B(E)|f(s)|ds ≤ ‖T (τ2 − s)− T (τ1 − s)‖B(E)‖φ‖+

+

τ1∫
0

‖T (τ2 − s)− T (τ1 − s)‖B(E)(k(s)‖ys‖+ |F (s, 0)|)ds+

+

τ2∫
τ1

‖T (τ2 − s)‖B(E)(k(s)‖ys‖+ |F (s, 0)|)ds ≤

≤ ‖T (τ2 − s)− T (τ1 − s)‖B(E)‖φ‖+

+ (r + 1)

τ1∫
0

‖T (τ2 − s)− T (τ1 − s)‖B(E)k(s)ds+

+ (r + 1)

τ2∫
τ1

‖T (τ2 − s)‖B(E)k(s)ds.

When τ2 → τ1, the right-hand side of the above inequality tends to zero, since T (t) is a strongly
continuous operator and the compactness of T (t), for t > 0, implies the continuity in the
uniform operator topology (see [17]). This proves the equicontinuity.

Step 4. N(Br) is relatively compact on every compact interval of [0,+∞).
Let t ∈ [0, b] for b > 0 and let ε be a real number satisfying 0 < ε < t. For y ∈ Br, let

h ∈ N(y) and f ∈ SF,y. Define

hε(t) = T (t)φ(0) + T (ε)

t−ε∫
0

T (t− s− ε)f(s)ds.

Note that the set T (t)φ(0) +

t−ε∫
0

T (t− s− ε)f(s)ds : y ∈ Br


is bounded, ∣∣∣∣∣∣T (t)φ(0) +

t−ε∫
0

T (t− s− ε)f(s)ds

∣∣∣∣∣∣ ≤ r.
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Since T (t) is a compact operator for t > 0, the set,

Hε(t) = {hε(t) : hε ∈ N(y), y ∈ Br}

is precompact in E for every ε, 0 < ε < t. Moreover, for every y ∈ Br we have

|h(t)− hε(t)| ≤ M

t∫
t−ε

|f(s)|ds ≤ M

t∫
t−ε

(k(s)‖ys‖+ |F (s, 0|)ds ≤

≤ M(1 + r)

t∫
t−ε

k(s)ds → 0 as ε → 0.

Therefore, the set H(t) = {h(t) : h ∈ N(y), y ∈ Br} is precompact, i.e., relatively compact.
Hence the set H(t) = {h(t) : h ∈ N(Br)} is relatively compact.

Step 5. N has closed graph.
Let {yn} be a sequence such that yn → y∗, hn ∈ N(yn) and hn → h∗. We shall show that

h∗ ∈ N(y∗). The relation hn ∈ N(yn) means that there exists fn ∈ SF,yn such that

hn(t) = T (t)φ(0) +

t∫
0

T (t− s)fn(s)ds, t ∈ J.

We must prove that there exists f∗,

h∗(t) = T (t)φ(0) +

t∫
0

T (t− s)f∗(s)ds, t ∈ J.

Consider the linear and continuous operator K : L1(J,E) → BC defined by

K(v)(t) =

t∫
0

T (t− s)v(s)ds.

We have

|K(fn)(t)−K(f∗)(t)| = |(hn(t)− T (t)φ(0))− (h∗(t)− T (t)φ(0))| =

= |hn(t)− h∗(t)| ≤ ‖hn − h∗‖∞ → 0, as n → ∞.

From Lemma 2.1 it follows that K ◦ SF is a closed graph operator and from the definition of K
we have

hn(t)− T (t)φ(0) ∈ K ◦ SF,yn .
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As yn → y∗ and hn → h∗, there exists f∗ ∈ SF,y∗ such that

h∗(t)− T (t)φ(0) =

t∫
0

T (t− s)f∗(s).

Hence the multivalued operator N has closed graph, which implies that it is upper semiconti-
nuous.

Step 6. N(Br) is equiconvergent.
Let h ∈ N(y), there exists f ∈ SF,y such that for each t ∈ [0,+∞) and y ∈ Br we have

|h(t)| ≤ M‖φ‖+M

t∫
0

|f(s)|ds ≤ M‖φ‖+Mk∗ +Mr

t∫
0

k(s)ds ≤ M‖φ‖+Mk∗ +Mrk∗.

Then,
|h(t)| → M‖φ‖+Mk∗(1 + r), as t → +∞.

Hence,
|h(t)− h(+∞)| → 0, as t → +∞.

As a consequence of Steps 1 – 6, and Lemma 2.2, we conclude from Bohnenblust – Karlin’s
theorem that N has a fixed point y which is a mild solution of the problem (1.1), (1.2).

4. An example. Consider the functional partial differential inclusion

∂

∂t
z(t, x)− ∂2

∂x2
z(t, x) ∈ F (t, z(t− r, x)), x ∈ [0, π], t ∈ J := [0,+∞), (4.1)

z(t, 0) = z(t, π) = 0, t ∈ J, (4.2)

z(t, x) = φ(t), t ∈ [−r, 0], x ∈ [0, π], (4.3)

where F is a given multivalued map. Take E = L2[0, π] and define A : E → E by Aω = ω′′

with domain

D(A) = {ω ∈ E; ω, ω′ are absolutely continuous, ω′′ ∈ E, ω(0) = ω(π) = 0}.

Then,

Aω =
∞∑
n=1

n2(ω, ωn)ωn, ω ∈ D(A)

where ωn(s) =

√
2

π
sinns, n = 1, 2, . . . , is an orthogonal set of eigenvectors in A. It is well

know (see [17]) that A is the infinitesimal generator of an analytic semigroup T (t), t ≥ 0 in E
and is given by

T (t)ω =
∞∑
n=1

exp(−n2t)(ω, ωn)ωn, ω ∈ E.
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Since the analytic semigroup T (t) is compact for t > 0, there exists a positive constant M such
that

‖T (t)‖B(E) ≤ M.

Then the problem (1.1), (1.2) is the abstract formulation of the problem (4.1) – (4.3). If conditi-
ons (H1) – (H3) are satisfied, Theorem 3.1 implies that the problem (4.1) – (4.3) has at least one
global mild solution on BC.
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