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A new algorithm for eigenvalue problems for the linear operators of the type A = A + B with a special
application to high order ordinary differential equations is proposed and justified. The algorithm is based
on the approximation of A by an operator A = A + B where the eigenvalue problem for A is supposed
to be simpler then that for A. The algorithm for this eigenvalue problem is based on the homotopy
idea and for a given eigenpair number computes recursively a sequence of the approximate eigenpairs
which converges to the exact eigenpair with an superexponential convergence rate. The eigenpairs can
be computed in parallel for all prescribed indexes. The case of multiple eigenvalues of the operator A is
emphasized. Examples of the eigenvalue problems for the high order ordinary differential operators are
presented to support the theory.

3anponono8aro ma o6rpyHMOBAHO HOBULL AA0PUMM OAA 3A0a4 HA 6AACHI 3HAYEHHA OAA AIHIIHUX
onepamopie muny A = A + B i3 cneyiaabHum 3acmocy8anHam 00 38UHALHUX OUughepeHUiaNbHUX pig-
HANb BUCOK020 NOPAOKY. An20pUmm noaszae 6 anpoxcumauii onepamopa A maxum onepamopom A =
= A+ B, wo 3a0a4a na éaacHi snavenns 0aa A cmae npocmiwioro, wixe 0as A. Ocobausy ysazy npu-
Oinero sunadky, koau onepamop A mae Kpammi 64acki 3HaA4eHHA. 3anponoHosanuli nioxio 6asyemnca
Ha i0ei 20momonii. [1ocai0o8HicmMb HAOAUNCEHL 00 BAACHUX NAD 0OUUCAIOEMBCA 8 XOOI PEKYPEHMHO20
npouecy ma 36izaemuvca 00 MOYHO0 PO3B’A3KY I3 CYNEPeKCNOHEHUIANbHO0 WeUoKicmio. Baachi napu
MONCHA 0OHUCAIOBAMU NAPANCALHO OAf BCIX 3a0aHux iHOekcis. Hageoeni yucaosi npukaadu 3aday Ha
BAACHI 3HAYEHHA OAS 38ULAUHUX OUPEPEeHUIAAbHUX ONEPAMOPI8 BUCOKO20 NOPAOKY NIOMBEePONCYIOMb
00epAHCaAHi MmeopemuYHti pe3yAbmamu.
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1. Introduction. The eigenvalue problem (EVP), i.e., the problem of finding of eigenpairs (ei-
genvalues (frequencies) and eigenfunctions (vibration shapes)), play an important role in vari-
ous applications concerned with vibrations and wave processes [1, 21]. Such popular methods
as the finite-difference method (FDM), finite element method (FEM) and other variational
methods, spectral methods allow to efficiently compute some lower eigenvalues only. At the
same time there are applied problems requiring the computation of a great number (hundreds
of thousands) of eigenvalues and eigenfunctions including eigenpairs with great indexes (see,
e.g., [21, p. 273]).

In order to find numerically the higher eigenvalues we propose a new approach described
below which we will (following [4, 5]) refer to as the FD-method. This approach is based on the
perturbation and homotopy ideas (see, e.g., [2] and references therein). The perturbation in the
case of ODE operators can be similar to that of the Pruess method [19-21] for the second-order
ODE:s or of methods from [1], where the coefficients of the differential operator are replaced
by piecewise constant ones.

Our approach can be applied also to EVPs for nonlinear operators [7] and possesses the
following main advantages:

1. It produces eigenpairs with an arbitrary prescribed indices and the accuracy increases with
the index growth unlike matrix methods such as the finite difference (FDM), finite elements
(FEM) or variational methods (VM).

2. It possesses the superexponential convergence rate contrary to the FDM, FEM or VM
methods which converge polynomially.

2. The homotopy based method for EVPs. Let us briefly explain the ideas of perturbation
and homotopy for the eigenvalue problem

(A4 B)uy — Apu, = 6, (1)

in a Banach space X with the null-element 6 under the assumption that the spectrum of the
operator A + B is discrete and we are looking for the eigenpair {\,, u,} with a given fixed
index n. Let X* be the dual Banach space of linear functionals on X and let (-, -) be the duality
relation.

Let B be an approximating operator for B in the sense that the eigenvalue problem

(A4 B)u® — A0y — ¢ )
is “simpler” than problem (1).
Formally, a homotopy between two problems P, and P> with solutions u; and ug from some
topological space X is defined to be a parametric problem Py (¢) with a solution w(t) conti-
nuously depending on the parameter ¢t € [0, 1] and such that «(0) = u; and u(1) = ws.

Following the homotopy idea for a given eigenpair number n we imbed our problem into
the parametric family of problems

(A+W () un(t) = An(t)un(t) = 0, t€0,1], €)
with W (¢) = B +t(B — B) containing the both problems (1) and (2), so that we obviously have
un(0) = w0, A, (0) = MO wp(1) = up, Aa(1) = A
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This suggests the idea to look for the solution of (3) in the form

Mlt) = SADE, (1) = 3 w4, @)
j=0 j=0
where formally
NG = L @a(t) J0) — L&)
" jloav |, " Jjlodt |,

Setting ¢ = 1in (4) we obtain
Ap = ZA,@, Up = Zug)
j=0 j=0
provided that series (4) converge for all ¢ € [0, 1]. The truncated sums
N N N
A=Y A9, =S ul)
j=0 =0

are approximations (of rank V) to the exact eigenvalue and eigenfunction of problem (1) and
together with the formulas below for /\7(1] ), ug ) represent the algorithms for their computation.
In order to find the coefficients we substitute (4) into (3) and by matching the coefficients

in front of the same powers of ¢ we arrive at the following recurrence sequence of equations:
(A+Byuf ™ = ADuf) = FI+Y = —1,0,1,..., ()

with £* = 0 and

n n

J
FG+) = RO, AT 00, L ul)) = —p(Buf) + 3 AGH D0 =

p=0
= AJu) — o(Byu) + > AT Pul), o(B) = B-B. (6)
p=1
For the pair A;O), u%o) we get the so called base problem
(A+Byu) = APul) = 0, (7)

which is assumed to be “simpler” than the original one and produces an initial data for pro-
blems (5), (6).
Let the base problem possesses real eigenvalues

0< A < 2P < <0< (8)
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We suppose that in (8) each eigenvalue )\%0) is represented k,, times in according to its multipli-
city k,. Let e, p, p = 1,k,, n = 1,2,..., build a basis in X, where e, ,, p = 1, k,, are the ei-
genvectors corresponding to )\,(10). We denote by € = (ey,.1,€n.2, ..., en,kn)T andby f, p,p = 1, ky,
n = 1,2,..., the corresponding biorthogonal system of functionalsin X* to e, ,,p = 1,k,,n =
= 1, 2, vy i.e., (emﬂ-, fn,j) = 5n,j5m,ia n,m = 1, 2, ey 1= 1, 2, ey km, j = 1, 2, ey kn (due to
the Riesz representation theorem in the case of Hilbert space we can consider the scalar product
as the duality relation) which build a basis of X* [15]. Here and below 0, ; is the Kronecker
delta. The recurrence equations (5) of our method are of the kind

Au— Ay = g,

where )\%0) is an eigenvalue of the operator A = A + B, i.e., the operator A + )\q(lo)E with the

identity operator F is singular. We look for the particular solution of the form

P

00
u = E cpﬂ‘epﬂ- .

p=1 i=1

By substituting this ansatz into the equation and using the biorthogonality of the systems {e,, ; }
and {f,;}, we obtain c,; = 0, ¢y = (9, fri)/ (A — AD), e,

o k

A 1 p

U = Fzg = Z ROBERO] Z(Qy fp,i)ep,ia (9)
p=lptn Ap —An’ izl

where I} denotes a pseudoinverse Moore — Penrose operator to A + A;O)E.
The general solution of problem (7) has the form

kn,
u) =% Cenyp,
p=1

where the constants C,(L?]);, p = 1, ky, will be defined below.
Under the solvability conditions

(F9*Y fo0) =0, p=T1,kn, (10)

the solution of (5) can be represented by

kn,
uf M =3 O Veny +af "y, (11)
p=1

where the first summand represents the general solution of the homogeneous equation and

n

J
agth = rf Z)\gﬂ—p)ugp) — p(B)ul) (12)
p=1
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is a particular solution of the inhomogeneous equation. Note that the index p runs from 1 and
not from 0 due to the property of I'; formulated by the lemma below.
Lemma 1. We have the following:

F7_|z—671,p =0, p=1k,

The proof follows from representation (9).
Condition (10) leads to the system of equations

En j—1
> CO (@(B) = XD Eens, fom ) == (2B, fam ) +D_ANHTICW, m = Ta. (13)
Here /\%1) denotes one of the eigenvalues /\%1) = /\Sz, , = 1,ky, of the matrix [(¢(B)en, s,

frm)g m—17, corresponding to the ordering

< ... < AW

n,kn?

1 1
A <)

)
n, n,2

where each eigenvalue is repeated accordance to its multiplicity. Let us introduce a vector ¢
with the components CY), s = 1,. .., kn, and the matrix

DM = [dLV,ln]s,m=LTn7 dym = ((‘P(B) - )‘gzl,)uE)en,&fn,m) s 1< v <k,

and rewrite equations (13) in a matrix form,

pMGH = ZAJ“P <¢(B)a<j>,f>, j=0,1,..., (14)

p=0

Y =1, f1), (v, f2), -+, (0, fr,)]T. From (14) with j = 0 allo-
0, we obtain

with f = [f1, fa, -, fr )T, (v

wing for the condition 7(°)
pHd© = g. (15)

Here the vectors

GO i =T, 1<y < ko, (C0,69)5 =6,
are solutions of system (15), i.e., AW s an eigenvalue of the matrix [(¢(B)en,s, fn,m)|s -7 Of
multiplicity y,,, where (-, ) g is the scalar product in R*».

)

We require the coefficients C,(f; Y p =1k, to satisty

kn
(ud ™, £ ( ,Zcmfm>:o,

=1
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where f,so) = Zfﬁl C,(L?i) fn,i is the conjugate element to ). This yields
(CF.0) =3 cfme) =0, j=01,....
p=1

Multiplying (13) by 0729) and summing up over m from 1 to k,,, we arrive at the following
relation:

AN = (e, 1), (16)
from where
AT < emad|| [ £9)] (17
where | - ||, is the norm in X*.

Having regard to (16) one can see that the right-hand side of (14) is orthogonal to the vectors

C_”fo), i = 1, uy, i.e., the necessary and sufficient solvability conditions are fulfilled.
Let us consider the following solution of system (14) (this solution is not unique):

co _ (D[V})-F jz:l)\l(”l_p)@(p) _ <¢(B)a§j)’f> : (18)

p=0

where (D)t is the Moore — Penrose pseudoinverse matrix of the matrix D). Let us note that
in a detailed description of the matrix, the triple n, v, ¢ should be kept in mind instead of the
index ¢ or n.

It is easy to show that

(p¥)" ¢ =3 (19)

which means that for the solution of system (14) in the form (18) the following orthogonality
conditions are fulfilled:

(G ENg =0, j=0,1,....

Further we give the error estimates of our method. Having regard to (16), (19) we obtain
from (18) that

v < w-iZZH@E“ @)

where

w =l | (o)

R

1/2
(|79l + [<A)]) - \@F(imni) .l = @)
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From (11), (12) we deduce the estimates

|ag ] < a, {Z = a) + HCWHR} ,
i 1)

leB)ag || < . {2:; a9~ 1as | + H@”HR} 7
where

My = mase { o (B) | |15 [ £

| ITe(B) Ko

N, = max {[o(B)] |o(B)5 | £

(BT p(B)| kn }

)
*

and

ﬂgs) = [1 —sgn (s)]uz(»o) + sgn (s)ﬂgs)

<here we have kept in mind that ‘ ugjﬂ) H < a§j+1) H + ‘ 5fj+1) HR) .
With the notations
Uj+1 = Hagzj—‘rl) » o Ui+l = HSD(B)ﬂglj—"_l) o Gl = ‘ 6£j+1)“R7 ] = 071""7

the recurrence system of inequalities (20), (21) can be rewritten in the form

J
Ci+1 S w E Uj—pCp,
p=0

J
Uj+1 < M, {Z Uj_sUs + Cj} >

s=0

J
Uj+1§Nn{ZUjsus+Cj}7 7 =0,1,....

s=0
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Replacing the inequality signs by the equalities ones we obtain the following majorant system:

J
Cjt1 = w Z Uj—pCp;
p=0

J
Uj+1 = M, {Z Uj—sUs + Cj} ;

s=0

J
V}'—&—l:Nn{ZUj—sUs"i'Cj}a J=0,1,...,

s=0

o

Co =1, UO:‘

thatisc¢; < Cj, u; < Uj,v; < Vj, 5 =0,1,.... Having regard to
NpyUj1 = MpVi

the first and the second equations imply

J
Cjt1 = w Z Uj—pCp;
p=0

J
Uji1 =Mn{2Uj_SUS+Cj}, j=01...,

s=0

C() = 1, Uo = ‘U%O)

F

Introducing the new variables and the new majorant variables by

Mn_jUj:Uj, Mn_jCjzéj

we can switch to the majorant system

To solve (22) we introduce the following generating functions:

f(z) = szﬁj, g9(z) = szé'j.
j=0 Jj=0
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Then starting with (22) we obtain the system of equations

f(2) =Up = 2[f*(2) + 9(2)], g(2) =1 = w[f(2) — Uolg(2).

We define from the second equation ¢g(z) = 1/{1 —w|[f(z) — Up]} and substitute it into the
first one. Then we have

—2wf3(2) + (w + 2 + 20Uo) f2(2) — (2wUo + 1) f(2) + (WU + Uy + 2) = 0. (23)
Let us interchange in (23) the variables and consider z as a function of f. Then

w(f —Uo) (f - *55)
Z(f): wfz(fo_wUl(l))-i-l)_l -

(24)

Considering function (24) we see that

1 1
2(Up) = 2 (wU?UJF ) =0, 2(f)>0 Vfe (anwUO ki ) :

1 wUy + 1

/ U = —n O ! —_— == _1 O

Z( 0) Ug 1 >0V, =z < w ) <

1
This implies the existence of some zpyax = 2(fmax), fmax € <U0, ng+> , which represents
w

the convergence radius of the series for f(z), i.e., there exist some constants L, ¢ independent
of j,n such that

L
j1+s’

(2max)/U; < j=1,2,.... (25)

Having regard to (25) we obtain for z > 0 that

> el < Z( z Mn)]ﬁj(zmax)j < 1+Z< z Mn>j j1L+a' (26)
: P

=0 =0 Zmax Zmax

Under the assumption

M,

Zmax

qn = <1 (27)

the inequality (26) is fulfilled for all z € [0, 1], therefore we get

HUEJ)H < L,[q"]j j=1,2,.... (28)

&)

n

|

s
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with a solution which is majorized by the solution of

0 = ijzl[qn]j—pOp, j=12.., Co=1, |cV ‘R <.
p=0
Applying the method of generating functions we obtain
9(2) = L =S
1= 2wL(f(z) - 1) =
The Taylor series for §(z) = Y32 27Cy, C; < C; implies
= o (1 + L) 9)
This series is convergent for all z € [0, 1] provided that
(1 +wl) < 1. (30)

These considerations analogous to [16] imply the following assertion.
Theorem 1. Under the assumptions (27), (30), the FD-method for problem (1) is superexponen-
tially convergent with the estimates

m m—+41
m () [an (1 + wL)]™"
Un,i — Ung|| = ||Un,i — Uy, 5 <L [Wkn + 1] >
\ S it an
m m . m

The proof is based on (28), (17) and (29).
Remark 1. One can control (27) by choosing n and B in such a way that

M, = max { (B [T

FO°U

T o(B)| ko |

is small enough.
Then due to (9) we have

N 1 1
[T < max { RSO } : (31)

Let the operator ¢(B) = B — B be subordinated to the operator (A + B)*, a > 0, i.e.,
A+ B)p(B)|| < clv]
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with some positive constant c. Then, on the other hand, in the case of a Hilbert space, of simple
eigenvalues and of a self-adjoint A 4+ B, we have for an arbitrary v that

o n\—« e, (0)
+ _ (A+B)"“p(B)v,(A+ B)%up’) (o) _
(B = 12; O )\éo) Up* =
p=1,p#n n

3 DA BB ) o
NOBNG P
n.— Ap

p=1,p#n
from where
0 (0)12¢
ICreBul = 3 — 2 BBy, W) <
n ()\(0) o )\(0))2 p -
p=1,p#n \/'n P
)20 AD)2a } o )
< max n , I(A+ B)~“¢(B)v|)? <
{ A2 Ay (WD O e
0 a o
< c2 max{ [)\;llp [)\%0)]2 } HUH2
(At = M2 0 = A2

One can see that |7 (B)|| — 0asn — oo provided that the quotients in the curly brackets
tend to zero as n — oo. The behavior of this norm as a function of n depends on the asymptotic
of the eigenvalues. For example, the ODE operators of order m with regular boundary conditi-

P‘(O) ]Qa

ons possess the asymptotic A0 = O(n™) (see, e.g., [17. 18]) so that both values —— 1
()‘(O+)1 _ )\glo))z

[/\7(10)]204
()\%0) _ )\(0) 1)2

n—

n — oo provided that

and are of the order O(n2(@~1m+2) This implies |||, [T}t o(B)|| — 0 as

1
0I<a<l——.
m

If for some fixed n convergence condition (30) is not valid then its validity can be reestablished
by using the better approximation of operator B, or equivalently by reducing the value ||o(B)].

Remark 2. One can show that FD-method is superexponentially convergent for eigenfuncti-
ons as well for approximation of eigenvalues.

The case of Banach space and eigenvalues of arbitrary (finite) multiplicity can be considered
analogously as above.

Example 1. The following calculations made with Maple demonstrate the principle differen-
ce of the behavior of the iterations of the FD-method for a second order differential equation
with and without the first derivative.

We consider the EVP

d*u(x)
dx?

du(x)
dx

+7r(x)

+A=—2)u(z) =0, xe(0,1), wu0)=0, u(l)=0,
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d*u du(x)

where we define Au = ——, Bu = r(x) —zu(z) Yu € HY(0,1) N H?. We choose B = 0.

Our algorithm in the case r(z) = 0 provides the iterations

0 _ ez a0 L _
At = (0 AT =50 AT S B T Bt

y_ 13 5
" 2304(nm)8  384(nm)®  64(nm)10’

i.e., we have lim,, ,o, \Y) = 0.
For the case where (z) = 0,5(sgn (z) 4+ 1) we obtain

A = (nm)?, A = 2 (2~ cos(nm)),

1 5 15 1 7 78
2 - = (1_ _ @G- = (1L 2
SRR < ()2 (m>4>’ A = 1536 < T )2 (n7r)4>’

(4) -1 ( 7081 5027 26320 195720 2217600)

A’ = 2580480 ~ (nm)? + (nm)d  (nm)6  (nm)®  (nm)10

The principal difference to the previous example is that now lim,,_, )\g ) = const # 0.

These results are consistent with our theory. In fact, we have for the norm of the operator
[ Le(0,1) — L2(0,1):

2 3

1
2up, 8 1
sup ol / vnsin(pre) |- 4
0

+ - -
Hrn HL2 vEL(0,1) 7.‘.2 n2 —p ) - 7T2(2n _ 1)’

(0,1)—L(0,1) —
p=1,p#n

1
where v, = / v(&) sin(pm€)d¢ is the Fourier coefficient of v. Note that general estimate (31) is
0

of the same order with respect to the parameter n. Actually, /\%0) = n27? so that )\S)J)rl - /\%0) =
0 0 : _
= O(m), A = A2y = On), i [T 0. a0y = O 7).

d
To obtain an estimate for ¢(B)T;, let us estimate each summand separately. For k(z)— I';}

. dzx
we obtain
; OO 2 2 2 >
d k
dx L2(0,1)—L2(0,1) T veL,(0,1) e 1,p7én (n? —p?)

e ntl 2kl
- 7 (n+1)2-n2" 37
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and further

d
+ 4y +
HSO(B)F” HL2(°’1HL2(O’1) B Hk(x) dz " L(0,1)—Ly(0,1) ' ern HL2(0,1HL2<0’1) -
2(0,1)= L2 (0,
2||k] 1 2||k| 1
< 0 < 0 —.
= Tar T m™(2n—1) = 3« T

Analogously after integration by parts we have

+ v\ —pr [ k(E)v(€) V2 cos(pmé)de (o)
ry (k(f) d£> = p:%én . V2sin(pre)
= k! v sin(pm
-y Jo [K'(€) +§(y§)_¢;) (pm&)d§ VB sin(pre)
p=1,p#n

and estimating analogously as above we get

< ¢ max{||k||oos [|E" + &][oo}

IT5 B 0 a0
with some constant c. These estimates show that M,, remains bounded in the case where the
coefficient in the front of the first derivative is not equal to zero and M,, = O(n~!) — 0 as
n — oo otherwise.

3. Application to the fourth order differential operators. In this section we adapt our expo-
nentially convergent algorithm from above for the numerical solution of the following class of
eigenvalue problems (see also [8]):

y D (€) + g3(€)y® () + g2(E)y"(€) + g1(E)Y'(€) + go()y(€) — g()My(€) = 0,
yP(0) = y@(0) =y (1) =y (1) = 0, (32)

0<p<qg<3 0<r<s<3,

which play a special role in the applications.

The type of boundary conditions is defined by the four natural numbers (p, ¢; 7, s), p,q,7,s €
€ {0,1,2,3}. All these boundary conditions are regular and affect among others such important
property as the multiplicity of eigenvalues.

One of the oldest and probably mostly famous applications of this mathematical model is
the description of free and forced vibrations of a Bernoulli — Euler beam [12, 22] (there are also
good reasons to call this theory as “The Da Vinci— Euler — Bernoulli Beam Theory” [3]). Euler —
Bernoulli beam theory emerged in the middle of the 18th century as a simplification from the
linear isotropic theory of elasticity. Due to its simplicity and at the same time to its adequate
accuracy (demonstrated by many practical applications, amongst others during assembly of
the Eiffel Tower and the Ferris Wheel in the late 19th century) the beam theory became an
important tool in the sciences, especially structural and mechanical engineering.
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Equation (32) as well as the fourth order equation in the self-adjoint form

2 2
e (0005299 = 5o (0O 50(9) + () = M(E(e) =0 (33)

can be reduced to the form
u () + ko (a)u (z) + Ky (2)u (2) + ko(x)u(z) — Mu(z) = 0, (34)

i.e., we can make the coefficient in the front of the third derivative equal to zero and the coef-
ficient at the front of Au(x) equal to one. Note that in the case of the nth order differential
equation

™ () + kp_1 (2)u™ V(@) + .+ Ry (2)u (2) + o7 1u(z) = 0

with the coefficient in the front of A equal to the constant 1 one can make the coefficient in the
front of the (n — 1)th derivative equal to zero by the variables transform [18]

u = el kn-1@dry

Equation (32) can be converted to form (34) by the variable transform { = ¢(x), y(§) =
= ¢(z)u(x) with the appropriate functions ¢(z), ¥(x) (compare with the Liouville transform
[17] for the second order differential equation). The functions ¢(z), ¢(z) can be found in [8].

Mec;hanics ofteQn use the followin% approximation A + B for the differential operator A+ B,

= jﬁQ (a(§ ) C;ifz y(& )) or A = 524 of the form (32), (33) with the corresponding boundary
conditions: the interval (0,1) is covered by agridw={¢t; : i = 1,...,. N —1,0=ty) < t; < ...

. < ty-1 < ty = 1} with a maximal step h = max;—;__n(t; — ti—1), the variable coeffi-
cients on each subinterval are replaced by constants (for example, by some fixed values of the
corresponding variable coefficients) and the solution of such problem is accepted as an approxi-
mate solution of (32) or (33). The basic idea here is the approximation of the differential equati-
on (i.e., its coefficients). The corresponding methods for the second-order Sturm - Liouville
problems are known as the Pruess methods [21] because S. Pruess in 1973 provided a rigorous
convergence and error analysis [19]. But in fact variants of this method were in use since the
beginning of the past century and for the piecewise coefficient approximation the method was
theoretically justified for linear second order ordinary differential equations (as the so-called
method of "stumps" (metodo dei tronconi)) by N. N. Bogoliouboff and N. M. Kryloff in 1928 [6,
10].

The higher order eigenvalue problems were treated, e.g., in [1, 9, 11, 23]. Theoretical and
numerical methods of solving eigenvalue problems for higher order equations (especially of
those whose coefficients have considerable variation) have not been developed to a desirable
extent or are altogether absent. Some constructive approaches to the solution of self-conjugate
fourth-order eigenvalue problems with different types of boundary conditions have been sug-
gested in [1].

Let us estimate the accuracy of the method of "tronconi"for the following test eigenvalue
problem:

2 2
% (a(t) ;;Mt)) —v(t) =0, v(0) =v(1) =2"(0) =2"(1) =0, (35)
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with0 < k < a(t) < K < 0.
Following the described method we consider instead of (35) the problem

d2 d2 0 0),.(0 0 0 d2 0 d2 0
e (a(t)dth( )(t)> — X0, @) =0, v@(0) =0@1) = @w )(0) = @qﬂ )(1) =0

(36)

with a(t) = minyy, | 41a(t), t € [tio1,t], @ = 1,..., N. At the discontinuity points of the
coefficient a(t) we require that the following consistency conditions hold:

(1)), = [jtv@)]t_ti - {a(t)j;v@)]t_ti - [4 (aw j;v@))}t_ti 0

where [w(t)]i=t, = w(t; +0) — w(t; — 0) is the jump of w(t) at the point ¢ = ¢;. It can be shown
(see, e.g., [17]) that the spectra of the both problems (35), (36) are discrete and the eigenvalues
can be ordered in ascending order. We are interesting in the error due to replacement of (35)
by (36). With this aim let us consider the following auxiliary the differential equation with the
parameter s € [0, 1]:

0? 0?
Ere) (d(t,s)atQ v(t,s)) — A(s)v(t,s) =0,
(37)
0? 0?
v(0,s) = v(l,s) = @U(O,S) = @v(l,s) =0,
1
where a(t,s) = a(t) + s(a(t) — a(t)) and the solution is normalized by / v2(t,s)dt = 1Vs €

0
€ [0,1]. We have obviously that v(t,1) = v(t), A(1) = X, v(t,0) = v (#), A(0) = AO). Since
v(t, s) depends on the parameter s analytically we can differentiate (37) with respect to s and
obtain

0* [ 0% 0 0
pre) <a(t,s)6t288 U(t,s)> - )\(S)a u(t,s) =

0? _ 0? d
= g (00~ a0) F50(0.9) ) +0(0.9) A
0 0 0% 0 0% 0
%U(O, S) = %U(l,S) = @ %U(O, S) = ﬁ% U(I,S) = 0, S € [0, 1]

The solvability condition allowing for the normalization condition and the integration by parts

lead to the formula
s ; 2 2
dz(s ) _ /(a(t) —a() (gﬁ o, s)) dt.

On the other hand, the equalities (37) imply

A(s) = /1a(t,s) <§; u(t,s)>2ds.
0
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These two relations yield

1
dX(s) _ o As)
< (t) (t, dt < t) —alt
0 < T < gy lo0 a0 [ (g vies ) = gyl — el
0
which, together with
A(s) = A<U>+/dx( )dn,
0

leads to the following estimate:

0 < An— A9 < max (at) — a(t)2". (38)

- T el0,1] K

Assuming that a(t) € C?[0, 1] due to the asymptotic \,, = O(n*) we obtain from (38) that

0< A=A = 0O(n?), h= max(t; —t;_1)
i=1,N

(compare with the estimate |\, — A0 | < C'max{1,n?}h for the second-order Sturm — Liouville
problems [21, p. 119]). This estimate shows that the method under consideration is appropriate
for not very large n, in fact, for some lowest eigenvalues only.

3.1. FD-method in the case of multiple eigenvalues of the base problem.

Example 2. Let us consider the eigenvalue problem

(A+ B)u—Au =0,
where the operators A, B are defined by
D(4) = {v e C*(0,1) : P (0) = vP(1),p = 0,1,2,3},  D(4) € D(B),
Au = uW(z) Yu € D(A),
B = By + By + B3+ By, Bju=ky_j(z)u(z) Yu € D(A), j=0,1,2,3.
Let us choose B = 0, then the base problem of the FD-method is
(A+B)u—cu=u(@)— =0, ze(01),
uP(0) = uP (1), p=0,1,23.

Each eigenvalue
Ap = (2nm)4

of this spectral problem is double and corresponds to the following two eigenfunctions:

Up 1(z) = V2sin (2n7x),  un2(r) = V2cos (2nmz).
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The operator A+B—-\,E = A—\,Eis singular, i.e., its pseudoinverse I'*" acts on the functions
g satisfying the solvability conditions

1 1
/Sin (2nmz)g(x)dx = 0, /cos (2nmz)g(x)dr = 0.
0 0

It is easy to check that I'* g(-) for a fixed = can be represented as the linear continuous functional

() = /Iw(t)d/tg(é’)ds,
0 0

~+

with the function of bounded variation / g(s)ds, on the function
0

o(t)

(SiII(Q?”LW({L‘ —t)) + sin(2n7|z — t]) + cosh(nm(2]z — ) - 1))> .

~ 320370 sinh(n)

This functional is defined on continuous functions ¢(t) € C]0,1] (see, e.g., [14]) and its
norm is given by
¢

= v / g(s)ds| |
0
where

VPl = sup > [o(ts) — (tr—1)]
k=1

is the total variation of the function ¢(¢) on the interval [a, b].
Let us denote by V[0, 1] the set of functions of bounded variation continuous from left and
vanishing on the left end of the interval [0, 1]. Then we have

”F+9”c[0,1] < 2 + coth(nm)

I'|| = sup - < 7
Tl aevips Vo 1] 32n3m3

By)I't k()L Tg

Hgo(BQF*H =  sup [l ( 1)1 ~g||c[0,1] =  sup H dzl _ HC[OJ} <
a(ev(o.] Vo 9] a(1eV(o.] V(4]
k 3VEGl+ Vg 3|k
Mooy BEEL VRG] Skl

1607 5)evio,) #€0.1] Vi 141 16n2w

H<P(B2)F+9”0[0,1] _

|o(B)T"|| = sup

atevio,) Ve 9]
N4+
sup ”k‘z( )de r ch[O,l] < 2 + coth(nm) ™
p— — < 2 ’
3(Hev(o,1] Vo (9] 8nr clo.]
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Vi
RS 0L R L A ST
= = ~ C10,1]»
s0ev i Vo 9] G(EVI0] Vo 19l ol
t
where g(t) = / g(s)ds.
0
. . N 1 3\ . .
To obtain estimates from below we choose g(t) = H [t — 1)~ H{t- 1 with the Heavi-
. . . 1 3 :
side function H (1.6., glx) =0 (a: — 4) -9 (x - 4) ) in the case of an even n we get

IT*| = IT*gllepo.1y
smevion Vo lal  —
—sinh(2nrx), =z € [0,1/4],
1 1
1 Sinh(2n7r T— >> 281n<2n77 (x—)) X
> max 3 v 2 4 >
wel0,1] 32(nm)? cosh(F) 1) cosh( nr x € [1/4,3/4],
2 9

—sinh(2nw (z—1)), = € [3/4,1]

‘sinh (%) — 2 cosh (%)‘ N 2 — tanh (g)
32(nm)? cosh <n27r> - 32(nm)?

since V! [§] = 2. Analogously we obtain

d
(BT || = (BT gllcpo. _ "kl(')%F+9“C[0,1] S
g(t ) V[O 1] Vo 4] a(tevio,1] Vi 9]
—cosh(2nmx), x € [0,1/4],
k1 ()] cosh<2n7r (:c 1>> —2cos <2n7r (ac—1>> X
= e 2 na nm 4 =
z€[0,1] 16(n7r) cosh (7) % cosh <?) ’ = 1/4 3/4]

—cosh(2nm (x—1)), = € [3/4,1]

1
2 16(n7)2 11l ep0,1
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and
oo
x co,1
oot = sup Tl
§(t)evio,1] o 9]
—sinh(2n7x), = € [0,1/4],
1 1
ko (2))| sinh<2n7r Tr— )>—|—281n<2n7r (:L‘—)) X
> max ————— nmw 2 ! =
z€[0,1] 8nm cosh (7) % cosh( 5 ) x € [1/4,3/4],
—sinh(2n7 (z—1)), = € [3/4,1]
2 — tanh (%)
> T &nm Hk2HC[0,1] )
o
C[0,1]
p(Bs)I|| = sup i =
H H G(H)eVo,1] Vo 9]
—sinh(2n7z), « € [0,1/4],
1 1
y M sinh(ZmT T— 2))—1—2005(27177 (x—4>> X -
zel01) 4cosh (%) 1] o cosh (n27r , w€[1/4,3/4],
—sinh(2n7 (z—1)), = € [3/4,1]

Hk?;HC[OJ] | sinh ("7”) — 2cosh (”7”) |
- 4 cosh (%) = 4 &3l 0,17 -

Thus we have estimates of the same order with respect to n from the both sides. The case of
odd n can be considered analogously. Note that we have evaluate I'* g by solving the BVP

di;;(f) — (2nm)tv(z) = 6 <5E - 1) -9 <$ - Z) > we0.1),
dv(0)  div(l)
dzi dat

which is equivalent to

d*v(x) 4 13
W - (2TL7T) U(CL‘) =0, z¢€ (07 1)? T 75 Za 13
dv(0)  dv(l) .
— = - =0,2
dx? dai " 0.2,
d*v(; +0)  dPu(; -0 . dv(+0) dPu(§-0) L
dx3 dx3 - dz3 dzx3 o
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It is easy to find that

—sinh(2n7x),

o . sinh <2n7r ( ;)

32(nm)3 cosh (%)

0,1/4],

G
) 2sm<2n77 (x—i)) X
xcosh( 2”), v € [1/4,3/4],

—sinh(2nm (z—1)), « € [3/4,1].

The estimates for | ¢(B)]| can be obtained analogously and they are of the same order with
respect to n as ||p(B)TT|.

3.2. FD-method for boundary conditions of type (p,q;r,s). In this section we consider a
variant of the algorithm when Au = u(*) () subject to the corresponding boundary conditions
and B is an approximation of the part with lower derivations where the coefficients in the front
of these derivatives in (34) are approximated by some piecewise constant coefficients on some
chosen grid. All assumptions of Theorem 1 holds true for the FD-method described above in
Section 2, i.e., we obtain all eigenpairs \,, u,(x) with an exponential accuracy for all n > ny
beginning with some ny. The next example with boundary conditions of type (0, 2; 0, 2) confirms
this result.

Example 3. Let us consider problem (34) with ky(z) = =z, ki(z) = 0, ko(z) = 0. The
smallest eigenvalue of this problem computed with the standard tool of the computer algebra
system Maple is

ATY = 102,3353144965013. (39)

Let us compare this result with the one obtained by our algorithm.
For the problem under consideration we have the base problem

d4

dt 0) d?
dx?

u®) (@) = A0 (@) = 0, wP(0) = Tu(0) = ulP(1) = —ul (1) = 0

with the solution u!”)(z) = v2sin(nrz), A\ = (nm)%, n = 1,2,.... The functions v ™" (),

j =0,1,..., are defined as solutions of the following sequence of problems.
d ) (0),G+1) @ o) d_.6) G)
3 uf (@) = XD (@) = —ka(@) 2 ulf) (@) — ki () 0 () = ko(@)u) (@)+
j -
+ ) ATHEE) (@), 2 e (0,1), (40)
s=0
(3+1) d? (3+1) (3+1) d? (3+1)
J Bl ¢ — 0 1) = = U 1) = —
uf00) = 5l (0) = uf () (1)=0, j=01,...,m,

1) 2,0 = () 4,0 — () (0) -
<un ) Uy, ) (un ) Uy, )LQ(O,].) /un (x)uy’ (x)dx = 0. (41)
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The solvability condition for problem (40) together with (41) yields

1
37 = [ (1) 155 w0+ 10 A ) @) + bl ) ) P ). (@)
0

The solution of problem (40) is given by

, S & W) 2
uf (@) =) uffV @) =—— >, l4/(—k2(£)d§2u§$)(£)—
0

a=1 I=1,l#n

oo 1
-2y mE ([lw ka(€) sin(im€) + I (~2k3(8) +
0

+ k1(€)) cos(Im€) + (k5 (&) + K (€) — ko(€)) sin(hr&)] uld)(€)+

J
+ Y AT (€ sin(lw§)> de. (43)

s=0

Let us estimate each summand on the right-hand side separately:

(S

1

2
) 7T4 -
=50 S M { / k2<s>u££><£)sin<mf>d5] <

I=1,l#n

0
1 (n+ Dllk2lloo ||, )
o2 —op1 il
1
oo 1 2 2
P In
[43°) = 5 X o (i) . / ~2k)() + k1 (€))u) (&) cos(ime)de | b <
I=1,l#n )
1 =2k + Rl u(j))
— a3 mZ2—2n4+1 11T

H 1 || —ky + K — koll ‘
=t n(2n? —2n + 1)

o

H JH)H = 7t n(2n2 12n+1

)

|Z)\(3+1 D]
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From (42) and (43) we obtain

NG9 < V2 p[(nm)? + nr + 1] \ug—@
and
)| < 24: (3-+1) i; ( +1) || || +1H—2 L4 H +
R e e R e N lloo T NI4T Nl
1 |=g” + ¢ — _
L lldta quoo} 9] +
T n
LR I RS NTIPR TS
—S S
+\f2,u[n+7r+mr2]sz:(:)‘unj Hun ]S
1 " 11 .
. S 1424 5 ’ (y)’
~ w2202 -2n+1 [n—i— +7T+n7r2} |t
LR I RS NIRRT TS
j .
< MY | 2]
s=0
where
1 2

11
Mn= 5502 —ant1 [n+1+7r+n7r2}’

—2k +k1HOO,

p = max (|| k2| , _k12/+k/1_k0Hoo)‘

The solution of the last inequality is

It means that under the condition r, = 4M,, < 1 the following modification of the estimates
from our main theorem holds true:

(27 - DV _ (4M,)
2i+2! = G+ 1)V

ug)

| < (M) 2

% S m —_ 1\
—n| = A=Y ()| < 2 (rn)™ (2m —1)!!
K 2 (Tn)m 1
< —= 1
_ﬁ[(mr) Tt }1—7% (m+ 1)y/7m’
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The Maple-calculations provide

m
Up — Un

m +1 m—+1
7=0

L—ry Cm+D! = (m+2)/r(m+1)

A =t g A = 4,926223462,
(1) 7'('2 1 (O) (1)
AD 2T e x| = e 2 2@ 2 ) — 0, 008578738,
1 15 48 96
W= (140 - - —2
1 96 ( I (e”—l)ﬂ3>’
2
)\T:t o )\l _ )\ix _ )\50) — )\gl) — )\52)‘ = 0, 000086933,

which is in a good agreement with (39).
Analogously one can consider equation (34) subject to the boundary condition of type
(0,1;0,1) and the following example is the experimental confirmation of the main result.

Example 4. Let us consider equation (33) with a(§) = 1+ &, b(§) = ¢(§) = 0,d(¢§) = 1.
After the change of variables

£:<1+ix>3—1, v(&):<1+ix>_6u(x) (44)

equation (33) becomes
u® (z Lu"z Lu’x — 177ua: = 5
()+18(x+§)2 ()+9(x+§)3 ()+< A+16($+%)4 U) w

The boundary conditions of the type (0, 1;0, 1) after substitution (44) switch to the boundary

4
conditions of the same type for equation (45) on the interval (0, a) with a = 3 (23/4 —1):

u(0) = 4/(0) = u(a) = v/(a) = 0. (46)

The smallest exact eigenvalue of problem (45), (46) is A\{* = 729,5132640790354497. Our
method of rank 1 provides the following results:

ALY = 729, 0804175123859275,

A AM — 0, 432846566,

1
AW = 0,4329291815470396, | A% — A

A A0 - Ag”‘ — 0,000082614.
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Now, let us consider the approach where the coefficients of the differential equation are
changed by the piecewise constant functions (metodo dei tronconi), for example, let us consider
instead of

2 2 B
CZSQ ((1 +§)j§2 y(é)) —My(€) =0, y(0) =7(0)=y(1)=1y(1)=0
the problem
d* . 2 - N . ) y
d?ly(é) —3M(8) =0, 9(0) =g(0) = g(1) =g (1) = 0.

Then by our method we obtain the following approximation for the smallest eigenvalue

A1 = 750, 8458526104090604, A% — X; = 21,33258853

which is much coarser as the approximation /\go) obtained by the FD-method of the rank zero.
Example 5. Let us consider differential equation (34) with ky(z) = ki(x) = 0, ko(z) =

1\2
=ko(l1—2) = <x — 2> subject to the boundary conditions of type (2, 3;2, 3), i.e.,

u () +

(.q,- _ ;)2 _ )\] w(@) = 0, e (01), o

u®0) = u®(1) =0, k=23

The smallest eigenvalues of problem (47) computed with the computer algebra tool Maple is

01 = 0,0833223112249938 ..., A§h = 0,14999891773580. . ..
The base problem
du? (z) du0) @)
n — 20,0y — n — n - P
dx4 )‘n un (.’1}‘) - 07 YRS (07 1)7 dx] - dﬂf] - 07 j - 2737

possesses the double eigenvalue A(°) = 0 corresponding to the orthonormal eigenfunctions

1
u(()oi(x) =1 and u(()og(:n) =2V3 <2 - x>

)

(see, e.g., [13]). All other eigenvalues are simple. The results obtained by the FD-method of
rank m = 0,3 are

0 1

Ao = 0, io,l = % =0.08(3), Aoz =55 = 0,15,
io,l = 9705%90 = 0,0833223104056437 . . ., io,g = ;Z’iggg = 0,14999891774891 . . .,
30,1 = % = 0,0833223112249098 . . .,
30,2 = % = 0,14999891773580. .. .
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