ON HIGHER ORDER GENERALIZED EMDEN - FOWLER DIFFERENTIAL EQUATIONS WITH DELAY ARGUMENT*

ПРО УЗАГАЛЬНЕНІ ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ ЕМДЕНА - ФАУЛЕРА ВИЩИХ ПОРЯДКІВ IЗ ЗАГАЮВАННЯМ В АРГУМЕНТI

A. Domoshnitsky

Department Math. and Comput. Sci.
Academic College of Judea and Samaria
44837, Ariel, Israel
e-mail: adomosh@hotmail.com

R. Koplatadze

Iv. Javakhishvili Tbilisi State Univ.

Vekua Inst. Appl. Math.
University Str., Tbilisi, 0186, Georgia
e-mail: r_koplatadze@yahoo.com

In the paper the differential equation

$$
\begin{equation*}
u^{(n)}(t)+p(t)|u(\tau(t))|^{\mu(t)} \operatorname{sign} u(\tau(t))=0 \tag{*}
\end{equation*}
$$

is considered. Here, we assume that $n \geq 3, p \in L_{\mathrm{loc}}\left(R_{+} ; R_{-}\right), \mu \in C\left(R_{+} ;(0,+\infty)\right), \tau \in C\left(R_{+} ; R_{+}\right)$, $\tau(t) \leq t$ for $t \in R_{+}$and $\lim _{t \rightarrow+\infty} \tau(t)=+\infty$. In case $\mu(t) \equiv$ const >0, oscillatory properties of equation (*) have been extensively studied, where as if $\mu(t) \not \equiv$ const, to the extent of authors' knowledge, the analogous questions have not been examined. In this paper, new sufficient conditions for the equation (*) to have Property \mathbf{B} are established.
Розглянуто диференціальне рівняння

$$
\begin{equation*}
u^{(n)}(t)+p(t)|u(\tau(t))|^{\mu(t)} \operatorname{sign} u(\tau(t))=0, \tag{*}
\end{equation*}
$$

де $n \geq 3, p \in L_{\mathrm{loc}}\left(R_{+} ; R_{-}\right), \mu \in C\left(R_{+} ;(0,+\infty)\right), \tau \in C\left(R_{+} ; R_{+}\right), \tau(t) \leq t$ для $t \in R_{+}$та $\lim _{t \rightarrow+\infty} \tau(t)=+\infty$. У випадку $\mu(t) \equiv$ const >0 осциляційні властивості рівняння (*) було детально вивчено, тоді як у випадку $\mu(t) \not \equiv$ const, наскільки відомо авторам, подібні питання не було розглянуто. У статті наведено нові достатні умови для того, щоб рівняння (*) мало властивість В.

1. Introduction. This work deals with oscillatory properties of solutions of a functional differential equations of the form

$$
\begin{equation*}
u^{(n)}(t)+p(t)|u(\tau(t))|^{\mu(t)} \operatorname{sign} u(\tau(t))=0, \tag{1.1}
\end{equation*}
$$

[^0](c) A. Domoshnitsky, R. Koplatadze, 2015

ISSN 1562-3076. Нелінійні коливання, 2015, т. 18, № 4
where

$$
\begin{gather*}
n \geq 3, \quad p \in L_{\mathrm{loc}}\left(R_{+} ; R_{-}\right), \quad \mu \in C\left(R_{+} ;(0,+\infty)\right), \quad \tau \in C\left(R_{+} ; R_{+}\right), \\
\tau(t) \leq t \quad \text { for } t \in R_{+} \quad \text { and } \lim _{t \rightarrow+\infty} \tau(t)=+\infty . \tag{1.2}
\end{gather*}
$$

It wiell always be assumed that the condition

$$
\begin{equation*}
p(t) \leq 0 \quad \text { for } \quad t \in R_{+} \tag{1.3}
\end{equation*}
$$

is fulfilled.
Let $t_{0} \in R_{+}$. A function $u:\left[t_{0} ;+\infty\right) \rightarrow R$ is said to be a proper solution of equation (1.1) if it is locally absolutely continuous together with its derivatives up to order $n-1$ inclusive, $\sup \{|u(s)|: s \in[t,+\infty)\}>0$ for $t \geq t_{0}$ and there exists a function $\bar{u} \in C\left(R_{+} ; R\right)$ such that $\bar{u}(t) \equiv u(t)$ on $\left[t_{0},+\infty\right)$ and the equality $\bar{u}^{(n)}(t)+p(t)|\bar{u}(\tau(t))|^{\mu(t)} \operatorname{sign} \bar{u}(\tau(t))=0$ holds almost everywhere for $t \in\left[t_{0},+\infty\right)$. A proper solution $u:\left[t_{0},+\infty\right) \rightarrow R$ of equation (1.1) is said to be oscillatory if it has a sequence of zeros tending to $+\infty$. Otherwise the solution u is said to be nonoscillatory.

Definition 1.1. We say that equation (1.1) has Property \mathbf{A} if any proper solution u is oscillatory if n is even and is either oscillatory or satisfies

$$
\begin{equation*}
\left|u^{(i)}(t)\right| \downarrow 0 \quad \text { as } \quad t \uparrow+\infty, \quad i=0, \ldots, n-1, \tag{1.4}
\end{equation*}
$$

if n is odd.
Definition 1.2. We say that equation (1.1) has Property \mathbf{B} if any proper solution u is either oscillatory, satisfies (1.4), or satisfies

$$
\begin{equation*}
\left|u^{(i)}(t)\right| \uparrow+\infty \quad \text { as } \quad t \uparrow+\infty, \quad i=0, \ldots, n-1, \tag{1.5}
\end{equation*}
$$

if n is even, and is either oscillatory or satisfies (1.5) if n is odd.
Definition 1.3. We say that equation (1.1) is almost linear if the condition $\lim _{t \rightarrow+\infty} \mu(t)=1$ holds, while if $\limsup _{t \rightarrow+\infty} \mu(t) \neq 1$ or $\lim \inf _{t \rightarrow+\infty} \mu(t) \neq 1$, then we say that the equation is an essentially nonlinear differential equation.

Oscillatory properties of almost linear and essentially nonlinear differential equation with advanced argument are studied well enough in [1-6]. For Emden -Fowler differential equations with deviating arguments, an essential contribution was made in [7-13]. In the present paper sufficient conditions are established for the equation (1.1) to have Property B. Analogous results for Property \mathbf{A} see in [14].
2. Some auxiliary lemmas. The following notation will be used throughout the work: $\widetilde{C}_{\text {loc }}^{n-1}\left(\left[t_{0},+\infty\right)\right)$ will denote the set of all function $u:\left[t_{0},+\infty\right) \rightarrow R$, absolutely continuous on any finite subinterval of $\left[t_{0},+\infty\right)$ along with their derivatives of order up to including $n-1$;

$$
\begin{align*}
& \alpha=\inf \left\{\mu(t), t \in R_{+}\right\}, \quad \beta=\sup \left\{\mu(t), t \in R_{+}\right\} \tag{2.1}\\
& \tau_{(-1)}(t)=\sup \{s \geq 0 ; \tau(s) \leq t\}, \quad \tau_{(-k)}=\tau_{(-1)} \circ \tau_{(-(k-1))}, \quad k=2,3, \ldots \tag{2.2}
\end{align*}
$$

Clearly, $\tau_{(-1)}(t) \geq t$ and $\tau_{(-1)}$ is nondecreasing and coincidence with the inverse of σ when the latter exists.

Lemma 2.1 [12]. Let $u \in \widetilde{C}_{\operatorname{loc}}^{n-1}\left(\left[t_{0},+\infty\right)\right), u(t)>0, u^{(n)}(t) \geq 0$ for $t \geq t_{0}$ and $u^{(n)}(t) \not \equiv 0$ in any neighborhood of $+\infty$. Then there exists $t_{1} \geq t_{0}$ and $\ell \in\{0, \ldots, n\}$ such that $\ell+n$ is even and

$$
\begin{gather*}
u^{(i)}(t)>0 \quad \text { for } \quad t \geq t_{1}, \quad i=0, \ldots, \ell-1 \\
(-1)^{i+\ell} u^{(i)}(t) \geq 0 \quad \text { for } \quad t \geq t_{1}, \quad i=\ell, \ldots, n
\end{gather*}
$$

In the case $\ell=0$ we mean that only the second inequality in $\left(2.3_{\ell}\right)$ holds, while if $\ell=n$ only the first inequality holds and $u^{(n)}(t) \geq 0$.

Lemma 2.2 [15]. Let $u \in \widetilde{C}_{\mathrm{loc}}^{n-1}\left(\left[t_{0},+\infty\right)\right), u^{(n)}(t) \geq 0$ and $\left(2.3_{\ell}\right)$ be satisfied for some $\ell \in\{1, \ldots, n-2\}$, where $\ell+n$ is even. Then

$$
\begin{equation*}
\int_{t_{0}}^{+\infty} t^{n-\ell-1} u^{(n)}(t) d t<+\infty \tag{2.4}
\end{equation*}
$$

Moreover, if

$$
\int_{t_{0}}^{+\infty} t^{n-\ell} u^{(n)}(t) d t=+\infty
$$

then there exists $t_{1} \geq t_{0}$ such that

$$
\begin{gather*}
u(t) \geq \frac{t^{\ell-1}}{\ell!} u^{(\ell-1)}(t) \quad \text { for } \quad t \geq t_{1} \tag{2.6}\\
\frac{u^{(i)}(t)}{t^{\ell-i}} \downarrow, \quad \frac{u^{(i)}(t)}{t^{\ell-i-1}} \uparrow, \quad i=0, \ldots, \ell-1 \tag{i}
\end{gather*}
$$

and

$$
\begin{equation*}
u^{(\ell-1)}(t) \geq \frac{t}{(n-\ell)!} \int_{t}^{+\infty} s^{n-\ell-1} u^{(n)}(s) d s+\frac{1}{(n-\ell)!} \int_{t_{1}}^{t} s^{n-\ell} u^{(n)}(s) d s \tag{2.8}
\end{equation*}
$$

Definition 2.1. Let $t_{0} \in R_{+}$. By $\mathbf{U}_{\ell, t_{0}}$ we denote the set of all solutions of equation (1.1) satisfying the condition $\left(2.3_{\ell}\right)$.

Lemma 2.3. Let the conditions (1.2), (1.3) be fulfilled, $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even and equation (1.1) have positive proper solution $u:\left[t_{0},+\infty\right) \rightarrow(0,+\infty)$ such that $u \in \mathbf{U}_{\ell, t_{0}}$. Moreover, let $\alpha \geq 1$ and

$$
\int_{t_{0}}^{+\infty} t^{n-\ell}\left(c \tau^{\ell-1}(t)\right)^{\mu(t)}|p(t)| d t=+\infty \quad \text { for } \quad c \in(0,1]
$$

ISSN 1562-3076. Нелінійні коливання, 2015, т. 18, № 4
then for any $\gamma \in(1,+\infty)$ there exists $t_{*}>t_{0}$ such that for any $k \in N$

$$
\begin{equation*}
u^{(\ell-1)}(t) \geq \rho_{k, \ell, t_{*}}^{(\alpha)}(t) \quad \text { for } \quad t \geq \tau_{(-k)}\left(t_{*}\right) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{align*}
\rho_{1, \ell, t_{*}}^{(\alpha)}(t)= & \ell!\exp \left\{\gamma_{\ell}(\alpha) \int_{\tau_{(-1)}\left(t_{*}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1) \mu(\xi)}|p(\xi)| d \xi d s\right\} \\
\rho_{i, \ell, t_{*}}^{(\alpha)}(t)= & \ell!+\frac{1}{(n-\ell)!} \int_{\tau_{(-1)}\left(t_{*}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)} \times \\
& \times\left(\frac{1}{\ell!} \rho_{i-1, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)| d \xi d s, \quad i=2, \ldots, k \\
\gamma_{\ell}(\alpha)= & \left\{\begin{array}{lll}
\frac{1}{\ell!(n-\ell)!} & \text { if } \quad \alpha=1 \\
\gamma & \text { if } & \alpha>1
\end{array}\right.
\end{align*}
$$

α is given by first equality of (2.1).
Proof. Let $t_{0} \in R_{+}, \ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even and $u \in \mathbf{U}_{\ell, t_{0}}$. According to (1.1), (2.3 $)$ and ($2.9_{\ell, c}$) it is clear that condition (2.5_{ℓ}) is fulfilled. Indeed, by (2.3_{ℓ}) there exists $t_{1}>t_{0}$ and $c \in(0,1]$ such that

$$
u(\tau(t)) \geq c(\tau(t))^{\ell-1} \quad \text { for } \quad t \geq t_{1}
$$

Thus from (1.1) we have

$$
\int_{t_{1}}^{t} s^{n-\ell} u^{(n)}(s) d s \geq \int_{t_{1}}^{t} s^{n-\ell}\left(c \tau^{\ell-1}(s)\right)^{\mu(s)}|p(s)| d s \quad \text { for } \quad t \geq t_{1}
$$

Passing to the limit in the latter inequality, by $\left(2.9_{\ell, c}\right)$ we get $\left(2.5_{\ell}\right)$.
According to Lemma 2.2 there exists $t_{2}>t_{1}$ such that conditions (2.6)-(2.8) are fulfilled for $t \geq t_{2}$ and

$$
\begin{aligned}
u^{(\ell-1)}(t) \geq & \frac{t}{(n-\ell)!} \int_{t}^{+\infty} s^{n-\ell-1}(u(\tau(s)))^{\mu(s)}|p(s)| d s+ \\
& +\frac{1}{(n-\ell)!} \int_{t_{(-1)}\left(t_{2}\right)}^{t} s^{n-\ell}(u(\tau(s)))^{\mu(s)}|p(s)| d s \quad \text { for } \quad t \geq \tau_{(-1)}\left(t_{2}\right) .
\end{aligned}
$$

Therefore, by (2.6) we get

$$
\begin{align*}
u^{(\ell-1)}(t) \geq & \frac{1}{(n-\ell)!} \int_{\tau_{(-1)}\left(t_{2}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)} \times \\
& \times\left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)| d \xi d s \quad \text { for } \quad t \geq \tau_{(-1)}\left(t_{2}\right) \tag{2.14}
\end{align*}
$$

According to $\left(2.7_{\ell-1}\right)$ and $\left(2.9_{\ell, c}\right)$ choose $t_{*}>\tau_{(-1)}\left(t_{2}\right)$ such that

$$
\begin{equation*}
\frac{1}{(n-\ell)!} \int_{\tau_{(-1)}\left(t_{2}\right)}^{t_{*}} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)}\left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)| d \xi d s>\ell!. \tag{2.15}
\end{equation*}
$$

By (2.14) and (2.15) we have

$$
\begin{align*}
u^{(\ell-1)}(t) \geq & \ell!+\frac{1}{(n-\ell)!} \int_{t_{*}}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)} \times \\
& \times\left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)| d \xi d s \quad \text { for } \quad t \geq t_{*} . \tag{2.16}
\end{align*}
$$

Let $\alpha=1$. Since $u^{(\ell-1)}(t) / t$ is a nonincreasing function, from (2.16) we obtain

$$
\begin{align*}
u^{(\ell-1)}(t) \geq & \ell!+\frac{1}{\ell!(n-\ell)!} \int_{t_{*}}^{t} \int_{s}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1) \mu(\xi)} \times \\
& \times u^{(\ell-1)}(\xi)|p(\xi)| d \xi d s \text { for } t \geq t_{*} . \tag{2.17}
\end{align*}
$$

By the second condition of $\left(2.7_{\ell-1}\right)$, it is obviously that

$$
\begin{equation*}
x^{\prime}(t) \geq \frac{u^{(\ell-1)}(t)}{\ell!(n-\ell)!} \int_{t}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1) \mu(\xi)}|p(\xi)| d \xi, \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
x(t)=\ell!+\frac{1}{\ell!(n-\ell)!} \int_{t_{*}}^{t} \int_{s}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1) \mu(\xi)} u^{(\ell-1)}(\xi)|p(\xi)| d \xi d s \tag{2.19}
\end{equation*}
$$

Thus, according to (2.17), (2.18) and (2.19) we get

$$
x^{\prime}(t) \geq \frac{x(t)}{\ell!(n-\ell)!} \int_{t}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1) \mu(\xi)}|p(\xi)| d \xi \quad \text { for } \quad t \geq t_{*} .
$$

ISSN 1562-3076. Нелінійні коливання, 2015, т. 18, № 4

Therefore, since $x\left(t_{*}\right)=\ell$!, we have

$$
x(t) \geq \ell!\exp \left\{\frac{1}{\ell!(n-\ell)!} \int_{t_{*}}^{t} \int_{s}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1) \mu(\xi)}|p(\xi)| d \xi d s\right\} \quad \text { for } \quad t \geq t_{*}
$$

Hence by (2.16) and (2.19)

$$
\begin{equation*}
u^{(\ell-1)}(t) \geq \rho_{1, \ell, t_{*}}^{(1)}(t) \quad \text { for } \quad t \geq t_{*}, \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{1, \ell, t_{*}}^{(1)}(t)=\ell!\exp \left\{\frac{1}{\ell!(n-\ell)!} \int_{t_{*}}^{t} \int_{s}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1) \mu(\xi)}|p(\xi)| d \xi d s\right\} . \tag{2.21}
\end{equation*}
$$

Thus, by (2.14) and (2.20),

$$
\begin{equation*}
u^{(\ell-1)}(t) \geq \rho_{i, \ell, t_{*}}^{(1)}(t) \quad \text { for } \quad t \geq \tau_{(-i)}\left(t_{*}\right), \quad i=1, \ldots, k, \tag{2.22}
\end{equation*}
$$

where

$$
\begin{align*}
\rho_{i, \ell, t_{*}}^{(1)}(t)= & \ell!+\frac{1}{(n-\ell)!} \int_{\tau_{(-i)}\left(t_{*}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)} \times \\
& \times\left(\frac{1}{\ell!} \rho_{i-1, \ell, t_{*}}^{(1)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)| d \xi d s \quad i=2, \ldots, k . \tag{2.23}
\end{align*}
$$

Now assume that $\alpha>1$ and $\gamma \in(1,+\infty)$. Since $u^{(\ell-1)}(t) \uparrow+\infty$ for $t \uparrow+\infty$, without loss of generality we can assume that $\left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(t))\right)^{\alpha-1} \geq \ell!(n-\ell)!\gamma$ for $t \geq t_{*}$. From (2.16) we obtain

$$
\begin{equation*}
u^{(\ell-1)}(t) \geq \ell!+\gamma \int_{t_{*}}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)} u^{(\ell-1)}(\xi)|p(\xi)| d \xi d s \quad \text { for } \quad t \geq t_{*} \tag{2.24}
\end{equation*}
$$

By (2.24), as above we can find that if $\alpha>1$, then

$$
\begin{equation*}
u^{(\ell-1)}(t) \geq \rho_{k, \ell, t_{*}}^{(\alpha)}(t) \quad \text { for } \quad t \geq \tau_{(-k)}\left(t_{*}\right) \tag{2.25}
\end{equation*}
$$

where

$$
\begin{align*}
\rho_{1, \ell, t_{*}}^{(\alpha)}(t)= & \ell!\exp \left\{\gamma \int_{\tau_{(-1)}\left(t_{*}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1) \mu(\xi)} \times\right. \\
& \times|p(\xi)| d \xi d s\} \text { for } t \geq \tau_{(-1)}\left(t_{*}\right), \tag{2.26}
\end{align*}
$$

$$
\begin{align*}
\rho_{i, \ell, t_{*}}^{(\alpha)}(t)= & \ell!+\frac{1}{(n-\ell)!} \int_{\tau_{(-i)}\left(t_{*}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)} \times \\
& \times\left(\frac{1}{\ell!} \rho_{i-1, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)| d \xi d s \quad \text { for } \quad t \geq \tau_{(-i)}\left(t_{*}\right), \quad i=2, \ldots, k \tag{2.27}
\end{align*}
$$

According to (2.20) - (2.23) and (2.25) - (2.27) it is clear that for any $\alpha \geq 1, k \in N$, and $\gamma \in$ $\in(1,+\infty)$, there exists $t_{*} \in R_{+}$such that (2.10) holds, where $\gamma_{\ell}(\alpha)$ is given by $\left(2.13_{\ell}\right)$, which proves the validity of the lemma.

Remark 2.1. It is obvious that, if $\beta<+\infty$ and ($2.9_{\ell, 1}$) holds, then for any $c \in(0,1]$ the condition ($2.9_{\ell, c}$) is fulfilled.

Remark 2.2. Condition ($2.9_{\ell, 1}$) is not suffices for condition (2.5) to be fulfilled. Therefore, in this case, it can happen that Lemma 2.3 is not correct. Indeed, let $\delta \in(0,1)$. Consider equation (1.1), where n is odd and

$$
\tau(t) \equiv t, \quad p(t)=-\frac{n!t^{\log _{1 / \delta} t}}{t^{n+1}(\delta t-1)^{\log _{1 / \delta} t}}, \quad \mu(t)=\log _{1 / \delta} t, \quad t \geq \frac{2}{\delta}
$$

It is clear that the function $u(t)=\delta-\frac{1}{t}$ is solution of the equation (1.1) and satisfies condition $\left(2.3_{1}\right)$ for $t \geq \frac{2}{\delta}$. On the other hand condition (2.9 $9_{1,1}$) holds, but condition (2.51) is not fulfilled.
3. Necessary conditions for the existence of solutions of type ($\mathbf{2 . 3}_{\ell}$).

Theorem 3.1. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ be even, conditions (1.2), (1.3), (2.9 $9_{\ell, c}$) and

$$
\int_{0}^{+\infty} t^{n-\ell-1}(\tau(t))^{\ell \mu(t)}|p(t)| d t=+\infty
$$

be fulfilled and for some $t_{0} \in R_{+}, \mathbf{U}_{\ell, t_{0}} \neq \varnothing$. Then there exists $t_{*}>t_{0}$ such that, if $\alpha=1$, then, for any $k \in N$,

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{1}{t} \int_{\tau_{(-k)}\left(t_{*}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)}\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(1)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)| d \xi d s=0 \tag{3.2}
\end{equation*}
$$

and if $\alpha>1$, then, for any $k \in N, \gamma \in(1,+\infty)$ and $\delta \in(1, \alpha]$,

$$
\begin{equation*}
\int_{\tau_{(-i)}\left(t_{*}\right)}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)}\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta}|p(\xi)| d \xi d s<+\infty \tag{3.3}
\end{equation*}
$$

where α is defined by first equality of (2.1) and $\rho_{k, \ell, t_{*}}^{(\alpha)}$ is given by (2.11) - (2.13).
Proof. Let $t_{0} \in R_{+}, \ell \in\{1, \ldots, n-2\}, \mathbf{U}_{\ell, t_{0}} \neq \varnothing$ and $\gamma \in(1,+\infty)$. By definition (see Definition 2.1) equation (1.1) has a proper solution $u \in \mathbf{U}_{\ell, t_{0}}$ satisfying condition (2.3 $)$ with
some $t_{1} \geq t_{0}$. Due to (1.1), (2.3 $)$ and ($2.9_{\ell, c}$), it is obvious that condition (2.5_{ℓ}) holds. Thus, by Lemma 2.2 there exists $t_{1}>t_{0}$ such that conditions (2.6), (2.7 $)_{i}$) are fulfilled. On the other hand, according to Lemma 2.3 (and its proof), there exist $t_{2}>t_{1}$ and $t_{*}>t_{2}$ such that

$$
\begin{equation*}
u^{(\ell-1)}(t) \geq \frac{1}{(n-\ell)!} \int_{t_{2}}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(u(\tau(\xi)))^{\mu(\xi)}|p(\xi)| d \xi d s \quad \text { for } \quad t \geq t_{2} \tag{3.4}
\end{equation*}
$$

and relation (2.10) is fulfilled. Without loss of generality we can assume that $\tau(t) \geq t_{2}$ for $t \geq t_{*}$. Therefore, by (2.10), from (3.4) we get

$$
\begin{equation*}
u^{(\ell-1)}(t) \geq \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}\left(t_{*}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)}\left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)| d \xi d s \tag{3.5}
\end{equation*}
$$

Assume that $\alpha=1$. Then by (2.10) and (3.5) we have

$$
\begin{align*}
u^{(\ell-1)}(t) \geq & \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}\left(t_{*}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)} \times \\
& \times\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(1)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)| d \xi d s \quad \text { for } \quad t \geq \tau_{(-k)}\left(t_{*}\right) . \tag{3.6}
\end{align*}
$$

On the other hand, according to $\left(2.7_{\ell-1}\right)$ and (3.1 $)_{\ell}$ it is obvious that

$$
\begin{equation*}
u^{(\ell-1)}(t) / t \downarrow 0 \quad \text { for } \quad t \uparrow+\infty . \tag{3.7}
\end{equation*}
$$

Therefore by (3.7), from (3.6) we get

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{1}{t} \int_{\tau_{(-k)}\left(t_{*}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)}\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(1)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)| d \xi d s=0 \tag{3.8}
\end{equation*}
$$

Now assume that $\alpha>1$ and $\delta \in(1, \alpha]$. Then by $\left(2.7_{\ell-1}\right),(2.10)$ and (3.7) we obtain

$$
\begin{aligned}
u^{(\ell-1)}(t) \geq & \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}\left(t_{*}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)} \times \\
& \times\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta}\left(\frac{1}{\ell!} u^{(\ell-1)}(\xi)\right)^{\delta}|p(\xi)| d \xi d s \geq \\
\geq & \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}\left(t_{*}\right)}^{t}\left(\frac{1}{\ell!} u^{(\ell-1)}(\xi)\right)^{\delta} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)} \times \\
& \times\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta}|p(\xi)| d \xi d s .
\end{aligned}
$$

Thus we have

$$
\begin{align*}
(v(t))^{\delta} \geq & \frac{1}{(\ell!(n-\ell)!)^{\delta}}\left(\int_{\tau_{(-k)}\left(t_{*}\right)}^{t} v^{\delta}(s) \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)} \times\right. \\
& \left.\times\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta}|p(\xi)| d \xi d s\right)^{\delta}, \tag{3.9}
\end{align*}
$$

where $v(t)=\frac{1}{\ell!} u^{(\ell-1)}(t)$.
By $\left(3.1_{\ell}\right)$, it is obvious that there exists $t_{1}>\tau_{(-k)}\left(t_{*}\right)$ such that

$$
\begin{gathered}
\int_{\tau_{(-k)}\left(t_{*}\right)}^{t} v^{\delta}(s) \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)}\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} \times \\
\times|p(\xi)| d \xi d s>0 \quad \text { for } \quad t \geq t_{1}
\end{gathered}
$$

Therefore, from (3.9) we get

$$
\begin{align*}
\int_{t_{1}}^{t} \frac{\varphi^{\prime}(s) d s}{(\varphi(s))^{\delta}} \geq & \frac{1}{(\ell!(n-\ell)!)^{\delta}} \int_{t_{1}}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)} \times \\
& \times\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta}|p(\xi)| d \xi d s \quad \text { for } \quad t \geq t_{1}, \tag{3.10}
\end{align*}
$$

where

$$
\varphi(t)=\int_{\tau_{(-k)}\left(t_{*}\right)}^{t}(v(s))^{\delta} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)}\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(\alpha)}(\tau(s))\right)^{\mu(\xi)-\delta}|p(\xi)| d \xi d s
$$

From (3.10) we obtain

$$
\begin{aligned}
& \int_{t_{1}}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)}\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta}|p(\xi)| d \xi d s \leq \\
& \quad \leq \frac{(\ell!(n-\ell)!)^{\delta}}{\delta-1}\left(\varphi^{1-\delta}\left(t_{1}\right)-\varphi^{1-\delta}(t)\right) \leq \frac{(\ell!(n-\ell)!)^{\delta}}{\delta-1} \varphi^{1-\delta}\left(t_{1}\right) \quad \text { for } \quad t \geq t_{1}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\int_{t_{1}}^{+\infty+\infty} \int_{s} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)}\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta}|p(\xi)| d \xi d s \leq+\infty . \tag{3.11}
\end{equation*}
$$

According to (3.8) and (3.11) conditions (3.2) and (3.3) hold, with proves the validity of the theorem.

Corollary 3.1. Let $\ell \in\{1, \ldots, n-1\}$ with $\ell+n$ be even, $\beta<+\infty$, conditions (1.2), (1.3), $\left(2.9_{\ell, 1}\right)$, (3.1 $)$ be fulfilled and for some $t_{0} \in R_{+}, \mathbf{U}_{\ell, t_{0}} \neq \varnothing$. Then for any $\gamma>1$ there exists $t_{*}>t_{0}$ such that if $\alpha=1$, for any $k \in N$, (3.2) holds and if $\alpha>1$, then, for any $k \in N$ and $\delta \in(1, \alpha]$, (3.3) holds, where α and β are defined by (2.1) and $\rho_{k, \ell, t_{*}}^{(\alpha)}$ is given by (2.11) - (2.13).

Proof. According to Remark 2.1, it suffices to note that, since $\beta<+\infty$, by $\left(2.9_{\ell, 1}\right)$, for any $c \in(0,1]$ conditions ($2.9_{\ell, c}$) is fulfilled.
4. Sufficient conditions for nonexistence of solutions of the type ($\mathbf{2 . 3}_{\ell}$).

Theorem 4.1. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ be even, conditions (1.2), (1.3), (2.9 $9_{\ell, c}$) and (3.1 1_{ℓ}) be fulfilled and if $\alpha=1$ for large $t_{*} \in R_{+}$and for some $k \in N$,

$$
\limsup _{t \rightarrow+\infty} \frac{1}{t} \int_{\tau_{(-k)}\left(t_{*}\right)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)}\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)}|p(\xi)| d \xi d s>0
$$

or if $\alpha>1$, for some $k \in N$ and $\delta \in(1, \alpha]$,

$$
\int_{\tau_{(-k)}\left(t_{*}\right)}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)}\left(\frac{1}{\ell!} \rho_{k, \ell, t_{*}}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta}|p(\xi)| d \xi d s=+\infty
$$

Then for any $t_{0} \in R_{+}$we have $\mathbf{U}_{\ell, t_{0}}=\varnothing$, where α is defined by the first equality of (2.1), and $\rho_{k, \ell, t_{*}}^{(\alpha)}$ is given by (2.11) - (2.13).

Proof. Assume the contrary. Let there exist $t_{0} \in R_{+}$such that $\mathbf{U}_{\ell, t_{0}} \neq \varnothing$ (see Definition 2.1). Then equation (1.1) has a proper solution $u:\left[t_{0},+\infty\right) \rightarrow R$ satisfying condition (2.3 $)$. Since the conditions of Theorem 3.1 are fulfilled, there exists $t_{*}>t_{0}$ such that if $\alpha=1(\alpha>1)$ condition (3.2) (condition (3.3)) holds, which contradicts (4.1 $)_{\ell}\left(\left(4.2_{\ell}\right)\right.$). The obtained contradiction proves the validity of the theorem.

Theorem 4.1'. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ be even, conditions (1.2), (1.3), (2.9 $9_{\ell, 1}$) and (3.1 ℓ_{ℓ}) be fulfilled and $\beta<+\infty$. Moreover, if $\alpha=1, \alpha>1$, for any large $t_{*} \in R_{+}$and for some $k \in N$ (for some $k \in N$ and $\delta \in(1, \alpha])$, (4.1 1_{ℓ}) holds ($\left(4.2_{\ell}\right)$ holds), then $\mathbf{U}_{\ell, t_{0}}=\varnothing$, where α and β are given by (2.1).

Proof. If suffices to note that, since $\beta<+\infty$, by $\left(2.9_{\ell, 1}\right)$ for any $c \in(0,1]$ the condition ($2.9_{\ell, c}$) is fulfilled. Therefore all the conditions of Theorem 4.1 hold, which proves the validity of the theorem.

Corollary 4.1. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ be even, $\alpha=1$, conditions (1.2), (1.3), (2.9 $\left.9_{\ell, c}\right)$ and $\left(3.1_{\ell}\right)$ be fulfilled and

$$
\limsup _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)}|p(\xi)| d \xi d s>0
$$

Then for any $t_{0} \in R_{+}, \mathbf{U}_{\ell, t_{0}}=\varnothing$, where α is defined by the first equality of (2.1).
Proof. Since

$$
\rho_{1, \ell, t_{*}}^{(1)}(\tau(t)) \geq \ell \quad \text { for large } \quad t,
$$

it is suffices to note that by $\left(4.3_{\ell}\right)$ for $\alpha=1$ and $k=1$ condition (4.1 1_{ℓ}) ise fulfilled.
Corollary 4.1'. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ be even, conditions (1.2), (1.3), (4.3 ℓ) and (3.1 1_{ℓ}) be fulfilled. Moreover, if $\alpha=1$ and $\beta<+\infty$, then for any $t_{0} \in R_{+}, \mathbf{U}_{\ell, t_{0}}=\varnothing$, where α and β are given by (2.1).

Proof. To prove the corollary it is suffices to note that, since $\beta<+\infty$, by (4.3 $)_{\ell}$ condition (2.9 $\ell_{\ell, c}$) holds.

Corollary 4.2. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even, conditions (1.2), (1.3) and ($2.9_{\ell, c}$) be fulfilled, $\alpha=1$ and

$$
\liminf _{t \rightarrow+\infty} t \int_{t}^{+\infty} s^{n-\ell-2}(\tau(s))^{1+(\ell-1) \mu(s)}|p(\xi)| d s=\gamma>0 .
$$

Moreover, if for some $\varepsilon \in(0, \gamma)$

$$
\limsup _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{\mu(\xi)\left(\ell-1+\frac{\gamma-\varepsilon}{\ell!(n-\ell)!}\right)}|p(\xi)| d \xi d s>0
$$

then for any $t_{0} \in R_{+}, \mathbf{U}_{\ell, t_{0}}=\varnothing$, where α is given by the first equality of (2.1).
Proof. Let $\varepsilon \in(0, \gamma)$. According to (4.4 $)$, (2.11) and (2.13) it is clear that $\rho_{1, \ell, t_{*}}^{(1)}(\tau(t)) \geq$ $\geq \ell!(\tau(t))^{\frac{\gamma-\varepsilon}{\ell!(n-\ell)!}}$ for large t. Therefore, by $\left(4.5_{\ell}\right)$, for $k=1,\left(4.1_{\ell}\right)$ holds, which proves the validity of the corollary.

Corollary 4.2'. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even, conditions (1.2), (1.3), (3.1 ℓ), (4.4 ℓ) and (4.5) be fulfilled. Moreover, if $\alpha=1$ and $\beta<+\infty$, then for any $t_{0} \in R_{+}, \mathbf{U}_{\ell, t_{0}}=\varnothing$, where α and β are given by (2.1).

Proof. To prove the corollary, it is suffices to note that, since $\beta<+\infty$ by (4.4_{ℓ}) the condition (2.9 ${ }_{\ell, c}$) holds.

Corollary 4.3. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even, conditions (1.2), (1.3), (2.9 $\ell_{\ell, c}$) and (3.1 ℓ) be fulfilled. Moreover, if $\alpha>1$ and, for some $\delta \in(1, \alpha]$,

$$
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)}|p(\xi)| d \xi d s=+\infty
$$

Then for any $t_{0} \in R_{+}, \mathbf{U}_{\ell, t_{0}}=\varnothing$, where α is defined by the first condition of (2.1).
Proof. By (4.6 $)$, for $k=1$ condition (4.2_{ℓ}) holds, which proves the validity of the corollary.
Corollary 4.3'. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even, conditions (1.2), (1.3), (3.1 $)$), (2.9 $9_{\ell, 1}$) and (4.6 $)_{\ell}$ be fulfilled. Moreover, if $\alpha>1$ and $\beta<+\infty$, then for any $t_{0} \in R_{+}, \mathbf{U}_{\ell, t_{0}}=\varnothing$, where α and β are given by (2.1).

Proof. According to Corollary 4.3, it is suffices to note that, since $\beta<+\infty$ by (2.9 $\boldsymbol{\vartheta}_{\ell, 1}$) for any $c \in(0,1]$, condition $\left(2.9_{\ell, c}\right)$ hold.

Corollary 4.4. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even, conditions (1.2), (1.3), (2.9 $9_{\ell, c}$), (3.1 ℓ), (4.4 ℓ) and (4.6 $)_{\ell}$ be fulfilled. Moreover, if $\alpha>1$ and there exists $m \in N$ such that

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} \frac{\tau^{m}(t)}{t}>0 \tag{4.7}
\end{equation*}
$$

ISSN 1562-3076. Нелінійні коливання, 2015, т. 18, № 4
then for any $t_{0} \in R_{+}, \mathbf{U}_{\ell, t_{0}}=\varnothing$, where α is given by the first condition of (2.1).
Proof. By (4.4 ℓ_{ℓ}) there exists $c>0$ and $t_{1} \in R_{+}$such that

$$
\begin{equation*}
t \int_{t}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1) \mu(\xi)}|p(\xi)| d \xi \geq c \quad \text { for } \quad t \geq t_{1} \tag{4.8}
\end{equation*}
$$

Let $\delta=\frac{1+\alpha}{2}$ and $m_{0}=\frac{\delta(m-1)}{c(\alpha-\delta)}$. Then by (4.8) and (2.26), there exists $t_{*}>t_{1}$ such that

$$
\rho_{1,,, t_{*}}^{(\alpha)}(t) \geq t^{m_{0} c} \quad \text { for } \quad t \geq t_{*} .
$$

Therefore, for large t we have

$$
\begin{aligned}
\left(\frac{\tau(t)}{t}\right)^{\delta}\left(\frac{1}{\ell!} \rho_{1, \ell, t_{*}}^{(\alpha)}(\tau(t))\right)^{\mu(t)-\delta} & \geq\left(\frac{\tau(t)}{t}\right)^{\delta}\left(\frac{1}{\ell!} \tau^{m_{0} c}(t)\right)^{\alpha-\delta}= \\
& =\frac{1}{(\ell!)^{\alpha-\delta}}\left(\frac{(\tau(t))^{1+\frac{m_{0} c(\alpha-\delta)}{\delta}}}{t}\right)^{\delta}=(\ell!)^{\delta-\alpha}\left(\frac{\tau^{m}(t)}{t}\right)^{\delta}
\end{aligned}
$$

Thus, by (4.7) and (4.6 6_{ℓ}) it is obvious that (4.2 $)$ holds, which proves the corollary.
Corollary 4.4'. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ be even and conditions (1.2), (1.3), (3.1 ℓ), (4.6 \boldsymbol{C}_{ℓ} and (4.7) be fulfilled. Moreover, if $\alpha>1$ and $\beta<+\infty$, then for any $t_{0} \in R_{+}, \mathbf{U}_{\ell, t_{0}}=\varnothing$, where α and β are given by (2.1).

Proof. Since $\beta<+\infty$, it suffices to note that all conditions of Corollary 4.4 are satisfied.
Quite similarly one can prove the following corollary.
Corollary 4.5. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even, conditions (1.2), (1.3), (3.1 1_{ℓ}) and (2.9 $\ell_{\ell, c}$ be fulfilled and $\alpha>1$. Moreover, if

$$
\liminf _{t \rightarrow+\infty} t \ln t \int_{t}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1) \mu(\xi)}|p(\xi)| d \xi>0
$$

and for some $\delta \in(1, \alpha]$ and $m \in N$

$$
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)}(\ln \tau(\xi))^{m}|p(\xi)| d \xi d s=+\infty
$$

then for any $t_{0} \in R_{+}$we have $\mathbf{U}_{\ell, t_{0}}=\varnothing$, where α is defined by the first equality of (2.1).
Corollary 4.5'. Let $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even, conditions (1.2), (1.3), (2.9 $9_{\ell, 1}$), (4.9 $)_{\ell}$ and $\left(4.10_{\ell}\right)$ be fulfilled. Moreover, if $\alpha>1$ and $\beta<+\infty$, then for any $t_{0} \in R_{+}$we have $\mathbf{U}_{\ell, t_{0}}=\varnothing$, where α and β are given by (2.1).

Corollary 4.6. Let $\alpha>1, \ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even, conditions (1.2), (3.1 1_{ℓ}) and $\left(2.9_{\ell, c}\right)$ be fulfilled. Moreover, assume there exist $\gamma \in(0,1)$ and $r \in(0,1)$ such that

$$
\begin{gather*}
\liminf _{t \rightarrow+\infty} t^{\gamma} \int_{t}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)}|p(\xi)| d \xi>0 \\
\liminf _{t \rightarrow+\infty} \frac{\tau(t)}{t^{r}}>0 \tag{4.12}
\end{gather*}
$$

and at last one of the conditions

$$
\begin{equation*}
r \alpha \geq 1 \tag{4.13}
\end{equation*}
$$

or $r \alpha<1$ holds, and for some $\varepsilon>0$ and $\delta \in(1, \alpha)$,

$$
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta-\varepsilon+\frac{r(1-\gamma)(\alpha-\delta)}{1-\alpha r}}(\tau(\xi))^{\delta+(\ell-1) \mu(\xi)}|p(\xi)| d \xi d s=+\infty
$$

is fulfilled. Then for any $t_{0} \in R_{+}, \mathbf{U}_{\ell, t_{0}}=\varnothing$, where α is defined by first equality of (2.1).
Proof. It suffices to show that condition (4.2 $)$ is satisfied for some $k \in N$. Indeed, according to (4.11 $)$ and (4.12) there exist $\gamma \in(0,1), r \in(0,1), c>0$ and $t_{1} \in R_{+}$such that

$$
\begin{equation*}
t^{\gamma} \int_{t}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1) \mu(\xi)}|p(\xi)| d \xi \geq c \quad \text { for } \quad t \geq t_{1} \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau(t) \geq c t^{r} \quad \text { for } \quad t \geq t_{1} . \tag{4.16}
\end{equation*}
$$

By $\left(2.12_{\ell}\right),\left(2.11_{\ell}\right)$ and (4.15) we have

$$
\rho_{2,, \ell, t_{*}}^{(\alpha)}(t) \geq \frac{c}{(n-\ell)!} \int_{\tau_{(-1)}\left(t_{*}\right)}^{t} s^{-\gamma} d s=\frac{c\left(t^{1-\gamma}-\tau_{(-1)}^{1-\gamma}\left(t_{*}\right)\right)}{(n-\ell)!(1-\gamma)} \quad \text { for } \quad t \geq \tau_{(-1)}\left(t_{*}\right) .
$$

Choose $t_{2}>\tau_{(-1)}\left(t_{*}\right)$ and $c_{1} \in(0, c)$ such that

$$
\rho_{2, \ell, t_{*}}^{(\alpha)}(t) \geq c_{1} t^{1-\gamma} \quad \text { for } \quad t \geq t_{2}
$$

Therefore, by (4.15) and (4.16) we can find $t_{3}>t_{2}$ and $c_{2} \in\left(0, c_{1}\right)$ such that from (2.12) we get

$$
\rho_{3, \ell, t_{*}}^{(\alpha)}(t) \geq c_{2} t^{(1-\gamma)(1+\alpha r)} \quad \text { for } \quad t \geq t_{3} .
$$

ISSN 1562-3076. Нелінійні коливання, 2015, т. 18, № 4

Hence for any $k_{0} \in N$, there exist $t_{k_{0}}$ and $c_{k_{0}-1}>0$ such that

$$
\begin{equation*}
\rho_{k_{0} \ell, t_{*}}^{(\alpha)}(t) \geq c_{k_{0}-1} t^{(1-\gamma)\left(1+\alpha r+\ldots+(\alpha r)^{k_{0}-2}\right)} \quad \text { for } \quad t \geq t_{k_{0}} . \tag{4.17}
\end{equation*}
$$

Assume that (4.13) is fulfilled. Choose $k_{0} \in N$ such that $k_{0}-1 \geq \frac{\delta}{r(\alpha-\delta)(1-\gamma)}$. Then by (4.16), (4.17) and ($2.9_{\ell, 1}$) condition (4.2 $)$ holds for $k=k_{0}$.

In this case, the validity of the corollary has already been proved.
Assume now that $\alpha r<1$ and for some $\varepsilon \in\left(0,(1-\gamma(\alpha-\delta) r),\left(4.14_{\ell}\right)\right.$ is fulfilled. Choose $k_{0} \in N$ such that $1+\alpha r+\ldots+(\alpha r)^{k_{0}-2} \geq \frac{1}{1-\alpha r}-\frac{\varepsilon}{(1-\gamma)(\alpha-\delta) r}$. Then by (4.14 ℓ), (4.16) and (4.17) it is obvious that $\left(4.2_{\ell}\right)$ holds for $k=k_{0}$. The proof the corollary is complete.

5. Differential equations with property B.

Theorem 5.1. Let conditions (1.2) and (1.3) be fulfilled and for any $\ell \in\{1, \ldots, n\}$ with $\ell+n$ even, conditions (2.9 ${ }_{\ell, c}$), (3.1 $)$ and, for even $n,\left(2.9_{1, c}\right)$ hold. Moreover, let for any large $t_{*} \in R_{+}$ and $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even for some $k \in N$, condition (4.1 ℓ) hold, when $\alpha=1$, or for some $k \in N, \gamma \in(1,+\infty)$ and $\delta \in(1, \alpha]\left(4.2_{\ell}\right)$ hold when $\alpha>1$. Then equation (1.1) has Property \mathbf{B}, where α is defined by the first condition of (2.1) and $\rho_{k, \ell, t_{*}}^{\alpha)}$ is given by (2.11) - (2.13).

Proof. Let equation (1.1) have a proper nonoscillatory solution $u:\left[t_{0},+\infty\right) \rightarrow(0,+\infty)$ (the case $u(t)<0$ is similar). Then by (1.2), (1.3) and Lemma 2.1 there exists $\ell \in\{1, \ldots, n\}$ such that $\ell+n$ is even and condition (2.3 $)$ holds. Since for any $\ell \in\{1, \ldots, n-2\}$, with $\ell+n$ even, the conditions of Theorem 4.1 are fulfilled, we have $\ell \notin\{1, \ldots, n-2\}$. Let $\ell=n$. Then by $\left(2.3_{n}\right)$ it is clear that there exists $c \in(0,1]$ such that for large $t, u(\tau(t)) \geq c \tau^{n-1}(t)$. Thus from (1.1) by (2.9 $9_{n, c}$) we have

$$
u^{(n-1)}(t) \geq \int_{t_{1}}^{t}\left(c \tau^{n-1}(s)\right)^{\mu(s)}|p(s)| d s \rightarrow+\infty \quad \text { for } \quad t \rightarrow+\infty,
$$

where t_{1} is a sufficiently large number. That is, condition (1.4) is fulfilled. Now assume that $\ell=0$ and n is even and there exists $c \in(0,1]$ such that $u(t) \geq c$ for $t \geq t_{2}$, where t_{2} is a sufficiently large number. According to (2.3_{0}) from (1.1) we get

$$
\sum_{i=0}^{n-1}(n-i-1)!t_{1}\left|u^{(i)}\left(t_{1}\right)\right| \geq \int_{t_{1}}^{t} s^{n-1} c^{\mu(s)}|p(s)| d s \quad \text { for } \quad t \geq t_{2}
$$

The last inequality contradicts conditions $\left(2.9_{1, c}\right)$. The obtained contradiction proves that condition (1.5) holds, that is equation (1.1) has Property B.

Theorem 5.1'. Let conditions (1.2), (1.3) be fulfilled and for any $\ell \in\{1, \ldots, n\}$ with $\ell+n$ even, conditions (2.9 $9_{\ell, 1}$), (3.1 1_{ℓ}) and, for even $n,\left(2.9_{1,1}\right)$ hold. Moreover, let $\beta<+\infty$ and for any large $t_{*} \in R_{+}$and $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even for some $k \in N$, condition (4.1 ℓ_{ℓ}) be fulfilled, when $\alpha=1$ or for some $k \in N, \gamma \in(1,+\infty)$ and $\delta \in(1, \alpha]\left(4.2_{\ell}\right)$ hold, when $\alpha>1$. Then the equation (1.1) has Property \mathbf{B}, where α and β are defined by the first condition of (2.1) and $\rho_{k, \ell, t_{*}}^{(\alpha)}$ is given by $\left(2.11_{\ell}\right)-\left(2.13_{\ell}\right)$.

ON HIGHER ORDER GENERALIZED EMDEN-FOWLER...

Proof. Since $\beta<+\infty$, by $\left(2.9_{\ell, 1}\right)$ for any $\ell \in\{1, \ldots, n\}$ with $\ell+n$ even, condition $\left(2.9_{\ell, c}\right)$ holds. That is conditions of Theorem 5.1 are fulfilled, which proves the validity of the theorem.

Theorem 5.2. Let $\alpha>1$, conditions (1.2), (1.3), (2.9 $9_{1, c}$), (3.1 1_{1}) be fulfilled and

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} \frac{(\tau(t))^{\mu(t)}}{t}>0 \tag{5.1}
\end{equation*}
$$

Moreover, if for some $\delta \in(1, \alpha)$

$$
\begin{equation*}
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-2-\delta}(\tau(\xi))^{\delta}|p(\xi)| d \xi d s=+\infty \tag{5.2}
\end{equation*}
$$

when n is odd and

$$
\begin{equation*}
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-3-\delta}(\tau(\xi))^{\delta+\mu(\xi)}|p(\xi)| d \xi d s=+\infty \tag{5.3}
\end{equation*}
$$

when n is even, then equation (1.1) has Property \mathbf{B}, where α is given by the first condition of (2.1).
Proof. According to $\left(2.9_{1, c}\right),\left(3.1_{1}\right)$ and (5.1) it is obvious that for any $\ell \in\{1, \ldots, n\}$ conditions ($2.9_{\ell, c}$) and (3.1 1_{ℓ}) hold. On the other hand by (5.1), (5.2) and (5.3), for any $\ell \in\{1, \ldots, n-2\}$ with $\ell+n$ even condition (4.2 $)$ holds. That is if $\alpha>1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.2'. Let $\alpha>1$ and $\beta<+\infty$, conditions (1.2), (1.3), (2.9 $9_{1,1}$), (3.1 1_{1}) and (5.1) be fulfilled. Moreover, let for some $\delta \in(1, \alpha]$, the condition (5.2) hold when n is odd and the condition (5.3) hold, when n is even. Then equation (1.1) has Property \mathbf{B}, where α and β are given by (2.1).

Proof. Since $\beta<+\infty$, by $\left(2.9_{1,1}\right)$ it is obvious that for any $c \in(0,1]$ condition (2.91,c) holds. That is all conditions of Theorem 5.2 are fulfilled, which proves the validity of the theorem.

Corollary 5.1. Let $\alpha>1$, conditions (1.2), (1.3), (2.91,c), (3.1 1_{1}) and (5.1) be fulfilled and

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} t \int_{t}^{+\infty} s^{n-3} \tau(s)|p(s)| d s>0 \tag{5.4}
\end{equation*}
$$

Moreover, if for some $\delta \in(1, \alpha]$ and $\gamma>0$

$$
\begin{equation*}
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-2-\delta}(\tau(\xi))^{\delta+\gamma(\mu(\xi)-\delta)}|p(\xi)| d \xi d s=+\infty \tag{5.5}
\end{equation*}
$$

then equation (1.1) has Property B, where α is defined by the first condition of (2.1).
Proof. Since $\alpha>1$. By (5.4), $\left(2.11_{1}\right)$ and (2.13 $)$ for any $\gamma>0$, there exists $t_{\gamma} \in R_{+}$such that $\rho_{1,1, t_{*}}^{(\alpha)}(t) \geq \ell!t^{\gamma}$ for $t \geq t_{\gamma}$. Therefore, by (5.4), (5.5) and (5.1) for any $\ell \in\{1, \ldots, n-$ $-2\}$ condition (4.2 $)$ holds. That is for $\alpha>1$ all conditions of Theorem 5.1' hold. Therefore according to the same theorem, equation (1.1) has Property \mathbf{B}.

By Corollary 5.1, Theorem 5.2' can be proved similarly.
Corollary 5.1'. Let $\alpha>1$ and $\beta<+\infty$, conditions (1.2), (1.3), (2.9 $9_{1,1}$), (3.1 1), (5.1) and (5.4) be fulfilled. Moreover, if for some $\delta \in(1, \alpha]$ and $\gamma>0$ condition (5.5) holds, then equation (1.1) has Property \mathbf{B}, where α and β are given by (2.1).

Corollary 5.2. Let $\alpha>1$, conditions (1.2), (1.3), (2.9 $1_{1, c}$), (3.1 1), (5.1) and (5.4) be fulfilled and there exist $m \in N$ such that condition (4.7) holds. Then equation (1.1) has Property B, where α is defined by the first condition of (2.1).

Proof. By (5.1), (2.9 $9_{1, c}$), (3.1 $)_{1}$) and (5.4) it is obvious that for any $\ell \in\{1, \ldots, n\}$ conditions (2.9 $9_{\ell, c}$), (3.1 1_{ℓ}) and (4.6 $)$ hold.

Let equation (1.1) have a nonoscillatory proper solution $u:\left(t_{0},+\infty\right) \rightarrow(0,+\infty)$. Then by (1.2), (1.3) and Lemma 2.1, there exists $\ell \in\{1, \ldots, n\}$ such that $\ell+n$ is even and the condition (2.3) holds. By Corollary $4.4, \ell \notin\{1, \ldots, n-2\}$. If $\ell=n$ (if n is even and $\ell=0$) by ($2.9_{n, c}$) ((2.9 $\left.9_{1, c}\right)$) analogously to Theorem 5.1, we show that condition (1.4) (condition (1.5)) holds, that is equation (1.1) has Property \mathbf{B}.

Corollary 5.2'. Let $\alpha>1$ and $\beta<+\infty$, conditions (1.2), (1.3), (2.9 $9_{1,1}$), (3.1 1), (5.1) and (5.4) be fulfilled. Moreover, if there exists $m \in N$ such that condition (4.10) holds, then equation (1.1) has Property \mathbf{B}, where α and β are given by (2.1).

Corollary 5.3. Let $\alpha>1$, conditions (1.2), (1.3), (2.9 $9_{1, c}$), (3.1 1_{1}) and (5.1) be fulfilled. Assume, moreover, that there exist $\gamma \in(0,1)$ and $r \in(0,1)$ such that conditions $\left(4.14_{1}\right)$ and (4.15) hold and at least one of the conditions (4.16) or $r \alpha<1$ and for some $\varepsilon>0$ and $\delta \in(1, \alpha)\left(4.17_{1}\right)$ are fulfilled. Then equation (1.1) has Property B, where α is defined by the first condition of (2.1).

Proof. Let equation (1.1) have a proper nonoscillatory solution $u:\left(t_{0},+\infty\right) \rightarrow(0,+\infty)$. Then by (1.2), (1.3) and Lemma 2.1, there exists $\ell \in\{1, \ldots, n\}$ such that $\ell+n$ is even and condition (2.3 $)$ holds. Since by $\left(2.9_{1, c}\right),\left(3.1_{1}\right),\left(4.14_{1}\right)$ and (5.1) for any $\ell \in\{1, \ldots, n-2\}$, conditions ($2.9_{\ell, c}$), (3.1 $)$ and $\left(4.14_{\ell}\right)$ are fulfilled, then according to Corollary 4.6 , we have $\ell \notin$ $\notin\{1, \ldots, n-2\}$. On the other hand analogously to Theorem 5.1, we show that if $\ell=0(\ell=n)$ the condition (1.4) ((1.5)) is fulfilled, that is the equation (1.1) has Property B.

Corollary 5.3'. Let $\alpha>1$ and $\beta<+\infty$, conditions (1.2), (1.3), (2.9 $9_{1,1}$), (3.1 1_{1}) and (5.1) be fulfilled and for some $\gamma \in(0,1)$ and $r \in(0,1)$, conditions (4.14 $)$ and (4.15) hold. Then equation (1.1) has Property B, where α and β are given by (2.1).

Theorem 5.3. Let $\alpha>1$, conditions (1.2), (1.3), (2.9 $9_{n, c}$) and (3.1 1_{n-1}) be fulfilled and

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} \frac{(\tau(t))^{\mu(t)}}{t}<+\infty . \tag{5.6}
\end{equation*}
$$

Moreover, if for some $\delta \in(1, \alpha]$

$$
\begin{equation*}
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{1-\delta}(\tau(\xi))^{\delta+(n-3) \mu(\xi)}|p(\xi)| d \xi d s=+\infty \tag{5.7}
\end{equation*}
$$

then equation (1.1) has Property B, where α is given by the first condition of (2.1).
Proof. According to $\left(2.9_{n, c}\right),\left(3.1_{n-1}\right)$ and (5.6) it is obvious that for any $\ell \in$ $\in\{1, \ldots, n-1\}$ the conditions ($2.9_{\ell, c}$) and (3.1 $)$ hold. On the other hand by (5.6) and (5.7) for any $\ell \in\{1, \ldots, n-2\}$, with $\ell+n$ even the condition (4.2 ℓ) holds. That is, if $\alpha>1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.3'. Let $\alpha>1$ and $\beta<+\infty$, conditions (1.2), (1.3), (2.9 $9_{n, 1}$), (3.1 1_{n-1}), (5.6) and for some $\delta \in(1, \alpha)$ condition (5.7) be fulfilled. Then equation (1.1) has Property \mathbf{B}, where α and β are given by (2.1).

Proof. Since $\beta<+\infty$, by $\left(2.9_{n, 1}\right)$ it is obvious that for any $c \in(0,1]$ conditions ($2.9_{n, c}$) hold. That is all conditions of Theorem 5.3 are fulfilled, which proves the validity of the theorem.

Corollary 5.4. Let $\alpha>1$, conditions (1.2), (1.3), (2.9 $9_{n, c}$), (3.1 1_{n-1}) and (5.6) be fulfilled and

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} t \int_{t}^{+\infty}(\tau(s))^{1+(n-3) \mu(s)}|p(s)| d s>0 \tag{5.8}
\end{equation*}
$$

Moreover, if for some $\delta \in(1, \alpha]$ and $\gamma>0$

$$
\begin{equation*}
\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{-1-\delta}(\tau(\xi))^{\delta+(n-3) \mu(\xi)+\gamma(\mu(\xi)-\delta)}|p(\xi)| d \xi d s=+\infty \tag{5.9}
\end{equation*}
$$

then equation (1.1) has Property B, where α is given by the first condition of (2.1).
Proof. Since $\alpha>1$, by (5.8), $\left(2.11_{n-2}\right)$ and (2.13_{n-2}), for any $\gamma>0$ there exists $t_{*} \in$ $\in R_{+}$such that $\rho_{1, n-2, t_{*}}^{(\alpha)}(t) \geq \ell!t^{\gamma}$ for $t \geq t_{\gamma}$. Therefore by (5.6), (5.8) and (5.9) for any $\ell \in$ $\in\{1, \ldots, n-2\}$ the conditions (4.2_{ℓ}) hold. Therefore, according to the same theorem, equation (1.1) has Property B.

Corollary 5.4'. Let $\alpha>1$ and $\beta<+\infty$, conditions (1.2), (1.3), (2.9 ${ }_{n, 1}$), (3.1 1_{n-1}), (5.8) and (5.9) be fulfilled. Then equation (1.1) has Property B, where α and β are given by (2.1).

By (5.6), repeating the arguments given in Corollary 5.3, we easily ascertain that the corollary below is true.

Corollary 5.5. Let $\alpha>1$, conditions (1.2), (1.3), (2.9 $9_{n, c}$), (3.1 1_{n-1}) and (5.6) be fulfilled. Moreover, let there exist $\gamma \in(0,1)$ and $r \in(0,1)$ such that conditions (4.14 ${ }_{n-2}$), (4.15) and at last one of the conditions (4.16) or $r \alpha<1$ and for some $\varepsilon>0$ and $\delta \in(1, \alpha],\left(4.17_{n-2}\right)$ be fulfilled. Then equation (1.1) has Property B, where α is defined by the first condition of (2.1).

Corollary 5.5' Let $\alpha>1$ and $\beta<+\infty$, conditions (1.2), (1.3), (2.9 $9_{n, 1}$), (3.1 1_{n-1}) and (5.6) be fulfilled. Moreover, let there exist $\gamma \in(0,1)$ and $r \in(0,1)$ such that conditions $\left(4.14_{n-2}\right)$, (4.15) and at last one of conditions (4.16) or $r \alpha<1$ and for some $\varepsilon>0$ and $\delta \in(1, \alpha],\left(4.17_{n-2}\right)$ be fulfilled. Then equation (1.1) has Property B, where α and β are given by (2.1).

Theorem 5.4. Let $\alpha=1$, conditions (1.2), (1.3), (2.9 $1_{1, c}$), (3.1 1_{1} and (5.1) be fulfilled. Moreover, if

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-2}|p(\xi)| d \xi d s>0 \tag{5.10}
\end{equation*}
$$

when n is odd and

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-3}(\tau(\xi))^{\mu(\xi)}|p(\xi)| d \xi d s>0 \tag{5.11}
\end{equation*}
$$

when n is even, then equation (1.1) has Property \mathbf{B}, where α is given by the first condition of (2.1).
Proof. According to ($2.9_{1, c}$), (3.1 $)$ and (5.1) for any $\ell \in\{1, \ldots, n\}$ conditions ($2.9_{\ell, c}$) and (3.1 1_{ℓ}) holds. On the other hand by (5.1), (5.10) and (5.11) for any $\ell \in\{1, \ldots, n-2\}$, with $\ell+n$ even condition (4.1 $)$ holds. That is, if $\alpha=1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.4'. Let $\alpha=1$ and $\beta<+\infty$, conditions (1.2), (1.3), (2.9 $9_{1,1}$), (3.1 1), (5.1), (5.10) and (5.11) be fulfilled. Then equation (1.1) has Property B, where α and β are defined by (2.1).

Proof. Since $\beta<+\infty$, by $\left(2.9_{1,1}\right)$, for any $c \in(0,1]$ condition $\left(2.9_{1, c}\right)$ holds. That is all conditions of Theorem 5.4 are fulfilled, which proves the validity of the theorem.

Theorem 5.5. Let $\alpha=1$, conditions (1.2), (1.3), (2.9 $9_{1, c}$), (3.1 1_{1}) and (5.1) be fulfilled. Moreover, if

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} t \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-3} \tau(\xi)|p(\xi)| d \xi d s>\max \left(\frac{\ell!(n-\ell)!}{\omega^{\ell-1}}, \ell \in\{1,2, \ldots, n-2\}\right) \tag{5.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-2}(\tau(\xi))^{\mu(\xi)}|p(\xi)| d \xi d s>0 \tag{5.13}
\end{equation*}
$$

then equation (1.1) has Property B, where

$$
\begin{equation*}
\omega=\liminf _{t \rightarrow+\infty} \frac{(\tau(t))^{\mu(t)}}{t} \tag{5.14}
\end{equation*}
$$

Proof. By (5.12), (5.14) and (2.11 $)$ it is obvious that for large t we have

$$
\begin{equation*}
\rho_{1, \ell, t_{*}}^{(1)}(t) \geq \ell!t, \quad \ell \in\{1, \ldots, n-2\} . \tag{5.15}
\end{equation*}
$$

On the other hand according to $\left(2.9_{1, c}\right),\left(3.1_{1}\right),(5.1),(5.14),(5.15)$ and (5.13) for any $\ell \in$ $\in\{1, \ldots, n-1\}$, conditions ($2.9_{\ell, c}$), (3.1 1_{ℓ}) and (4.1 1_{ℓ}) hold. That is if $\alpha=1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

The proof of Theorem 5.4 has been a guide for us in proving Theorem 5.4 \% In the same way we will be guided by the proof of Theorem 5.5 to show that the next theorem is valid.

Theorem 5.5'. Let $\alpha=1$ and $\beta<+\infty$, conditions (1.2),(1.3), (2.9 $9_{1,1}$), (3.1 1), (5.1), (5.12) and (5.13) be fulfilled. Then equation (1.1) has Property B, where ω is defined by condition (5.14).

Theorem 5.6. Let $\alpha=1$, conditions (1.2), (1.3), (2.9 $9_{n, c}$), (3.1 n_{n-1}) and (5.6) be fulfilled. Moreover, if

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi(\tau(\xi))^{(n-3) r(\xi)}|p(\xi)| d \xi d s>0 \tag{5.16}
\end{equation*}
$$

then equation (1.1) has Property B, where α is given by the first condition of (2.1).

Proof. According to $\left(2.9_{n, c}\right),\left(3.1_{n-1}\right)$ and (5.6) for any $\ell \in\{1, \ldots, n-1\}$ conditions $\left(2.9_{\ell, c}\right)$ and (3.1 $)$ hold. On the other hand by (5.6) and (5.16) for any $\ell \in\{1, \ldots, n-2\}$, with $\ell+n$ even condition (4.1 $)$ holds. That is, if $\alpha=1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.6'. Let $\alpha=1$ and $\beta<+\infty$, conditions (1.2), (1.3), (2.9 $9_{n, 1}$), (3.1 1_{n-1}), (5.6) and (5.16) be fulfilled. Then equation (1.1) has Property B, where α and β are given by (2.1).

Proof. Since $\beta<+\infty$, it suffices to show that by ($2.9_{n, 1}$), for any $c \in(0,1]$ condition ($2.9_{n, c}$) hold.

Theorem 5.7. Let $\alpha=1$, conditions (1.2), (1.3), (2.9 $9_{n, c}$), (3.1 $\left.1_{n-1}\right)$ and (5.6) be fulfilled. Moreover, if

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty} t \int_{0}^{t} \int_{s}^{+\infty}\left(\tau(\xi)^{1+(n-3) \mu(\xi)}|p(\xi)| d \xi d s>\max \left(\frac{\ell!(n-\ell)!}{\omega^{n-\ell-2}}, \ell \in\{1,2, \ldots, n-2\}\right),\right. \tag{5.17}
\end{equation*}
$$

then the condition

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi(\tau(\xi))^{(n-2) \mu(\xi)}|p(\xi)| d \xi d s>0 \tag{5.18}
\end{equation*}
$$

is sufficient for equation (1.1) to have Property B, where

$$
\begin{equation*}
\omega=\liminf _{t \rightarrow+\infty} \frac{t}{(\tau(t))^{\mu(t)}} . \tag{5.19}
\end{equation*}
$$

Proof. By (5.17), (5.19) and (2.11) it is obvious that for large t condition (5.15) holds.
On the other hand according to $\left(2.9_{n, c}\right),\left(3.1_{n-1}\right)$, (5.6), (5.15), (5.18) and (5.19) for any $\ell \in\{1, \ldots, n-1\}$, conditions ($2.9_{\ell, c}$), (3.1 1_{ℓ}) and (4.1 1_{ℓ}) hold. That is, if $\alpha=1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.7'. Let $\alpha=1$ and $\beta<+\infty$, conditions (1.2), (1.3), (2.9 $n_{n, 1}$), (3.1 1_{n-1}) and (5.6) be fulfilled. Moreover, if conditions (5.17) and (5.18) hold, then equation (1.1) has Property \mathbf{B}, where α, β and ω are given by (2.1) and (5.19).

Proof. Since $\beta<+\infty$, it suffices to show that by $\left(2.9_{n, 1}\right)$, for any $c \in(0,1]$ conditions ($2.9_{n, c}$) hold.

1. Graef I., Koplatadze R., Kvinikadze G. Nonlinear functional differential equations with Properties A and B // J. Math. Anal. and Appl. - 2005. - 306, № 1. - P. 136-160.
2. Koplatadze R. On oscillatory properties of solutions of generalized Emden-Fowler type differential equations // Proc. A. Razmadze Math. Inst. - 2007. - 145. - P. 117-121.
3. Koplatadze R. Quasi-linear functional differential equations with property A // J. Math. Anal. and Appl. 2007. - 330, № 1. - P. 483-510.
4. Koplatadze R. On asymptotic behavior of solutions of "almost linear" and essentially nonlinear differential equations // Nonlinear Anal.: Theory, Methods and Appl. - 2009. - 71, № 12. - P. 396-400.
5. Koplatadze R., Litsyn E. Oscillation criteria for higher order "almost linear" functional differential equation // Funct. Different. Equat. - 2009. - 16, № 3. - P. 387-434.
6. Koplatadze R. On higher order functional differential equations with Property A // Georg. Math. J. 2004. - 11, № 2. - P. 307-336.
7. Koplatadze R., Chanturia T. On oscillatory properties of differential equations with a deviating argument (in Russian). - Tbilisi: Tbilis. State Univ. Press, 1977.
8. Ladd G. S., Lakshmikantham V., Zhang B. G. Oscillation theory of differential equations with deviating arguments. - New York: Dekker, 1987.
9. Koplatadze R. On oscillatory properties of solutions of functional differential equations // Mem. Different. Equat. Math. Phys. - 1994. - 3. - P. 3-179.
10. Erbe Y. H., Kong Q., Zhang B. G. Oscillation theory for functional differential equations. - New York: Dekker, 1995.
11. Agarval R. P., Grace S. R., O'Regan D. Oscillation theory for second order linear, half-linear, singular and sublinear dynamik equations. - Dordrecht: Kluwer Acad. Publ., 2002.
12. Kiguradze I., Stavroulakis I. On the solutions of higher order Emden-Fowler advanced differential equations // Appl. Anal. - 1998. - 70. - P. 97-112.
13. Koplatadze R. On asymptotic behavior of solutions of n-th order Emden-Fowler differential equations with advanced argument // Czechoslovak Math. J. - 2010. - 60(135), № 3. - P. 817-833.
14. Domoshnitski A., Koplatadze R. On asymptotic behavior of solutions of generalized Enmden-Fowler differential equations with delay argument // Abstrs and Appl. Anal. - 2014. - Art. ID 168425.
15. Gramatikopoulos M. K., Koplatadze R., Kvinikadze G. Linear functional differential equations with Property A // J. Math. Anal. and Appl. - 2003. - 284, № 1. - P. 294-314.

[^0]: * The work was supported by the Rustaveli Science Foundation (grant N 31/09).

