UDC 517.9

ON HIGHER ORDER GENERALIZED EMDEN – FOWLER DIFFERENTIAL EQUATIONS WITH DELAY ARGUMENT*

ПРО УЗАГАЛЬНЕНІ ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ ЕМДЕНА – ФАУЛЕРА ВИЩИХ ПОРЯДКІВ ІЗ ЗАГАЮВАННЯМ В АРГУМЕНТІ

A. Domoshnitsky

Department Math. and Comput. Sci. Academic College of Judea and Samaria 44837, Ariel, Israel e-mail: adomosh@hotmail.com

R. Koplatadze

Iv. Javakhishvili Tbilisi State Univ. Vekua Inst. Appl. Math. University Str., Tbilisi, 0186, Georgia e-mail: r_koplatadze@yahoo.com

In the paper the differential equation

$$u^{(n)}(t) + p(t)|u(\tau(t))|^{\mu(t)} \operatorname{sign} u(\tau(t)) = 0, \qquad (*)$$

is considered. Here, we assume that $n \ge 3$, $p \in L_{loc}(R_+; R_-)$, $\mu \in C(R_+; (0, +\infty))$, $\tau \in C(R_+; R_+)$, $\tau(t) \le t$ for $t \in R_+$ and $\lim_{t\to+\infty} \tau(t) = +\infty$. In case $\mu(t) \equiv \text{const} > 0$, oscillatory properties of equation (*) have been extensively studied, where as if $\mu(t) \not\equiv \text{const}$, to the extent of authors' knowledge, the analogous questions have not been examined. In this paper, new sufficient conditions for the equation (*) to have Property **B** are established.

Розглянуто диференціальне рівняння

$$u^{(n)}(t) + p(t)|u(\tau(t))|^{\mu(t)} \operatorname{sign} u(\tau(t)) = 0, \qquad (*)$$

де $n \geq 3, p \in L_{loc}(R_+; R_-), \mu \in C(R_+; (0, +\infty)), \tau \in C(R_+; R_+), \tau(t) \leq t$ для $t \in R_+$ та $\lim_{t \to +\infty} \tau(t) = +\infty$. У випадку $\mu(t) \equiv \text{const} > 0$ осциляційні властивості рівняння (*) було детально вивчено, тоді як у випадку $\mu(t) \not\equiv \text{const},$ наскільки відомо авторам, подібні питання не було розглянуто. У статті наведено нові достатні умови для того, щоб рівняння (*) мало властивість **В**.

1. Introduction. This work deals with oscillatory properties of solutions of a functional differential equations of the form

$$u^{(n)}(t) + p(t)|u(\tau(t))|^{\mu(t)} \operatorname{sign} u(\tau(t)) = 0,$$
(1.1)

(c) A. Domoshnitsky, R. Koplatadze, 2015

^{*} The work was supported by the Rustaveli Science Foundation (grant N 31/09).

where

$$n \ge 3, \quad p \in L_{loc}(R_{+}; R_{-}), \quad \mu \in C(R_{+}; (0, +\infty)), \quad \tau \in C(R_{+}; R_{+}),$$

$$\tau(t) \le t \quad \text{for} \quad t \in R_{+} \quad \text{and} \quad \lim_{t \to +\infty} \tau(t) = +\infty.$$
 (1.2)

It wiell always be assumed that the condition

$$p(t) \le 0 \quad \text{for} \quad t \in R_+ \tag{1.3}$$

is fulfilled.

Let $t_0 \in R_+$. A function $u : [t_0; +\infty) \to R$ is said to be a proper solution of equation (1.1) if it is locally absolutely continuous together with its derivatives up to order n-1 inclusive, $\sup\{|u(s)| : s \in [t, +\infty)\} > 0$ for $t \ge t_0$ and there exists a function $\overline{u} \in C(R_+; R)$ such that $\overline{u}(t) \equiv u(t)$ on $[t_0, +\infty)$ and the equality $\overline{u}^{(n)}(t) + p(t)|\overline{u}(\tau(t))|^{\mu(t)}$ sign $\overline{u}(\tau(t)) = 0$ holds almost everywhere for $t \in [t_0, +\infty)$. A proper solution $u : [t_0, +\infty) \to R$ of equation (1.1) is said to be oscillatory if it has a sequence of zeros tending to $+\infty$. Otherwise the solution u is said to be nonoscillatory.

Definition 1.1. We say that equation (1.1) has Property A if any proper solution u is oscillatory if n is even and is either oscillatory or satisfies

$$|u^{(i)}(t)| \downarrow 0 \quad as \quad t \uparrow +\infty, \quad i = 0, \dots, n-1,$$
(1.4)

if n is odd.

Definition 1.2. We say that equation (1.1) has Property **B** if any proper solution u is either oscillatory, satisfies (1.4), or satisfies

$$|u^{(i)}(t)|\uparrow +\infty \quad as \quad t\uparrow +\infty, \quad i=0,\ldots,n-1,$$
(1.5)

if n is even, and is either oscillatory or satisfies (1.5) if n is odd.

Definition 1.3. We say that equation (1.1) is almost linear if the condition $\lim_{t\to+\infty} \mu(t) = 1$ holds, while if $\limsup_{t\to+\infty} \mu(t) \neq 1$ or $\liminf_{t\to+\infty} \mu(t) \neq 1$, then we say that the equation is an essentially nonlinear differential equation.

Oscillatory properties of almost linear and essentially nonlinear differential equation with advanced argument are studied well enough in [1-6]. For Emden – Fowler differential equations with deviating arguments, an essential contribution was made in [7-13]. In the present paper sufficient conditions are established for the equation (1.1) to have Property **B**. Analogous results for Property **A** see in [14].

2. Some auxiliary lemmas. The following notation will be used throughout the work: $\widetilde{C}_{\text{loc}}^{n-1}([t_0, +\infty))$ will denote the set of all function $u : [t_0, +\infty) \to R$, absolutely continuous on any finite subinterval of $[t_0, +\infty)$ along with their derivatives of order up to including n-1;

$$\alpha = \inf\{\mu(t), t \in R_+\}, \quad \beta = \sup\{\mu(t), t \in R_+\},$$
(2.1)

$$\tau_{(-1)}(t) = \sup\{s \ge 0; \, \tau(s) \le t\}, \quad \tau_{(-k)} = \tau_{(-1)} \circ \tau_{(-(k-1))}, \quad k = 2, 3, \dots$$
(2.2)

Clearly, $\tau_{(-1)}(t) \ge t$ and $\tau_{(-1)}$ is nondecreasing and coincidence with the inverse of σ when the latter exists.

Lemma 2.1 [12]. Let $u \in \widetilde{C}_{loc}^{n-1}([t_0, +\infty))$, u(t) > 0, $u^{(n)}(t) \ge 0$ for $t \ge t_0$ and $u^{(n)}(t) \ne 0$ in any neighborhood of $+\infty$. Then there exists $t_1 \ge t_0$ and $\ell \in \{0, \ldots, n\}$ such that $\ell + n$ is even and

$$u^{(i)}(t) > 0 \quad for \quad t \ge t_1, \quad i = 0, \dots, \ell - 1,$$

$$(2.3_\ell)$$

$$(-1)^{i+\ell} u^{(i)}(t) \ge 0 \quad for \quad t \ge t_1, \quad i = \ell, \dots, n.$$

In the case $\ell = 0$ we mean that only the second inequality in (2.3_{ℓ}) holds, while if $\ell = n$

only the first inequality holds and $u^{(n)}(t) \ge 0$. **Lemma 2.2** [15]. Let $u \in \tilde{C}_{loc}^{n-1}([t_0, +\infty)), u^{(n)}(t) \ge 0$ and (2.3_{ℓ}) be satisfied for some $\ell \in \{1, \ldots, n-2\}$, where $\ell + n$ is even. Then

$$\int_{t_0}^{+\infty} t^{n-\ell-1} u^{(n)}(t) \, dt < +\infty.$$
(2.4)

Moreover, if

$$\int_{t_0}^{+\infty} t^{n-\ell} u^{(n)}(t) \, dt = +\infty, \tag{2.5}_{\ell}$$

then there exists $t_1 \ge t_0$ such that

$$u(t) \ge \frac{t^{\ell-1}}{\ell!} u^{(\ell-1)}(t) \quad for \quad t \ge t_1,$$
 (2.6)

$$\frac{u^{(i)}(t)}{t^{\ell-i}} \downarrow, \quad \frac{u^{(i)}(t)}{t^{\ell-i-1}} \uparrow, \quad i = 0, \dots, \ell - 1,$$
(2.7_i)

and

$$u^{(\ell-1)}(t) \ge \frac{t}{(n-\ell)!} \int_{t}^{+\infty} s^{n-\ell-1} u^{(n)}(s) \, ds + \frac{1}{(n-\ell)!} \int_{t_1}^{t} s^{n-\ell} u^{(n)}(s) \, ds.$$
(2.8)

Definition 2.1. Let $t_0 \in R_+$. By U_{ℓ,t_0} we denote the set of all solutions of equation (1.1) satisfying the condition (2.3_{ℓ}) .

Lemma 2.3. Let the conditions (1.2), (1.3) be fulfilled, $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ even and equation (1.1) have positive proper solution $u : [t_0, +\infty) \to (0, +\infty)$ such that $u \in \mathbf{U}_{\ell, t_0}$. *Moreover, let* $\alpha \geq 1$ *and*

$$\int_{t_0}^{+\infty} t^{n-\ell} (c \,\tau^{\ell-1}(t))^{\mu(t)} |p(t)| dt = +\infty \quad for \quad c \in (0,1],$$
(2.9_{*ℓ*,*c*})

then for any $\gamma \in (1, +\infty)$ there exists $t_* > t_0$ such that for any $k \in N$

$$u^{(\ell-1)}(t) \ge \rho_{k,\ell,t_*}^{(\alpha)}(t) \quad for \quad t \ge \tau_{(-k)}(t_*),$$
(2.10)

where

$$\rho_{1,\ell,t_*}^{(\alpha)}(t) = \ell ! \exp\left\{\gamma_\ell(\alpha) \int_{\tau_{(-1)}(t_*)}^t \int_s^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \, ds\right\},\tag{2.11}$$

$$\rho_{i,\ell,t_*}^{(\alpha)}(t) = \ell! + \frac{1}{(n-\ell)!} \int_{\tau_{(-1)}(t_*)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \times$$

$$\times \left(\frac{1}{\ell!} \rho_{i-1,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds, \quad i = 2, \dots, k,$$
(2.12)

$$\gamma_{\ell}(\alpha) = \begin{cases} \frac{1}{\ell! (n-\ell)!} & \text{if } \alpha = 1, \\ \gamma & \text{if } \alpha > 1, \end{cases}$$

$$(2.13_{\ell})$$

 α is given by first equality of (2.1).

Proof. Let $t_0 \in R_+$, $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ even and $u \in U_{\ell,t_0}$. According to (1.1), (2.3_ℓ) and $(2.9_{\ell,c})$ it is clear that condition (2.5_ℓ) is fulfilled. Indeed, by (2.3_ℓ) there exists $t_1 > t_0$ and $c \in (0, 1]$ such that

$$u(\tau(t)) \ge c(\tau(t))^{\ell-1}$$
 for $t \ge t_1$.

Thus from (1.1) we have

$$\int_{t_1}^t s^{n-\ell} u^{(n)}(s) ds \ge \int_{t_1}^t s^{n-\ell} \left(c \, \tau^{\ell-1}(s) \right)^{\mu(s)} |p(s)| ds \quad \text{for} \quad t \ge t_1.$$

Passing to the limit in the latter inequality, by $(2.9_{\ell,c})$ we get (2.5_{ℓ}) .

According to Lemma 2.2 there exists $t_2 > t_1$ such that conditions (2.6)–(2.8) are fulfilled for $t \ge t_2$ and

$$\begin{aligned} u^{(\ell-1)}(t) &\geq \frac{t}{(n-\ell)!} \int_{t}^{+\infty} s^{n-\ell-1} (u(\tau(s)))^{\mu(s)} |p(s)| ds + \\ &+ \frac{1}{(n-\ell)!} \int_{t_{(-1)}(t_2)}^{t} s^{n-\ell} (u(\tau(s)))^{\mu(s)} |p(s)| ds \quad \text{for} \quad t \geq \tau_{(-1)}(t_2). \end{aligned}$$

Therefore, by (2.6) we get

$$u^{(\ell-1)}(t) \ge \frac{1}{(n-\ell)!} \int_{\tau_{(-1)}(t_2)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \times \left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds \quad \text{for} \quad t \ge \tau_{(-1)}(t_2).$$
(2.14)

According to $(2.7_{\ell-1})$ and $(2.9_{\ell,c})$ choose $t_* > \tau_{(-1)}(t_2)$ such that

$$\frac{1}{(n-\ell)!} \int_{\tau_{(-1)}(t_2)}^{t_*} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds > \ell!.$$
(2.15)

By (2.14) and (2.15) we have

$$u^{(\ell-1)}(t) \ge \ell! + \frac{1}{(n-\ell)!} \int_{t_*}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1} (\tau(\xi))^{(\ell-1)\mu(\xi)} \times \left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds \quad \text{for} \quad t \ge t_*.$$
(2.16)

Let $\alpha = 1$. Since $u^{(\ell-1)}(t)/t$ is a nonincreasing function, from (2.16) we obtain

$$u^{(\ell-1)}(t) \ge \ell! + \frac{1}{\ell!(n-\ell)!} \int_{t_*}^t \int_s^{t_*} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} \times u^{(\ell-1)}(\xi) |p(\xi)| d\xi \, ds \quad \text{for} \quad t \ge t_*.$$
(2.17)

By the second condition of $(2.7_{\ell-1})$, it is obviously that

$$x'(t) \ge \frac{u^{(\ell-1)}(t)}{\ell!(n-\ell)!} \int_{t}^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi,$$
(2.18)

where

$$x(t) = \ell! + \frac{1}{\ell!(n-\ell)!} \int_{t_*}^t \int_s^{t_*} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} u^{(\ell-1)}(\xi) |p(\xi)| d\xi \, ds.$$
(2.19)

Thus, according to (2.17), (2.18) and (2.19) we get

$$x'(t) \ge \frac{x(t)}{\ell!(n-\ell)!} \int_{t}^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \quad \text{for} \quad t \ge t_*.$$

A. DOMOSHNITSKY, R. KOPLATADZE

Therefore, since $x(t_*) = \ell!$, we have

$$x(t) \ge \ell ! \exp\left\{\frac{1}{\ell ! (n-\ell)!} \int_{t_*}^t \int_s^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \, ds\right\} \quad \text{for} \quad t \ge t_*.$$

Hence by (2.16) and (2.19)

$$u^{(\ell-1)}(t) \ge \rho_{1,\ell,t_*}^{(1)}(t) \quad \text{for} \quad t \ge t_*,$$
(2.20)

where

$$\rho_{1,\ell,t_*}^{(1)}(t) = \ell ! \exp\left\{\frac{1}{\ell ! (n-\ell)!} \int_{t_*}^t \int_s^{t_*} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \, ds\right\}.$$
(2.21)

Thus, by (2.14) and (2.20),

$$u^{(\ell-1)}(t) \ge \rho_{i,\ell,t_*}^{(1)}(t) \quad \text{for} \quad t \ge \tau_{(-i)}(t_*), \quad i = 1, \dots, k,$$
 (2.22)

where

$$\rho_{i,\ell,t_*}^{(1)}(t) = \ell! + \frac{1}{(n-\ell)!} \int_{\tau_{(-i)}(t_*)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \times \left(\frac{1}{\ell!} \rho_{i-1,\ell,t_*}^{(1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds \quad i = 2, \dots, k.$$
(2.23)

Now assume that $\alpha > 1$ and $\gamma \in (1, +\infty)$. Since $u^{(\ell-1)}(t) \uparrow +\infty$ for $t \uparrow +\infty$, without loss of generality we can assume that $\left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(t))\right)^{\alpha-1} \ge \ell! (n-\ell)! \gamma$ for $t \ge t_*$. From (2.16) we obtain

$$u^{(\ell-1)}(t) \ge \ell! + \gamma \int_{t_*}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} u^{(\ell-1)}(\xi) |p(\xi)| d\xi \, ds \quad \text{for} \quad t \ge t_*.$$
(2.24)

By (2.24), as above we can find that if $\alpha > 1$, then

 $u^{(\ell-1)}(t) \ge \rho_{k,\ell,t_*}^{(\alpha)}(t) \quad \text{for} \quad t \ge \tau_{(-k)}(t_*),$ (2.25)

where

$$\rho_{1,\ell,t_*}^{(\alpha)}(t) = \ell ! \exp\left\{\gamma \int_{\tau_{(-1)}(t_*)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1)\mu(\xi)} \times |p(\xi)| d\xi \, ds\right\} \quad \text{for} \quad t \ge \tau_{(-1)}(t_*),$$
(2.26)

$$\rho_{i,\ell,t_*}^{(\alpha)}(t) = \ell ! + \frac{1}{(n-\ell)!} \int_{\tau_{(-i)}(t_*)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \times \left(\frac{1}{\ell!} \rho_{i-1,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds \quad \text{for} \quad t \ge \tau_{(-i)}(t_*), \quad i = 2, \dots, k.$$
 (2.27)

According to (2.20)-(2.23) and (2.25)-(2.27) it is clear that for any $\alpha \ge 1, k \in N$, and $\gamma \in (1, +\infty)$, there exists $t_* \in R_+$ such that (2.10) holds, where $\gamma_{\ell}(\alpha)$ is given by (2.13_{ℓ}) , which proves the validity of the lemma.

Remark 2.1. It is obvious that, if $\beta < +\infty$ and $(2.9_{\ell,1})$ holds, then for any $c \in (0,1]$ the condition $(2.9_{\ell,c})$ is fulfilled.

Remark 2.2. Condition $(2.9_{\ell,1})$ is not suffices for condition (2.5) to be fulfilled. Therefore, in this case, it can happen that Lemma 2.3 is not correct. Indeed, let $\delta \in (0, 1)$. Consider equation (1.1), where *n* is odd and

$$\tau(t) \equiv t, \quad p(t) = -\frac{n! t^{\log_{1/\delta} t}}{t^{n+1} (\delta t - 1)^{\log_{1/\delta} t}}, \quad \mu(t) = \log_{1/\delta} t, \quad t \ge \frac{2}{\delta}$$

It is clear that the function $u(t) = \delta - \frac{1}{t}$ is solution of the equation (1.1) and satisfies condition (2.3₁) for $t \ge \frac{2}{\delta}$. On the other hand condition (2.9_{1,1}) holds, but condition (2.5₁) is not fulfilled.

3. Necessary conditions for the existence of solutions of type (2.3_{ℓ}) .

Theorem 3.1. Let $\ell \in \{1, ..., n-2\}$ with $\ell + n$ be even, conditions (1.2), (1.3), (2.9_{ℓ,c}) and

$$\int_{0}^{+\infty} t^{n-\ell-1}(\tau(t))^{\ell\mu(t)} |p(t)| dt = +\infty$$
(3.1_ℓ)

be fulfilled and for some $t_0 \in R_+$, $\mathbf{U}_{\ell,t_0} \neq \emptyset$. Then there exists $t_* > t_0$ such that, if $\alpha = 1$, then, for any $k \in N$,

$$\lim_{t \to +\infty} \frac{1}{t} \int_{\tau_{(-k)}(t_*)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds = 0 \tag{3.2}$$

and if $\alpha > 1$, then, for any $k \in N, \gamma \in (1, +\infty)$ and $\delta \in (1, \alpha]$,

$$\int_{\tau_{(-i)}(t_*)}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!}\rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi \, ds < +\infty, \tag{3.3}$$

where α is defined by first equality of (2.1) and $\rho_{k,\ell,t_*}^{(\alpha)}$ is given by (2.11) – (2.13).

Proof. Let $t_0 \in R_+$, $\ell \in \{1, ..., n-2\}$, $\mathbf{U}_{\ell,t_0}^{\gamma,\gamma,\gamma} \neq \emptyset$ and $\gamma \in (1, +\infty)$. By definition (see Definition 2.1) equation (1.1) has a proper solution $u \in \mathbf{U}_{\ell,t_0}$ satisfying condition (2.3 $_\ell$) with

some $t_1 \ge t_0$. Due to (1.1), (2.3_{ℓ}) and (2.9_{$\ell,c}), it is obvious that condition (2.5_{<math>\ell$}) holds. Thus, by Lemma 2.2 there exists $t_1 > t_0$ such that conditions (2.6), (2.7_i) are fulfilled. On the other hand, according to Lemma 2.3 (and its proof), there exist $t_2 > t_1$ and $t_* > t_2$ such that</sub>

$$u^{(\ell-1)}(t) \ge \frac{1}{(n-\ell)!} \int_{t_2}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1} (u(\tau(\xi)))^{\mu(\xi)} |p(\xi)| d\xi \, ds \quad \text{for} \quad t \ge t_2$$
(3.4)

and relation (2.10) is fulfilled. Without loss of generality we can assume that $\tau(t) \ge t_2$ for $t \ge t_*$. Therefore, by (2.10), from (3.4) we get

$$u^{(\ell-1)}(t) \ge \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}(t_*)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} u^{(\ell-1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds.$$
(3.5)

Assume that $\alpha = 1$. Then by (2.10) and (3.5) we have

$$u^{(\ell-1)}(t) \ge \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}(t_*)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \times \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds \quad \text{for} \quad t \ge \tau_{(-k)}(t_*).$$
(3.6)

On the other hand, according to $(2.7_{\ell-1})$ and (3.1_{ℓ}) it is obvious that

$$u^{(\ell-1)}(t)/t \downarrow 0 \quad \text{for} \quad t \uparrow +\infty.$$
 (3.7)

Therefore by (3.7), from (3.6) we get

$$\lim_{t \to +\infty} \frac{1}{t} \int_{\tau_{(-k)}(t_*)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds = 0.$$
(3.8)

Now assume that $\alpha > 1$ and $\delta \in (1, \alpha]$. Then by $(2.7_{\ell-1})$, (2.10) and (3.7) we obtain

$$u^{(\ell-1)}(t) \ge \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}(t_*)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \times \\ \times \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} \left(\frac{1}{\ell!} u^{(\ell-1)}(\xi)\right)^{\delta} |p(\xi)| d\xi \, ds \ge \\ \ge \frac{1}{(n-\ell)!} \int_{\tau_{(-k)}(t_*)}^{t} \left(\frac{1}{\ell!} u^{(\ell-1)}(\xi)\right)^{\delta} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \times \\ \times \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi \, ds.$$

Thus we have

$$(v(t))^{\delta} \geq \frac{1}{(\ell ! (n-\ell)!)^{\delta}} \left(\int_{\tau_{(-k)}(t_{*})}^{t} v^{\delta}(s) \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \times \left(\frac{1}{\ell !} \rho_{k,\ell,t_{*}}^{(\alpha)}(\tau(\xi)) \right)^{\mu(\xi)-\delta} |p(\xi)| d\xi \, ds \right)^{\delta},$$

$$(3.9)$$

where $v(t) = \frac{1}{\ell!} u^{(\ell-1)}(t)$. By (3.1_{ℓ}) , it is obvious that there exists $t_1 > \tau_{(-k)}(t_*)$ such that

$$\int_{\tau_{(-k)}(t_*)}^{t} v^{\delta}(s) \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell !} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} \times$$

 $\times |p(\xi)| d\xi \, ds > 0 \quad \text{for} \quad t \ge t_1.$

Therefore, from (3.9) we get

$$\int_{t_1}^t \frac{\varphi'(s)ds}{(\varphi(s))^{\delta}} \ge \frac{1}{(\ell!(n-\ell)!)^{\delta}} \int_{t_1}^t \int_s^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \times \left(\frac{1}{\ell!}\rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)|d\xi \, ds \quad \text{for} \quad t \ge t_1,$$
(3.10)

where

$$\varphi(t) = \int_{\tau_{(-k)}(t_*)}^{t} (v(s))^{\delta} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta} (\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(s))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi \, ds.$$

From (3.10) we obtain

$$\int_{t_1}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi \, ds \leq \\ \leq \frac{(\ell!(n-\ell)!)^{\delta}}{\delta-1} \left(\varphi^{1-\delta}(t_1) - \varphi^{1-\delta}(t)\right) \leq \frac{(\ell!(n-\ell)!)^{\delta}}{\delta-1} \varphi^{1-\delta}(t_1) \quad \text{for} \quad t \geq t_1.$$

Hence,

$$\int_{t_1}^{+\infty+\infty} \int_{s}^{n-\ell-1-\delta} (\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi \, ds \le +\infty.$$
(3.11)

According to (3.8) and (3.11) conditions (3.2) and (3.3) hold, with proves the validity of the theorem.

Corollary 3.1. Let $\ell \in \{1, ..., n-1\}$ with $\ell + n$ be even, $\beta < +\infty$, conditions (1.2), (1.3), (2.9_{$\ell,1$}), (3.1_{ℓ}) be fulfilled and for some $t_0 \in R_+$, $\mathbf{U}_{\ell,t_0} \neq \emptyset$. Then for any $\gamma > 1$ there exists $t_* > t_0$ such that if $\alpha = 1$, for any $k \in N$, (3.2) holds and if $\alpha > 1$, then, for any $k \in N$ and $\delta \in (1, \alpha]$, (3.3) holds, where α and β are defined by (2.1) and $\rho_{k,\ell,t_*}^{(\alpha)}$ is given by (2.11) – (2.13).

Proof. According to Remark 2.1, it suffices to note that, since $\beta < +\infty$, by $(2.9_{\ell,1})$, for any $c \in (0, 1]$ conditions $(2.9_{\ell,c})$ is fulfilled.

4. Sufficient conditions for nonexistence of solutions of the type (2.3_{ℓ}) .

Theorem 4.1. Let $\ell \in \{1, ..., n-2\}$ with $\ell + n$ be even, conditions (1.2), (1.3), (2.9_{ℓ,c}) and (3.1_{ℓ}) be fulfilled and if $\alpha = 1$ for large $t_* \in R_+$ and for some $k \in N$,

$$\limsup_{t \to +\infty} \frac{1}{t} \int_{\tau_{(-k)}(t_*)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds > 0, \qquad (4.1_\ell)$$

or if $\alpha > 1$, for some $k \in N$ and $\delta \in (1, \alpha]$,

$$\int_{\tau_{(-k)}(t_*)}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!}\rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)|d\xi \, ds = +\infty.$$
(4.2)

Then for any $t_0 \in R_+$ we have $\mathbf{U}_{\ell,t_0} = \emptyset$, where α is defined by the first equality of (2.1), and $\rho_{k,\ell,t_*}^{(\alpha)}$ is given by (2.11) – (2.13).

Proof. Assume the contrary. Let there exist $t_0 \in R_+$ such that $U_{\ell,t_0} \neq \emptyset$ (see Definition 2.1). Then equation (1.1) has a proper solution $u : [t_0, +\infty) \rightarrow R$ satisfying condition (2.3_ℓ) . Since the conditions of Theorem 3.1 are fulfilled, there exists $t_* > t_0$ such that if $\alpha = 1$ ($\alpha > 1$) condition (3.2) (condition (3.3)) holds, which contradicts (4.1_ℓ) ((4.2_ℓ)). The obtained contradiction proves the validity of the theorem.

Theorem 4.1'. Let $\ell \in \{1, ..., n-2\}$ with $\ell + n$ be even, conditions (1.2), (1.3), (2.9_{$\ell,1$}) and (3.1_{ℓ}) be fulfilled and $\beta < +\infty$. Moreover, if $\alpha = 1, \alpha > 1$, for any large $t_* \in R_+$ and for some $k \in N$ (for some $k \in N$ and $\delta \in (1, \alpha]$), (4.1_{ℓ}) holds ((4.2_{ℓ}) holds), then $\mathbf{U}_{\ell,t_0} = \emptyset$, where α and β are given by (2.1).

Proof. If suffices to note that, since $\beta < +\infty$, by $(2.9_{\ell,1})$ for any $c \in (0,1]$ the condition $(2.9_{\ell,c})$ is fulfilled. Therefore all the conditions of Theorem 4.1 hold, which proves the validity of the theorem.

Corollary 4.1. Let $\ell \in \{1, ..., n-2\}$ with $\ell + n$ be even, $\alpha = 1$, conditions (1.2), (1.3), (2.9_{$\ell,c})$ and (3.1_{ℓ}) be fulfilled and</sub>

$$\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} |p(\xi)| d\xi \, ds > 0.$$
(4.3_ℓ)

Then for any $t_0 \in R_+$, $\mathbf{U}_{\ell,t_0} = \emptyset$, where α is defined by the first equality of (2.1). **Proof.** Since

$$\rho_{1,\ell,t_*}^{(1)}(\tau(t)) \ge \ell \quad \text{for large} \quad t,$$

it is suffices to note that by (4.3_{ℓ}) for $\alpha = 1$ and k = 1 condition (4.1_{ℓ}) is fulfilled.

Corollary 4.1'. Let $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ be even, conditions (1.2), (1.3), (4.3_{ℓ}) and (3.1_{ℓ}) be fulfilled. Moreover, if $\alpha = 1$ and $\beta < +\infty$, then for any $t_0 \in R_+$, $\mathbf{U}_{\ell,t_0} = \emptyset$, where α and β are given by (2.1).

Proof. To prove the corollary it is suffices to note that, since $\beta < +\infty$, by (4.3_{ℓ}) condition $(2.9_{\ell,c})$ holds.

Corollary 4.2. Let $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ even, conditions (1.2), (1.3) and $(2.9_{\ell,c})$ be fulfilled, $\alpha = 1$ and

$$\liminf_{t \to +\infty} t \int_{t}^{+\infty} s^{n-\ell-2} (\tau(s))^{1+(\ell-1)\mu(s)} |p(\xi)| ds = \gamma > 0.$$
(4.4)

Moreover, if for some $\varepsilon \in (0, \gamma)$

$$\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1} (\tau(\xi))^{\mu(\xi) \left(\ell-1+\frac{\gamma-\varepsilon}{\ell!(n-\ell)!}\right)} |p(\xi)| d\xi \, ds > 0, \tag{4.5}_{\ell}$$

then for any $t_0 \in R_+$, $\mathbf{U}_{\ell,t_0} = \emptyset$, where α is given by the first equality of (2.1).

Proof. Let $\varepsilon \in (0, \gamma)$. According to (4.4_{ℓ}) , (2.11) and (2.13) it is clear that $\rho_{1,\ell,t_*}^{(1)}(\tau(t)) \geq \ell!(\tau(t))^{\frac{\gamma-\varepsilon}{\ell!(n-\ell)!}}$ for large t. Therefore, by (4.5_{ℓ}) , for k = 1, (4.1_{ℓ}) holds, which proves the validity of the corollary.

Corollary 4.2'. Let $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ even, conditions (1.2), (1.3), (3.1_{ℓ}), (4.4_{ℓ}) and (4.5_{ℓ}) be fulfilled. Moreover, if $\alpha = 1$ and $\beta < +\infty$, then for any $t_0 \in R_+$, $\mathbf{U}_{\ell,t_0} = \emptyset$, where α and β are given by (2.1).

Proof. To prove the corollary, it is suffices to note that, since $\beta < +\infty$ by (4.4_{ℓ}) the condition $(2.9_{\ell,c})$ holds.

Corollary 4.3. Let $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ even, conditions (1.2), (1.3), (2.9_{ℓ,c}) and (3.1_{ℓ}) be fulfilled. Moreover, if $\alpha > 1$ and, for some $\delta \in (1, \alpha]$,

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \, ds = +\infty.$$
(4.6_ℓ)

Then for any $t_0 \in R_+$, $\mathbf{U}_{\ell,t_0} = \emptyset$, where α is defined by the first condition of (2.1).

Proof. By (4.6_{ℓ}) , for k = 1 condition (4.2_{ℓ}) holds, which proves the validity of the corollary. **Corollary 4.3'.** Let $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ even, conditions (1.2), (1.3), (3.1_{\ell}), (2.9_{\ell,1}) and (4.6_{ℓ}) be fulfilled. Moreover, if $\alpha > 1$ and $\beta < +\infty$, then for any $t_0 \in R_+$, $\mathbf{U}_{\ell,t_0} = \emptyset$, where α and β are given by (2.1).

Proof. According to Corollary 4.3, it is suffices to note that, since $\beta < +\infty$ by $(2.9_{\ell,1})$ for any $c \in (0, 1]$, condition $(2.9_{\ell,c})$ hold.

Corollary 4.4. Let $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ even, conditions (1.2), (1.3), (2.9_{ℓ,c}), (3.1_{ℓ}), (4.4_{ℓ}) and (4.6_{ℓ}) be fulfilled. Moreover, if $\alpha > 1$ and there exists $m \in N$ such that

$$\liminf_{t \to +\infty} \frac{\tau^m(t)}{t} > 0, \tag{4.7}$$

then for any $t_0 \in R_+$, $\mathbf{U}_{\ell,t_0} = \emptyset$, where α is given by the first condition of (2.1). **Proof.** By (4.4_{ℓ}) there exists c > 0 and $t_1 \in R_+$ such that

$$t \int_{t}^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \ge c \quad \text{for} \quad t \ge t_1.$$
(4.8)

Let $\delta = \frac{1+\alpha}{2}$ and $m_0 = \frac{\delta(m-1)}{c(\alpha-\delta)}$. Then by (4.8) and (2.26), there exists $t_* > t_1$ such that

$$\rho_{1,\ell,t_*}^{(\alpha)}(t) \ge t^{m_0 c} \quad \text{for} \quad t \ge t_*.$$

Therefore, for large t we have

$$\begin{split} \left(\frac{\tau(t)}{t}\right)^{\delta} \left(\frac{1}{\ell!} \rho_{1,\ell,t_*}^{(\alpha)}(\tau(t))\right)^{\mu(t)-\delta} &\geq \left(\frac{\tau(t)}{t}\right)^{\delta} \left(\frac{1}{\ell!} \tau^{m_0 c}(t)\right)^{\alpha-\delta} = \\ &= \frac{1}{(\ell!)^{\alpha-\delta}} \left(\frac{(\tau(t))^{1+\frac{m_0 c(\alpha-\delta)}{\delta}}}{t}\right)^{\delta} = (\ell!)^{\delta-\alpha} \left(\frac{\tau^m(t)}{t}\right)^{\delta}. \end{split}$$

Thus, by (4.7) and (4.6 $_{\ell}$) it is obvious that (4.2 $_{\ell}$) holds, which proves the corollary.

Corollary 4.4'. Let $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ be even and conditions (1.2), (1.3), (3.1_{ℓ}), (4.6_{ℓ}) and (4.7) be fulfilled. Moreover, if $\alpha > 1$ and $\beta < +\infty$, then for any $t_0 \in R_+$, $\mathbf{U}_{\ell,t_0} = \emptyset$, where α and β are given by (2.1).

Proof. Since $\beta < +\infty$, it suffices to note that all conditions of Corollary 4.4 are satisfied. Quite similarly one can prove the following corollary.

Corollary 4.5. Let $\ell \in \{1, ..., n-2\}$ with $\ell + n$ even, conditions (1.2), (1.3), (3.1_{ℓ}) and (2.9_{ℓ,c}) be fulfilled and $\alpha > 1$. Moreover, if

$$\liminf_{t \to +\infty} t \ln t \int_{t}^{+\infty} \xi^{n-\ell-2} (\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi > 0$$
(4.9_ℓ)

and for some $\delta \in (1, \alpha]$ and $m \in N$

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} (\ln \tau(\xi))^{m} |p(\xi)| d\xi \, ds = +\infty, \tag{4.10}$$

then for any $t_0 \in R_+$ we have $\mathbf{U}_{\ell,t_0} = \emptyset$, where α is defined by the first equality of (2.1).

Corollary 4.5'. Let $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ even, conditions (1.2), (1.3), (2.9_{ℓ ,1}), (4.9_{ℓ}) and (4.10_{ℓ}) be fulfilled. Moreover, if $\alpha > 1$ and $\beta < +\infty$, then for any $t_0 \in R_+$ we have $\mathbf{U}_{\ell,t_0} = \emptyset$, where α and β are given by (2.1).

Corollary 4.6. Let $\alpha > 1$, $\ell \in \{1, ..., n-2\}$ with $\ell + n$ even, conditions (1.2), (3.1_{ℓ}) and (2.9_{ℓ,c}) be fulfilled. Moreover, assume there exist $\gamma \in (0, 1)$ and $r \in (0, 1)$ such that

$$\liminf_{t \to +\infty} t^{\gamma} \int_{t}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} |p(\xi)| d\xi > 0,$$
(4.11_ℓ)

$$\liminf_{t \to +\infty} \frac{\tau(t)}{t^r} > 0 \tag{4.12}$$

and at last one of the conditions

$$r \alpha \ge 1 \tag{4.13}$$

or $r \alpha < 1$ holds, and for some $\varepsilon > 0$ and $\delta \in (1, \alpha)$,

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta-\varepsilon+\frac{r(1-\gamma)(\alpha-\delta)}{1-\alpha r}} (\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \, ds = +\infty, \tag{4.14}$$

is fulfilled. Then for any $t_0 \in R_+$, $\mathbf{U}_{\ell,t_0} = \emptyset$, where α is defined by first equality of (2.1).

Proof. It suffices to show that condition (4.2_{ℓ}) is satisfied for some $k \in N$. Indeed, according to (4.11_{ℓ}) and (4.12) there exist $\gamma \in (0, 1), r \in (0, 1), c > 0$ and $t_1 \in R_+$ such that

$$t^{\gamma} \int_{t}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} |p(\xi)| d\xi \ge c \quad \text{for} \quad t \ge t_1$$
(4.15)

and

$$\tau(t) \ge c t^r \quad \text{for} \quad t \ge t_1. \tag{4.16}$$

By (2.12_{ℓ}) , (2.11_{ℓ}) and (4.15) we have

$$\rho_{2,\ell,t_*}^{(\alpha)}(t) \ge \frac{c}{(n-\ell)!} \int_{\tau_{(-1)}(t_*)}^t s^{-\gamma} ds = \frac{c\left(t^{1-\gamma} - \tau_{(-1)}^{1-\gamma}(t_*)\right)}{(n-\ell)!(1-\gamma)} \quad \text{for} \quad t \ge \tau_{(-1)}(t_*).$$

Choose $t_2 > \tau_{(-1)}(t_*)$ and $c_1 \in (0, c)$ such that

$$\rho_{2,\ell,t_*}^{(\alpha)}(t) \ge c_1 t^{1-\gamma} \text{ for } t \ge t_2.$$

Therefore, by (4.15) and (4.16) we can find $t_3 > t_2$ and $c_2 \in (0, c_1)$ such that from (2.12) we get

$$\rho_{3,\ell,t_*}^{(\alpha)}(t) \ge c_2 t^{(1-\gamma)(1+\alpha r)} \quad \text{for} \quad t \ge t_3.$$

Hence for any $k_0 \in N$, there exist t_{k_0} and $c_{k_0-1} > 0$ such that

$$\rho_{k_0,\ell,t_*}^{(\alpha)}(t) \ge c_{k_0-1} t^{(1-\gamma)(1+\alpha r+\ldots+(\alpha r)^{k_0-2})} \quad \text{for} \quad t \ge t_{k_0}.$$
(4.17)

Assume that (4.13) is fulfilled. Choose $k_0 \in N$ such that $k_0 - 1 \ge \frac{\delta}{r(\alpha - \delta)(1 - \gamma)}$. Then by (4.16), (4.17) and (2.9_{ℓ ,1}) condition (4.2_{ℓ}) holds for $k = k_0$.

In this case, the validity of the corollary has already been proved.

Assume now that $\alpha r < 1$ and for some $\varepsilon \in (0, (1 - \gamma(\alpha - \delta)r), (4.14_{\ell})$ is fulfilled. Choose $k_0 \in N$ such that $1 + \alpha r + \ldots + (\alpha r)^{k_0 - 2} \ge \frac{1}{1 - \alpha r} - \frac{\varepsilon}{(1 - \gamma)(\alpha - \delta)r}$. Then by (4.14_{ℓ}) , (4.16) and (4.17) it is obvious that (4.2_{ℓ}) holds for $k = k_0$. The proof the corollary is complete.

5. Differential equations with property B.

Theorem 5.1. Let conditions (1.2) and (1.3) be fulfilled and for any $\ell \in \{1, ..., n\}$ with $\ell + n$ even, conditions $(2.9_{\ell,c})$, (3.1_{ℓ}) and, for even n, $(2.9_{1,c})$ hold. Moreover, let for any large $t_* \in R_+$ and $\ell \in \{1, ..., n-2\}$ with $\ell + n$ even for some $k \in N$, condition (4.1_{ℓ}) hold, when $\alpha = 1$, or for some $k \in N$, $\gamma \in (1, +\infty)$ and $\delta \in (1, \alpha]$ (4.2_{ℓ}) hold when $\alpha > 1$. Then equation (1.1) has Property **B**, where α is defined by the first condition of (2.1) and $\rho_{k,\ell,t_*}^{\alpha}$ is given by (2.11) – (2.13).

Proof. Let equation (1.1) have a proper nonoscillatory solution $u : [t_0, +\infty) \to (0, +\infty)$ (the case u(t) < 0 is similar). Then by (1.2), (1.3) and Lemma 2.1 there exists $\ell \in \{1, \ldots, n\}$ such that $\ell + n$ is even and condition (2.3_ℓ) holds. Since for any $\ell \in \{1, \ldots, n-2\}$, with $\ell + n$ even, the conditions of Theorem 4.1 are fulfilled, we have $\ell \notin \{1, \ldots, n-2\}$. Let $\ell = n$. Then by (2.3_n) it is clear that there exists $c \in (0, 1]$ such that for large $t, u(\tau(t)) \ge c\tau^{n-1}(t)$. Thus from (1.1) by $(2.9_{n,c})$ we have

$$u^{(n-1)}(t) \ge \int_{t_1}^t (c\tau^{n-1}(s))^{\mu(s)} |p(s)| ds \to +\infty \text{ for } t \to +\infty,$$

where t_1 is a sufficiently large number. That is, condition (1.4) is fulfilled. Now assume that $\ell = 0$ and n is even and there exists $c \in (0, 1]$ such that $u(t) \ge c$ for $t \ge t_2$, where t_2 is a sufficiently large number. According to (2.3₀) from (1.1) we get

$$\sum_{i=0}^{n-1} (n-i-1)! t_1 |u^{(i)}(t_1)| \ge \int_{t_1}^t s^{n-1} c^{\mu(s)} |p(s)| ds \quad \text{for} \quad t \ge t_2.$$

The last inequality contradicts conditions $(2.9_{1,c})$. The obtained contradiction proves that condition (1.5) holds, that is equation (1.1) has Property **B**.

Theorem 5.1'. Let conditions (1.2), (1.3) be fulfilled and for any $\ell \in \{1, ..., n\}$ with $\ell + n$ even, conditions $(2.9_{\ell,1})$, (3.1_{ℓ}) and, for even n, $(2.9_{1,1})$ hold. Moreover, let $\beta < +\infty$ and for any large $t_* \in R_+$ and $\ell \in \{1, ..., n-2\}$ with $\ell + n$ even for some $k \in N$, condition (4.1_{ℓ}) be fulfilled, when $\alpha = 1$ or for some $k \in N$, $\gamma \in (1, +\infty)$ and $\delta \in (1, \alpha]$ (4.2_{ℓ}) hold, when $\alpha > 1$. Then the equation (1.1) has Property **B**, where α and β are defined by the first condition of (2.1) and $\rho_{k,\ell,t_*}^{(\alpha)}$ is given by $(2.11_{\ell}) - (2.13_{\ell})$. **Proof.** Since $\beta < +\infty$, by $(2.9_{\ell,1})$ for any $\ell \in \{1, \ldots, n\}$ with $\ell + n$ even, condition $(2.9_{\ell,c})$ holds. That is conditions of Theorem 5.1 are fulfilled, which proves the validity of the theorem. **Theorem 5.2.** Let $\alpha > 1$, conditions (1.2), (1.3), (2.9_{1,c}), (3.1_1) be fulfilled and

$$\liminf_{t \to +\infty} \frac{(\tau(t))^{\mu(t)}}{t} > 0.$$
(5.1)

Moreover, if for some $\delta \in (1, \alpha)$

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-2-\delta}(\tau(\xi))^{\delta} |p(\xi)| d\xi \, ds = +\infty,$$
(5.2)

when n is odd and

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-3-\delta}(\tau(\xi))^{\delta+\mu(\xi)} |p(\xi)| d\xi \, ds = +\infty,$$
(5.3)

when n is even, then equation (1.1) has Property **B**, where α is given by the first condition of (2.1).

Proof. According to $(2.9_{1,c})$, (3.1_1) and (5.1) it is obvious that for any $\ell \in \{1, \ldots, n\}$ conditions $(2.9_{\ell,c})$ and (3.1_{ℓ}) hold. On the other hand by (5.1), (5.2) and (5.3), for any $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ even condition (4.2_{ℓ}) holds. That is if $\alpha > 1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.2'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.9_{1,1}), (3.1₁) and (5.1) be fulfilled. Moreover, let for some $\delta \in (1, \alpha]$, the condition (5.2) hold when n is odd and the condition (5.3) hold, when n is even. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

Proof. Since $\beta < +\infty$, by $(2.9_{1,1})$ it is obvious that for any $c \in (0, 1]$ condition $(2.9_{1,c})$ holds. That is all conditions of Theorem 5.2 are fulfilled, which proves the validity of the theorem.

Corollary 5.1. Let $\alpha > 1$, conditions (1.2), (1.3), (2.9_{1,c}), (3.1₁) and (5.1) be fulfilled and

$$\liminf_{t \to +\infty} t \int_{t}^{+\infty} s^{n-3} \tau(s) |p(s)| ds > 0.$$
(5.4)

Moreover, if for some $\delta \in (1, \alpha]$ *and* $\gamma > 0$

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-2-\delta}(\tau(\xi))^{\delta+\gamma(\mu(\xi)-\delta)} |p(\xi)| d\xi \, ds = +\infty,$$
(5.5)

then equation (1.1) has Property **B**, where α is defined by the first condition of (2.1).

Proof. Since $\alpha > 1$. By (5.4), (2.11₁) and (2.13₁) for any $\gamma > 0$, there exists $t_{\gamma} \in R_+$ such that $\rho_{1,1,t_*}^{(\alpha)}(t) \ge \ell! t^{\gamma}$ for $t \ge t_{\gamma}$. Therefore, by (5.4), (5.5) and (5.1) for any $\ell \in \{1, \ldots, n - -2\}$ condition (4.2_{ℓ}) holds. That is for $\alpha > 1$ all conditions of Theorem 5.1' hold. Therefore according to the same theorem, equation (1.1) has Property **B**.

By Corollary 5.1, Theorem 5.2' can be proved similarly.

Corollary 5.1'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.9_{1,1}), (3.1₁), (5.1) and (5.4) be fulfilled. Moreover, if for some $\delta \in (1, \alpha]$ and $\gamma > 0$ condition (5.5) holds, then equation (1.1) has Property **B**, where α and β are given by (2.1).

Corollary 5.2. Let $\alpha > 1$, conditions (1.2), (1.3), (2.9_{1,c}), (3.1₁), (5.1) and (5.4) be fulfilled and there exist $m \in N$ such that condition (4.7) holds. Then equation (1.1) has Property **B**, where α is defined by the first condition of (2.1).

Proof. By (5.1), (2.9_{1,c}), (3.1₁) and (5.4) it is obvious that for any $\ell \in \{1, ..., n\}$ conditions $(2.9_{\ell,c}), (3.1_{\ell})$ and (4.6_{ℓ}) hold.

Let equation (1.1) have a nonoscillatory proper solution $u : (t_0, +\infty) \rightarrow (0, +\infty)$. Then by (1.2), (1.3) and Lemma 2.1, there exists $\ell \in \{1, ..., n\}$ such that $\ell + n$ is even and the condition (2.3_ℓ) holds. By Corollary 4.4, $\ell \notin \{1, ..., n-2\}$. If $\ell = n$ (if n is even and $\ell = 0$) by $(2.9_{n,c})$ ((2.9_{1,c})) analogously to Theorem 5.1, we show that condition (1.4) (condition (1.5)) holds, that is equation (1.1) has Property **B**.

Corollary 5.2'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.9_{1,1}), (3.1₁), (5.1) and (5.4) be fulfilled. Moreover, if there exists $m \in N$ such that condition (4.10) holds, then equation (1.1) has Property **B**, where α and β are given by (2.1).

Corollary 5.3. Let $\alpha > 1$, conditions (1.2), (1.3), (2.9_{1,c}), (3.1₁) and (5.1) be fulfilled. Assume, moreover, that there exist $\gamma \in (0, 1)$ and $r \in (0, 1)$ such that conditions (4.14₁) and (4.15) hold and at least one of the conditions (4.16) or $r \alpha < 1$ and for some $\varepsilon > 0$ and $\delta \in (1, \alpha)$ (4.17₁) are fulfilled. Then equation (1.1) has Property **B**, where α is defined by the first condition of (2.1).

Proof. Let equation (1.1) have a proper nonoscillatory solution $u : (t_0, +\infty) \rightarrow (0, +\infty)$. Then by (1.2), (1.3) and Lemma 2.1, there exists $\ell \in \{1, \ldots, n\}$ such that $\ell + n$ is even and condition (2.3_ℓ) holds. Since by $(2.9_{1,c})$, (3.1_1) , (4.14_1) and (5.1) for any $\ell \in \{1, \ldots, n-2\}$, conditions $(2.9_{\ell,c})$, (3.1_ℓ) and (4.14_ℓ) are fulfilled, then according to Corollary 4.6, we have $\ell \notin \{1, \ldots, n-2\}$. On the other hand analogously to Theorem 5.1, we show that if $\ell = 0$ ($\ell = n$) the condition (1.4) ((1.5)) is fulfilled, that is the equation (1.1) has Property **B**.

Corollary 5.3'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.9_{1,1}), (3.1₁) and (5.1) be fulfilled and for some $\gamma \in (0,1)$ and $r \in (0,1)$, conditions (4.14₁) and (4.15) hold. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

Theorem 5.3. Let $\alpha > 1$, conditions (1.2), (1.3), (2.9_{n,c}) and (3.1_{n-1}) be fulfilled and

$$\limsup_{t \to +\infty} \frac{(\tau(t))^{\mu(t)}}{t} < +\infty.$$
(5.6)

Moreover, if for some $\delta \in (1, \alpha]$

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{1-\delta}(\tau(\xi))^{\delta+(n-3)\mu(\xi)} |p(\xi)| d\xi \, ds = +\infty,$$
(5.7)

then equation (1.1) has Property **B**, where α is given by the first condition of (2.1).

Proof. According to $(2.9_{n,c})$, (3.1_{n-1}) and (5.6) it is obvious that for any $\ell \in \{1, \ldots, n-1\}$ the conditions $(2.9_{\ell,c})$ and (3.1_{ℓ}) hold. On the other hand by (5.6) and (5.7) for any $\ell \in \{1, \ldots, n-2\}$, with $\ell + n$ even the condition (4.2_{ℓ}) holds. That is, if $\alpha > 1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.3'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.9_{*n*,1}), (3.1_{*n*-1}), (5.6) and for some $\delta \in (1, \alpha)$ condition (5.7) be fulfilled. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

Proof. Since $\beta < +\infty$, by $(2.9_{n,1})$ it is obvious that for any $c \in (0, 1]$ conditions $(2.9_{n,c})$ hold. That is all conditions of Theorem 5.3 are fulfilled, which proves the validity of the theorem.

Corollary 5.4. Let $\alpha > 1$, conditions (1.2), (1.3), (2.9_{n.c}), (3.1_{n-1}) and (5.6) be fulfilled and

$$\liminf_{t \to +\infty} t \int_{t}^{+\infty} (\tau(s))^{1+(n-3)\mu(s)} |p(s)| ds > 0.$$
(5.8)

Moreover, if for some $\delta \in (1, \alpha]$ *and* $\gamma > 0$

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{-1-\delta}(\tau(\xi))^{\delta+(n-3)\mu(\xi)+\gamma(\mu(\xi)-\delta)} |p(\xi)| d\xi \, ds = +\infty,$$
(5.9)

then equation (1.1) has Property **B**, where α is given by the first condition of (2.1).

Proof. Since $\alpha > 1$, by (5.8), (2.11_{*n*-2}) and (2.13_{*n*-2}), for any $\gamma > 0$ there exists $t_* \in R_+$ such that $\rho_{1,n-2,t_*}^{(\alpha)}(t) \ge \ell! t^{\gamma}$ for $t \ge t_{\gamma}$. Therefore by (5.6), (5.8) and (5.9) for any $\ell \in \{1, \ldots, n-2\}$ the conditions (4.2_{ℓ}) hold. Therefore, according to the same theorem, equation (1.1) has Property **B**.

Corollary 5.4'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.9_{n,1}), (3.1_{n-1}), (5.8) and (5.9) be fulfilled. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

By (5.6), repeating the arguments given in Corollary 5.3, we easily ascertain that the corollary below is true.

Corollary 5.5. Let $\alpha > 1$, conditions (1.2), (1.3), (2.9_{n,c}), (3.1_{n-1}) and (5.6) be fulfilled. Moreover, let there exist $\gamma \in (0,1)$ and $r \in (0,1)$ such that conditions (4.14_{n-2}), (4.15) and at last one of the conditions (4.16) or $r\alpha < 1$ and for some $\varepsilon > 0$ and $\delta \in (1, \alpha]$, (4.17_{n-2}) be fulfilled. Then equation (1.1) has Property **B**, where α is defined by the first condition of (2.1).

Corollary 5.5'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.9_{n,1}), (3.1_{n-1}) and (5.6) be fulfilled. Moreover, let there exist $\gamma \in (0, 1)$ and $r \in (0, 1)$ such that conditions (4.14_{n-2}), (4.15) and at last one of conditions (4.16) or $r \alpha < 1$ and for some $\varepsilon > 0$ and $\delta \in (1, \alpha]$, (4.17_{n-2}) be fulfilled. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

Theorem 5.4. Let $\alpha = 1$, conditions (1.2), (1.3), (2.9_{1,c}), (3.1₁) and (5.1) be fulfilled. Moreover, *if*

$$\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-2} |p(\xi)| d\xi \, ds > 0,$$
(5.10)

when n is odd and

$$\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-3} (\tau(\xi))^{\mu(\xi)} |p(\xi)| d\xi \, ds > 0,$$
(5.11)

when n is even, then equation (1.1) has Property **B**, where α is given by the first condition of (2.1).

Proof. According to $(2.9_{1,c})$, (3.1_1) and (5.1) for any $\ell \in \{1, \ldots, n\}$ conditions $(2.9_{\ell,c})$ and (3.1_{ℓ}) holds. On the other hand by (5.1), (5.10) and (5.11) for any $\ell \in \{1, \ldots, n-2\}$, with $\ell + n$ even condition (4.1_{ℓ}) holds. That is, if $\alpha = 1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.4'. Let $\alpha = 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.9_{1,1}), (3.1₁), (5.1), (5.10) and (5.11) be fulfilled. Then equation (1.1) has Property **B**, where α and β are defined by (2.1).

Proof. Since $\beta < +\infty$, by $(2.9_{1,1})$, for any $c \in (0,1]$ condition $(2.9_{1,c})$ holds. That is all conditions of Theorem 5.4 are fulfilled, which proves the validity of the theorem.

Theorem 5.5. Let $\alpha = 1$, conditions (1.2), (1.3), (2.9_{1,c}), (3.1₁) and (5.1) be fulfilled. Moreover, *if*

$$\liminf_{t \to +\infty} t \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-3} \tau(\xi) |p(\xi)| d\xi \, ds > \max\left(\frac{\ell ! (n-\ell)!}{\omega^{\ell-1}}, \ell \in \{1, 2, \dots, n-2\}\right)$$
(5.12)

and

$$\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi^{n-2} (\tau(\xi))^{\mu(\xi)} |p(\xi)| d\xi \, ds > 0,$$
(5.13)

then equation (1.1) has Property **B**, where

$$\omega = \liminf_{t \to +\infty} \frac{(\tau(t))^{\mu(t)}}{t}.$$
(5.14)

Proof. By (5.12), (5.14) and (2.11_{ℓ}) it is obvious that for large t we have

$$\rho_{1,\ell,t_*}^{(1)}(t) \ge \ell ! t, \quad \ell \in \{1,\dots,n-2\}.$$
(5.15)

On the other hand according to $(2.9_{1,c})$, (3.1_1) , (5.1), (5.14), (5.15) and (5.13) for any $\ell \in \{1, \ldots, n-1\}$, conditions $(2.9_{\ell,c})$, (3.1_{ℓ}) and (4.1_{ℓ}) hold. That is if $\alpha = 1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

The proof of Theorem 5.4 has been a guide for us in proving Theorem 5.4 /. In the same way we will be guided by the proof of Theorem 5.5 to show that the next theorem is valid.

Theorem 5.5'. Let $\alpha = 1$ and $\beta < +\infty$, conditions (1.2),(1.3), (2.9_{1,1}), (3.1₁), (5.1), (5.12) and (5.13) be fulfilled. Then equation (1.1) has Property **B**, where ω is defined by condition (5.14).

Theorem 5.6. Let $\alpha = 1$, conditions (1.2), (1.3), (2.9_{n,c}), (3.1_{n-1}) and (5.6) be fulfilled. Moreover, if

$$\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi(\tau(\xi))^{(n-3)r(\xi)} |p(\xi)| d\xi \, ds > 0,$$
(5.16)

then equation (1.1) has Property **B**, where α is given by the first condition of (2.1).

Proof. According to $(2.9_{n,c})$, (3.1_{n-1}) and (5.6) for any $\ell \in \{1, \ldots, n-1\}$ conditions $(2.9_{\ell,c})$ and (3.1_{ℓ}) hold. On the other hand by (5.6) and (5.16) for any $\ell \in \{1, \ldots, n-2\}$, with $\ell + n$ even condition (4.1_{ℓ}) holds. That is, if $\alpha = 1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.6'. Let $\alpha = 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.9_{n,1}), (3.1_{n-1}), (5.6) and (5.16) be fulfilled. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

Proof. Since $\beta < +\infty$, it suffices to show that by $(2.9_{n,1})$, for any $c \in (0,1]$ condition $(2.9_{n,c})$ hold.

Theorem 5.7. Let $\alpha = 1$, conditions (1.2), (1.3), (2.9_{*n*,*c*}), (3.1_{*n*-1}) and (5.6) be fulfilled. Moreover, if

$$\liminf_{t \to +\infty} t \int_{0}^{t} \int_{s}^{+\infty} (\tau(\xi)^{1+(n-3)\mu(\xi)} | p(\xi)| d\xi \, ds > \max\left(\frac{\ell ! (n-\ell)!}{\omega^{n-\ell-2}}, \ell \in \{1, 2, \dots, n-2\}\right), \quad (5.17)$$

then the condition

$$\limsup_{t \to +\infty} \frac{1}{t} \int_{0}^{t} \int_{s}^{+\infty} \xi(\tau(\xi))^{(n-2)\mu(\xi)} |p(\xi)| d\xi \, ds > 0,$$
(5.18)

is sufficient for equation (1.1) to have Property **B**, where

$$\omega = \liminf_{t \to +\infty} \frac{t}{(\tau(t))^{\mu(t)}}.$$
(5.19)

Proof. By (5.17), (5.19) and (2.11) it is obvious that for large t condition (5.15) holds.

On the other hand according to $(2.9_{n,c})$, (3.1_{n-1}) , (5.6), (5.15), (5.18) and (5.19) for any $\ell \in \{1, \ldots, n-1\}$, conditions $(2.9_{\ell,c})$, (3.1_{ℓ}) and (4.1_{ℓ}) hold. That is, if $\alpha = 1$, then all conditions of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.7'. Let $\alpha = 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.9_{n,1}), (3.1_{n-1}) and (5.6) be fulfilled. Moreover, if conditions (5.17) and (5.18) hold, then equation (1.1) has Property **B**, where α , β and ω are given by (2.1) and (5.19).

Proof. Since $\beta < +\infty$, it suffices to show that by $(2.9_{n,1})$, for any $c \in (0,1]$ conditions $(2.9_{n,c})$ hold.

- 1. *Graef I., Koplatadze R., Kvinikadze G.* Nonlinear functional differential equations with Properties A and B // J. Math. Anal. and Appl. 2005. **306**, № 1. P. 136–160.
- 2. *Koplatadze R*. On oscillatory properties of solutions of generalized Emden Fowler type differential equations // Proc. A. Razmadze Math. Inst. 2007. **145**. P. 117–121.
- 3. *Koplatadze R.* Quasi-linear functional differential equations with property A // J. Math. Anal. and Appl. 2007. **330**, № 1. P. 483–510.
- 4. *Koplatadze R*. On asymptotic behavior of solutions of "almost linear" and essentially nonlinear differential equations // Nonlinear Anal.: Theory, Methods and Appl. 2009. **71**, № 12. P. 396–400.
- 5. *Koplatadze R., Litsyn E.* Oscillation criteria for higher order "almost linear" functional differential equation // Funct. Different. Equat. – 2009. – 16, № 3. – P. 387–434.
- Koplatadze R. On higher order functional differential equations with Property A // Georg. Math. J. 2004. – 11, № 2. – P. 307–336.

- 7. *Koplatadze R., Chanturia T.* On oscillatory properties of differential equations with a deviating argument (in Russian). Tbilisi: Tbilis. State Univ. Press, 1977.
- 8. Ladd G. S., Lakshmikantham V., Zhang B. G. Oscillation theory of differential equations with deviating arguments. New York: Dekker, 1987.
- 9. *Koplatadze R*. On oscillatory properties of solutions of functional differential equations // Mem. Different. Equat. Math. Phys. 1994. **3**. P. 3–179.
- 10. Erbe Y. H., Kong Q., Zhang B. G. Oscillation theory for functional differential equations. New York: Dekker, 1995.
- 11. Agarval R. P., Grace S. R., O'Regan D. Oscillation theory for second order linear, half-linear, singular and sublinear dynamik equations. Dordrecht: Kluwer Acad. Publ., 2002.
- Kiguradze I., Stavroulakis I. On the solutions of higher order Emden-Fowler advanced differential equations // Appl. Anal. 1998. 70. P. 97–112.
- 13. *Koplatadze R*. On asymptotic behavior of solutions of *n*-th order Emden Fowler differential equations with advanced argument // Czechoslovak Math. J. 2010. **60(135)**, № 3. P. 817–833.
- 14. Domoshnitski A., Koplatadze R. On asymptotic behavior of solutions of generalized Enmden-Fowler differential equations with delay argument // Abstrs and Appl. Anal. – 2014. – Art. ID 168425.
- 15. *Gramatikopoulos M. K., Koplatadze R., Kvinikadze G.* Linear functional differential equations with Property A // J. Math. Anal. and Appl. 2003. **284**, № 1. P. 294–314.

Received 19.04.15