UDC 517.953

COATING THIN FILM FLOWS ON A SOLID SPHERE^{*} ТЕЧІЇ ТОНКОЇ ПЛІВКИ ВЗДОВЖ ПОВЕРХНІ ТВЕРДОЇ КУЛІ

R. M. Taranets

Inst. Appl. Mathematics and Mechanics Nat. Acad. Sci. Ukraine, Generala Batyuka Str., 19, Sloviansk, 84116, Ukraine e-mail: taranets_r@yahoo.com

By using the Arzela – Ascoli theorem, we prove the existence of strong solutions of the thin film equation on a solid sphere in weighted Sobolev spaces.

За допомогою теореми Арцела – Асколі доведено існування сильних розв'язків рівняння течії тонкої плівки на сферичній поверхні у просторах Соболева з вагою.

Introduction. Many problems in industrial and natural settings involve the flow of thin liquid films driven by gravity on different types of surfaces including a spherical one [1]. For example, the flow of a thin liquid film on a flat surface such as an inclined plane in the presence of gravity has been the subject of numerous investigations over the years (see, e. g., [2-4]). Dynamics of viscous coating flows on an outer surface of a solid sphere has been studied by Kang, Nadim, and Chugunova [5] in situations where the draining of the film due to gravity was balanced by centrifugal forces arising from the rotation of the sphere about a vertical axis and by capillary forces due to surface tension. The time evolution of a thin liquid film coating of the outer surface of a sphere in the presence of gravity, surface tension, and thermal gradients was considered in [6]. The spherical coating model without the surface tension and Marangoni effects was studied in [7, 8]. Recently, in [5], the authors derived the following equation for the no-slip regime in dimensionless form

$$h_t + \frac{1}{\sin\theta} \left(h^3 \sin\theta J \right)_{\theta} = 0,$$
$$J := a \sin\theta + b \sin\theta \cos\theta + c \left[2h + \frac{1}{\sin\theta} \left(\sin\theta h_{\theta} \right)_{\theta} \right]_{\theta},$$

where $h(\theta, t)$ represents the thickness of the thin film, $\theta \in (0, \pi)$ is the polar angle in spherical coordinates, with t denoting time; the dimensionless parameters a, b and c describe the effects of gravity, rotation and surface tension, respectively. After the change of variable $x = -\cos \theta$, this equation can be written in the form:

$$h_t + \left[h^3 \left(1 - x^2\right) \left(a - bx + c \left(2h + \left(\left(1 - x^2\right) h_x\right)_x\right)_x\right)_x\right]_x = 0,$$
(1.1)

where $x \in (-1, 1)$.

The goal of this paper is to study an arbitrary slip (weak and Navier slippage) generalisation of (1.1) with a = b = 0:

$$u_t + c \left(\left(1 - x^2 \right) u^n \left(\left(1 - x^2 \right) u_x + 2du \right)_{xx} \right)_x = 0 \quad \text{in} \quad Q_T, \tag{1.2}$$

^{*} This paper is supported by Grant № 0118U003138 of Ministry of Education and Science of Ukraine.

[©] R. M. Taranets, 2018.

where $Q_T = \Omega \times (0,T)$, n > 0, d > 0, T > 0, and $\Omega = (-1,1)$. As a result, equation (1.2) for n = 3 is a particular case of (1.1) for no-slip regime. This is a nonlinear fourth-order parabolic equation that is doubly degenerate. This equation captures the dynamics of a thin viscous liquid film on the outer surface of a solid sphere without gravity.

In contrast to the classical thin film equation:

$$u_t + (|u|^n u_{xxx})_x = 0, (1.3)$$

which describes the behavior of a thin viscous film on a flat surface under the effect of surface tension, the equation (1.2) is not yet well analysed. To the best of our knowledge for (1.2) with d = 0, in [9] the authors proved existence of nonnegative weak solutions in weighted Sobolev spaces, and in [10] the author proved existence of nonnegative strong solutions and its asymptotic convergence to a flat profile. Note that (1.2) loses its parabolicity not only at u = 0 (as in (1.3)) but also at $x = \pm 1$. For this reason, it is natural to seek solution in a Sobolev space with weight $1 - x^2$.

In 1990, Bernis and Friedman [11] constructed nonnegative weak solutions of the equation (1.3) for nonlinearity $n \ge 1$, and it was also shown that for $n \ge 4$, with uniformly positive initial data, there exists a unique positive classical solution. In 1994, Bertozzi et al. [12] generalised this positivity property for the case $n \ge \frac{7}{2}$. In 1995, Beretta et al. [13] proved the existence of nonnegative weak solutions for the equation (1.3) if n > 0, and the existence of strong ones for 0 < n < 3. Also, they could show that this positivity-preserving property holds for almost every time t in the case $n \ge 2$. A similar result on a cylindrical surface was obtained in [14]. Regarding the long-time behaviour, Carrillo and Toscani [15] proved the convergence to a self-similar solution for equation (1.3) with n = 1 and Carlen and Ulusoy [16] gave an upper bound on the distance from the self-similar solution. A similar result on a cylindrical surface was obtained in [17].

In the present article, using energy and entropy estimates, we obtain the existence of nonnegative strong solutions for (1.2) with c = d = 1 and $n \ge 1$.

2. Existence of strong solutions. We study the following thin film equation

$$u_t + \left(\left(1 - x^2 \right) |u|^n \left[\left(\left(1 - x^2 \right) u_x \right)_x + 2u \right]_x \right)_x = 0 \quad \text{in} \quad Q_T$$
(2.1)

with the no-flux boundary conditions

$$(1-x^2)u_x = (1-x^2)((1-x^2)u_x)_{xx} = 0$$
 at $x = \pm 1, t > 0,$ (2.2)

and the initial condition

$$u(x,0) = u_0(x). (2.3)$$

Here n > 0, $Q_T = \Omega \times (0,T)$, $\Omega := (-1,1)$, and T > 0. Integrating the equation (2.1) by using boundary conditions (2.2), we obtain the mass conservation property

$$\int_{\Omega} u(x,t)dx = \int_{\Omega} u_0(x)dx =: M > 0.$$

Consider initial data $u_0(x) \ge 0$ for all $x \in \overline{\Omega}$ satisfying

$$\int_{\Omega} \left\{ u_0^2(x) + \left(1 - x^2\right) u_{0,x}^2(x) \right\} dx < \infty.$$
(2.4)

Definition 2.1 (weak solution). Let n > 0. A function u is a weak solution of the problem (2.1)-(2.3) with initial data u_0 satisfying (2.4) if u(x,t) has the following properties:

$$(1-x^2)^{\beta/2} u \in C_{x,t}^{\alpha/2,\alpha/8}(\bar{Q}_T), \qquad 0 < \alpha < \beta \le \frac{2}{n}, \qquad u_t \in L^2(0,T; (H^1(\Omega))^*),$$
$$(1-x^2)^{1/2} u_x \in L^\infty(0,T; L^2(\Omega)),$$
$$(1-x^2)^{1/2} |u|^{n/2} [((1-x^2) u_x)_x + 2u]_x \in L^2(P),$$

and u(x,t) satisfies (2.1) in the following sense:

$$\int_{0}^{T} \langle u_{t}, \phi \rangle \, dt - \iint_{P} \left(1 - x^{2} \right) |u|^{n} \left[\left(\left(1 - x^{2} \right) u_{x} \right)_{x} + 2u \right]_{x} \phi_{x} \, dx dt = 0$$

for all $\phi \in L^2(0,T; H^1(\Omega))$, where $P := \bar{Q}_T \setminus \{\{u = 0\} \cup \{t = 0\}\},\$

$$u(.,t) + (1-x^2)^{1/2} u_x(.,t) \to u_0(.) + (1-x^2)^{1/2} u_{0,x}(.)$$
 strongly in $L^2(\Omega)$

as $t \to 0$, and boundary conditions (2.2) hold at all points of the lateral boundary, where $\{u \neq 0\}$.

Let us denote by

$$\mathcal{E}_{0}(z) := \frac{1}{2} \int_{\Omega} \left[\left(1 - x^{2} \right) z_{x}^{2} - 2z^{2} \right] dx,$$

$$0 \le G_{0}(z) := \begin{cases} \frac{z^{2-n} - A^{2-n}}{(n-1)(n-2)} - \frac{A^{1-n}}{1-n}(z-A) & \text{if } n \ne 1, 2, \\ z \ln z - z(\ln A + 1) + A & \text{if } n = 1, \\ \ln\left(\frac{A}{z}\right) + \frac{z}{A} - 1 & \text{if } n = 2, \end{cases}$$

where $A \ge 0$ if $n \in (1,2)$ and A > 0 if else. Next, we establish existence of a more regular solution u of the problem (2.1)–(2.3) than a weak solution in the sense of Definition 2.1.

Theorem 2.1 (strong solution). Assume that $n \ge 1$ and initial data u_0 satisfies

$$\int_{\Omega} G_0(u_0) \, dx < +\infty, \qquad \text{and} \qquad \mathcal{E}_0(u_0) \ge -\frac{M^2}{|\Omega|} - 2M^2 C_N^4,$$

where $C_N > 0$ is from (3.20), then the problem (2.1)–(2.3) has a nonnegative weak solution, u, in the sense of Definition 2.1, such that

$$(1-x^2) u_x \in L^2(0,T; H^1(\Omega)), \qquad (1-x^2)^{\gamma/2} u_x \in L^2(Q_T), \quad \gamma \in (0,1],$$
$$u \in L^\infty(0,T; L^2(\Omega)), \qquad (1-x^2)^{\mu/2} u \in L^2(Q_T), \quad \mu \in (-1,\beta]$$

for all T > 0.

3. Proof of Theorem 2.1. *3.1. Approximating problems.* Let us denote the energy functional and its variation by

$$\mathcal{E}_{\delta}(u(t)) := \frac{1}{2} \int_{\Omega} \left[\left(1 - x^2 + \delta \right) u_x^2 - 2u^2 \right] dx,$$
$$\frac{\delta \mathcal{E}_{\delta}(u)}{\delta u} := -\left[\left(\left(1 - x^2 + \delta \right) u_x \right)_x + 2u \right].$$

Equation (2.1) is doubly degenerate when u = 0 and $x = \pm 1$. For this reason, for any $\epsilon > 0$ and $\delta > 0$ we consider two-parametric regularised equations

$$u_{\epsilon\delta,t} - \left[\left(1 - x^2 + \delta \right) \left(|u_{\epsilon\delta}|^n + \epsilon \right) \left(\frac{\delta \mathcal{E}_{\delta}(u_{\epsilon\delta})}{\delta u} \right)_x \right]_x = 0 \quad \text{in} \quad Q_T \tag{3.1}$$

with boundary conditions

$$u_{\epsilon\delta,x} = \left(\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x} \right)_{xx} = 0 \quad \text{at} \quad x = \pm 1,$$
(3.2)

and initial data

$$u_{\epsilon\delta}(x,0) = u_{0,\epsilon\delta}(x) \in C^{4+\gamma}(\bar{\Omega}) \quad \text{for some} \quad \gamma > 0, \tag{3.3}$$

where

$$u_{0,\epsilon\delta}(x) \ge u_{0\delta}(x) + \epsilon^{\theta}, \quad \theta \in \left(0, \frac{1}{2(n-1)}\right),$$
(3.4)

$$u_{0,\epsilon\delta} \to u_{0\delta}$$
 strongly in $H^1(\Omega)$ as $\epsilon \to 0$, (3.5)

$$\left(1 - x^2 + \delta\right)^{1/2} u_{0x,\delta} \to \left(1 - x^2\right)^{1/2} u_{0,x} \quad \text{strongly in} \quad L^2(\Omega) \quad \text{as} \quad \delta \to 0, \tag{3.6}$$

$$u_{0,\delta} \to u_0$$
 strongly in $L^2(\Omega)$ as $\delta \to 0.$ (3.7)

The parameters $\epsilon > 0$ and $\delta > 0$ in (3.1) make the problem regular up to the boundary (i.e., uniformly parabolic). The existence of a solution of (3.1) in a small time interval is guaranteed by the Schauder estimates in [18]. Now suppose that $u_{\epsilon\delta}$ is a solution of equation (3.1) and that it is continuously differentiable with respect to the time variable and fourth order continuously differentiable with respect to the spatial variable.

3.2. Limit process as $\epsilon \to 0$. In order to get an *a priori* estimate of $u_{\epsilon\delta}$, we multiply both sides of equation (3.1) by $\frac{\delta \mathcal{E}_{\delta}(u_{\epsilon\delta})}{\delta u}$ and integrate over Ω by (3.2). This gives us

$$\frac{d}{dt}\mathcal{E}_{\delta}(u_{\epsilon\delta}) + \int_{\Omega} \left(1 - x^2 + \delta\right) (|u_{\epsilon\delta}|^n + \epsilon) \left[\frac{\delta\mathcal{E}_{\delta}(u_{\epsilon\delta})}{\delta u}\right]_x^2 dx = 0.$$
(3.8)

Integrating (3.8) in time, we get

$$\mathcal{E}_{\delta}(u_{\epsilon\delta}) + \iint_{Q_T} \left(1 - x^2 + \delta\right) (|u_{\epsilon\delta}|^n + \epsilon) \left[\frac{\delta \mathcal{E}_{\delta}(u_{\epsilon\delta})}{\delta u}\right]_x^2 dx \, dt = \mathcal{E}_{\delta}(u_{0,\epsilon\delta}). \tag{3.9}$$

Multiplying (3.1) by $-((1 - x^2 + \delta)u_{\epsilon\delta,x})_x + u_{\epsilon\delta}$, integrating over Ω , and using the boundary conditions (3.2) we find

$$\begin{split} \frac{1}{2} \frac{d}{dt} & \int_{\Omega} \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x}^2 + u_{\epsilon\delta}^2 \right] dx + \\ & + \int_{\Omega} \left(1 - x^2 + \delta \right) \left(|u_{\epsilon\delta}|^n + \epsilon \right) \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x} \right]_{xx}^2 dx = \\ & = - \int_{\Omega} \left(1 - x^2 + \delta \right) \left(|u_{\epsilon\delta}|^n + \epsilon \right) \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x} \right]_{xx} u_{\epsilon\delta,x} dx + \\ & + 2 \int_{\Omega} \left(1 - x^2 + \delta \right) \left(|u_{\epsilon\delta}|^n + \epsilon \right) u_{\epsilon\delta,x}^2 dx \leq \\ & \leq \frac{1}{2} \int_{\Omega} \left(1 - x^2 + \delta \right) \left(|u_{\epsilon\delta}|^n + \epsilon \right) \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x} \right]_{xx}^2 dx + \\ & + \frac{5}{2} \int_{\Omega} \left(1 - x^2 + \delta \right) \left(|u_{\epsilon\delta}|^n + \epsilon \right) u_{\epsilon\delta,x}^2 dx, \end{split}$$

whence

$$\frac{d}{dt} \int_{\Omega} \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x}^2 + u_{\epsilon\delta}^2 \right] dx + \\
+ \int_{\Omega} \left(1 - x^2 + \delta \right) \left(|u_{\epsilon\delta}|^n + \epsilon \right) \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x} \right]_{xx}^2 dx \le \\
\le 5 \left(||u_{\epsilon\delta}||_{\infty}^n + \epsilon \right) \int_{\Omega} \left(1 - x^2 + \delta \right) u_{\epsilon\delta,x}^2 dx.$$
(3.10)

By the mass conservation

$$\int_{\Omega} u_{\epsilon\delta} \, dx = \int_{\Omega} u_{0,\epsilon\delta} \, dx =: M_{\epsilon\delta} > 0,$$

we find that

$$\|u_{\epsilon\delta}\|_{\infty} \le \left(\frac{|\Omega|}{\delta}\right)^{1/2} \left(\int_{\Omega} \left(1 - x^2 + \delta\right) u_{\epsilon\delta,x}^2 \, dx\right)^{1/2} + \frac{M_{\epsilon\delta}}{|\Omega|}.$$
(3.11)

Using (3.11), from (3.10) we get

$$\frac{d}{dt} \int_{\Omega} \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x}^2 + u_{\epsilon\delta}^2 \right] dx +$$

$$+ \int_{\Omega} \left(1 - x^2 + \delta \right) \left(|u_{\epsilon\delta}|^n + \epsilon \right) \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x} \right]_{xx}^2 dx \le$$
$$\le C_{\epsilon\delta} \left(\max \left\{ 1, \int_{\Omega} \left(1 - x^2 + \delta \right) u_{\epsilon\delta,x}^2 dx \right\} \right)^{\frac{n+2}{2}},$$

where

$$C_{\epsilon\delta} := 2^{n+1} 5 \left[\left(\frac{|\Omega|}{\delta} \right)^{n/2} + \left(\frac{M_{\epsilon\delta}}{|\Omega|} \right)^n + \epsilon \right].$$

Applying the nonlinear Grönwall inequality to

$$y(T) \le y(0) + C_{\epsilon\delta} \int_{0}^{T} \max\left\{1, y^{\frac{n+2}{2}}(t)\right\} dt,$$

where

$$y(t) := \int_{\Omega} \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x}^2 + u_{\epsilon\delta}^2 \right] dx,$$

yields

$$\int_{\Omega} \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x}^2 + u_{\epsilon\delta}^2 \right] dx \le 2^{2/n} \int_{\Omega} \left[\left(1 - x^2 + \delta \right) u_{0\epsilon\delta,x}^2 + u_{0,\epsilon\delta}^2 \right] dx \le C_{\delta}$$

for all $T \in [0, T_{\epsilon \delta, \text{loc}}]$, where

$$T_{\epsilon\delta,\text{loc}} := \frac{1}{nC_{\epsilon\delta}} \min\left\{1, \left(\int_{\Omega} \left[\left(1 - x^2 + \delta\right) u_{0\epsilon\delta,x}^2 + u_{0,\epsilon\delta}^2\right] dx\right)^{-n/2}\right\}.$$

The times $T_{\epsilon\delta,\text{loc}}$ converge to a positive limit as $\epsilon \to 0$, and tends to 0 as $\delta \to 0$. Taking ϵ smaller if necessary, the time of existence is defined as

$$T_{\delta,\text{loc}} = \frac{9}{10} \lim_{\epsilon \to 0} T_{\epsilon\delta,\text{loc}} =$$
$$= \frac{9}{10} \frac{1}{nC_{0\delta}} \min\left\{1, \left(\int_{\Omega} \left[\left(1 - x^2 + \delta\right) u_{0\delta,x}^2 + u_{0,\delta}^2\right] dx\right)^{-n/2}\right\} < T_{\epsilon\delta,\text{loc}}.$$

As a result, the bound

$$\int_{\Omega} \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x}^2 + u_{\epsilon\delta}^2 \right] dx \le C_{\delta}$$
(3.12)

holds for all $T \in [0, T_{\delta, \text{loc}}]$, where $C_{\delta} > 0$ is independent of ϵ . From (3.12) and (3.9) it follows that

 $\{u_{\epsilon\delta}\}_{\epsilon>0}$ is uniformly bounded in $L^{\infty}(0,T;H^1(\Omega))$, (3.13)

R. M. TARANETS

$$\left\{ \left(1 - x^2 + \delta\right)^{1/2} \left(|u_{\epsilon\delta}|^n + \epsilon\right)^{1/2} \left[\frac{\delta \mathcal{E}_{\delta}(u_{\epsilon\delta})}{\delta u}\right]_x \right\}_{\epsilon > 0} \quad \text{is uniformly bounded in} \quad L^2(Q_T) \quad (3.14)$$

for all $T \in [0, T_{\delta, \text{loc}}]$. By (3.13) and (3.14), using the same method as in [11], we can prove that solutions $u_{\epsilon\delta}$ have uniformly (in ϵ) bounded $C_{x,t}^{1/2,1/8}$ -norms. By the Arzelà-Ascoli theorem, this equicontinuous property, together with the uniformly boundedness shows that every sequence $\{u_{\epsilon\delta}\}_{\epsilon>0}$ has a subsequence such that

$$u_{\epsilon\delta} \to u_{\delta}$$
 uniformly in Q_T as $\epsilon \to 0$.

As a result, we obtain a local (in time) solution u_{δ} of the problem (3.1)–(3.3) with $\epsilon = 0$ in the sense of [11, p. 185–186] (Theorem 3.1).

3.3. Non-negativity of u_{δ} . Let us denote by $G_{\epsilon}(z)$ the following function

$$G_{\epsilon}(z) \ge 0 \quad \forall z \in \mathbb{R}, \qquad G''_{\epsilon}(z) = \frac{1}{|s|^n + \epsilon}$$

Now we multiply equation (3.1) by $G'_{\epsilon}(u_{\epsilon\delta})$ and integrate over Ω to get

$$\frac{d}{dt} \int_{\Omega} G_{\epsilon} \left(u_{\epsilon\delta}(x,t) \right) dx + \int_{\Omega} \left(1 - x^2 + \delta \right) \left(|u_{\epsilon\delta}|^n + \epsilon \right) \left[\frac{\delta \mathcal{E}_{\delta}(u_{\epsilon\delta})}{\delta u} \right]_x G_{\epsilon}''(u_{\epsilon\delta}) u_{\epsilon\delta,x} \, dx = 0,$$

whence by (3.12) we obtain

$$\frac{d}{dt} \int_{\Omega} G_{\epsilon}(u_{\epsilon\delta}(x,t)) \, dx + \int_{\Omega} \left[\left(1 - x^2 + \delta\right) u_{\epsilon\delta,x} \right]_x^2 \, dx = 2 \int_{\Omega} \left(1 - x^2 + \delta\right) u_{\epsilon\delta,x}^2 \, dx \le 2C_{\delta}.$$
(3.15)

After integration in time, equation (3.15) becomes

$$\int_{\Omega} G_{\epsilon}(u_{\epsilon\delta}(x,T)) \, dx + \iint_{Q_T} \left[\left(1 - x^2 + \delta \right) u_{\epsilon\delta,x} \right]_x^2 \, dx \, dt \le \int_{\Omega} G_{\epsilon}(u_{0,\epsilon\delta}(x)) \, dx + 2C_{\delta}T \qquad (3.16)$$

for all $T \in [0, T_{\delta, \text{loc}}]$. We compute

$$G_0''(z) - G_{\epsilon}''(z) = \frac{\epsilon}{|z|^n \left(|z|^n + \epsilon\right)},$$

and consequently

$$G_0(z) - G_{\epsilon}(z) = \epsilon \int_A^z \int_A^v \frac{dsdv}{|s|^n (|s|^n + \epsilon)},$$

where A is some positive constant. As $u_{0,\epsilon\delta}(x)$ is bounded then by (3.4) it follows that

$$|G_0(u_{0,\epsilon\delta}(x)) - G_\epsilon(u_{0,\epsilon\delta}(x))| \le C \epsilon^{1-2\theta(n-1)} \to 0 \text{ as } \epsilon \to 0,$$

and therefore, due to (3.5), we have

$$\int_{\Omega} G_{\epsilon}(u_{0,\epsilon}(x)) \, dx \to \int_{\Omega} G_{0}(u_{0\delta}(x)) \, dx \quad \text{as} \quad \epsilon \to 0.$$
(3.17)

ISSN 1562-3076. Нелінійні коливання, 2018, т. 21, № 3

426

As a result, by (3.16), (3.17) we deduce that

$$\int_{\Omega} G_{\epsilon}(u_{\epsilon\delta}(x,T)) \, dx \le C_1(\delta), \tag{3.18}$$

$$\left\{\left(1-x^2+\delta\right)u_{\epsilon\delta,x}\right\}_{\epsilon>0}$$
 is uniformly bounded in $L^2\left(0,T;H^1(\Omega)\right)$

for all $T \in [0, T_{\delta, \text{loc}}]$, where $C_1(\delta) > 0$ is independent of $\epsilon > 0$. Similar to [11, p. 190] (Theorem 4.1), using (3.13) and (3.18), we can show that the limit solution u_{δ} is nonnegative if $n \in [1, 4)$ and positive if $n \ge 4$.

3.4. Limit process as $\delta \to 0$. Next, we show that the family of solutions $\{u_{\delta}\}_{\delta>0}$ is uniformly bounded in some weighted space. Using non-negativity of u_{δ} , we have to clarify a priori estimate (3.12).

Next, we will use the mass conservation property

$$\int_{\Omega} u_{\delta}(x,t) \, dx = M_{\delta} > 0, \tag{3.19}$$

and the following interpolation inequality:

Lemma 3.1 [19]. Let $p, q, r, \alpha, \beta, \gamma, \sigma$ and θ be real numbers satisfying $p, q \ge 1, r > 0$, $0 \le \theta \le 1, \gamma = \theta \sigma + (1 - \theta)\beta, \frac{1}{p} + \frac{\alpha}{N} > 0, \frac{1}{q} + \frac{\beta}{N} > 0$ and $\frac{1}{r} + \frac{\gamma}{N} > 0$. There exists a positive constant C such that the following inequality holds for all $v \in C_0^{\infty}(\mathbb{R}^N)$, $N \ge 1$

$$||x|^{\gamma}v||_{L^{r}} \leq C ||x|^{\alpha}|\nabla v||_{L^{p}}^{\theta} ||x|^{\beta}v||_{L^{q}}^{1-\theta}$$

if and only if

$$\frac{1}{r} + \frac{\gamma}{N} = \theta \left(\frac{1}{p} + \frac{\alpha - 1}{N}\right) + (1 - \theta) \left(\frac{1}{q} + \frac{\beta}{N}\right)$$

and

$$\begin{cases} 0 \le \alpha - \sigma & \text{if } a > 0, \\ \alpha - \sigma \le 1 & \text{if } a > 0 & \text{and } \frac{1}{p} + \frac{\alpha - 1}{N} = \frac{1}{r} + \frac{\gamma}{N}. \end{cases}$$

Applying Lemma 3.1 to $v = u_{\delta} - \frac{M_{\delta}}{|\Omega|}$ with $\Omega = (-1, 1), \ \gamma = \beta = 0, \ \alpha = \frac{1}{2}, \ r = p = 2,$ $q = 1, \ N = 1, \ \text{and} \ \theta = \frac{1}{2}$, we have

$$\left\| u_{\delta} - \frac{M_{\delta}}{|\Omega|} \right\|_{2} \le C_{N} \left\| \left(1 - x^{2} \right)^{1/2} u_{\delta,x} \right\|_{2}^{\theta} \left\| u_{\delta} - \frac{M_{\delta}}{|\Omega|} \right\|_{1}^{1-\theta},$$
(3.20)

whence for $u_{\delta} \geq 0$ we deduce that

$$\int_{\Omega} \left(u_{\delta} - \frac{M_{\delta}}{|\Omega|} \right)^2 dx \le 2M_{\delta} C_N^2 \left(\int_{\Omega} \left(1 - x^2 \right) u_{\delta,x}^2 dx \right)^{1/2}.$$
(3.21)

By (3.9) with $\epsilon = 0$, due to (3.21), we find that

$$\frac{1}{2} \int_{\Omega} \left(1 - x^2 \right) u_{\delta,x}^2 dx \leq \int_{\Omega} \left(u_{\delta} - \frac{M_{\delta}}{|\Omega|} \right)^2 dx + \frac{M_{\delta}^2}{|\Omega|} + \mathcal{E}_{\delta}(u_{0,\delta}) \leq \\
\leq 2M_{\delta} C_N^2 \left(\int_{\Omega} \left(1 - x^2 \right) u_{\delta,x}^2 dx \right)^{1/2} + \frac{M_{\delta}^2}{|\Omega|} + \mathcal{E}_{\delta}(u_{0,\delta}).$$

As a result, we get

$$\int_{\Omega} \left(1 - x^2\right) u_{\delta,x}^2 dx \le \left[2M_{\delta}C_N^2 + \sqrt{4M_{\delta}^2C_N^4 + 2\left[\frac{M_{\delta}^2}{|\Omega|} + \mathcal{E}_{\delta}(u_{0,\delta})\right]}\right]^2 \tag{3.22}$$

provided

$$\mathcal{E}_{\delta}(u_{0,\delta}) \ge -\frac{M_{\delta}^2}{|\Omega|} - 2M_{\delta}^2 C_N^4.$$
(3.23)

Taking into account (3.6) and (3.7), from (3.22) and (3.15) we arrive at

$$\int_{\Omega} \left[\left(1 - x^2 \right) u_{\delta,x}^2 + u_{\delta}^2 \right] dx \le C_2 \tag{3.24}$$

for all T > 0, where C_2 is independent of $\delta > 0$, provided (3.23).

Using (3.19), we find that

$$\left| u_{\delta} - \frac{M_{\delta}}{|\Omega|} \right| = \left| \int_{x_0}^x u_{\delta,x} \, dx \right| \le \left(\int_{\Omega} \left(1 - x^2 \right) u_{\delta,x}^2 \, dx \right)^{1/2} \left| \int_{x_0}^x \frac{dx}{1 - x^2} \right|^{1/2}. \tag{3.25}$$

Multiplying (3.25) by $(1 - x^2)^{\beta/2}$ for any $\beta > 0$, by (3.24) we deduce that

$$(1-x^2)^{\beta/2} \left| u_{\delta} - \frac{M_{\delta}}{|\Omega|} \right| \le \left(\frac{C_2}{2} \right)^{1/2} \left(\left(1-x^2 \right)^{\beta} \ln \left(\frac{(1+x)(1-x_0)}{(1-x)(1+x_0)} \right) \right)^{1/2} \le C_3 \tag{3.26}$$

for all $x \in \overline{\Omega}$, where $C_3 > 0$ is independent of $\delta > 0$. From (3.26) we find that

$$\left\{ \left(1-x^2\right)^{\beta/2} u_{\delta} \right\}_{\delta>0} \quad \text{is uniformly bounded in} \quad Q_T \quad \text{for any} \quad \beta>0. \tag{3.27}$$

In particular, by (3.24) we get

$$(1-x^2)^{\beta/2} |u_{\delta}(x_1,t) - u_{\delta}(x_2,t)| \le C_4 |x_1 - x_2|^{\alpha/2} \quad \forall x_1, x_2 \in \Omega, \quad \alpha \in (0,\beta).$$
(3.28)

By (3.14), (3.27) and (3.28) with $\beta \in \left(0, \frac{2}{n}\right]$, using the same method as in [11, p. 183] (Lemma 2.1), we can prove similarly that

$$(1-x^2)^{\beta/2} |u_{\delta}(x,t_1) - u_{\delta}(x,t_2)| \le C_5 |t_1 - t_2|^{\alpha/8} \quad \forall t_1, t_2 \in (0,T).$$
(3.29)

The inequalities (3.28) and (3.29) show the uniform (in δ) boundedness of a sequence $\left\{ \left(1-x^2\right)^{\beta/2} u_{\delta} \right\}_{\delta>0}$ in the $C_{x,t}^{\alpha/2,\alpha/8}$ -norm.

By the Arzelà–Ascoli theorem, this a priori bound together with (3.27) shows that as $\delta \to 0$, every sequence $\left\{ (1-x^2)^{\beta/2} u_{\delta} \right\}_{\delta>0}$ has a subsequence $\left\{ (1-x^2)^{\beta/2} u_{\delta_k} \right\}_{\delta_k>0}$ such that

 $(1-x^2)^{\beta/2} u_{\delta_k} \to (1-x^2)^{\beta/2} u$ uniformly in \bar{Q}_T as $\delta_k \to 0$.

Following the idea of proof [11] (Theorem 3.1), we obtain a global (in time) solution u of the problem (3.1)-(3.3) in the sense of Definition 2.1.

From (3.22) and (3.15) we have

$$\int_{\Omega} G_0(u_{0\delta}(x,T)) \, dx \le C_6,\tag{3.30}$$

$$\left\{ \left(1 - x^2 + \delta\right) u_{\delta,x} \right\}_{\delta > 0} \quad \text{is uniformly bounded in} \quad L^2\left(0, T; H^1(\Omega)\right) \tag{3.31}$$

for all T > 0, where C_6 is independent of $\delta > 0$, provided (3.24). The estimates (3.30), (3.31) allow us to construct a strong solution.

Note that the energy functional $\mathcal{E}_0(u(t))$ is decaying (by (3.8)), bounded from below and lower semi-continuous (by (3.24)) it must have a minimizer, $u_{\min}(x)$, which is continuous on Ω . Taking into account the mass conservation, we find (see [5]) that $u_{\min}(x) = \frac{M}{|\Omega|}$, $\mathcal{E}_0(u_{\min}) = -\frac{M^2}{|\Omega|}$, and $\mathcal{E}_0(u(t)) \to \mathcal{E}_0(u_{\min})$ as $t \to +\infty$. Theorem 2.1 is proved.

References

- Oron A., Davis S. H., Bankoff G. Long-scale evolution of thin liquid films // Rev. Modern Phys. 1997. 69. P. 931–980.
- 2. *Giacomelli L*. A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane // Appl. Math. Lett. 2008. **12**, № 8. P. 107–111.
- 3. Hocking L. M. Spreading and instability of a viscous fluid sheet // J. Fluid Mech. 1990. 211. P. 373 392.
- Tuck E. O., Schwartz L. W. Thin static drops with a free attachment boundary // J. Fluid Mech. 1991. 223. P. 313–324.
- Kang D., Nadim A., Chugunova M. Dynamics and equilibria of thin viscous coating films on a rotating sphere // J. Fluid Mech. – 2016. – 791. – P. 495 – 518.
- 6. *Kang D., Nadim A., Chugunova M.* Marangoni effects on a thin liquid film coating a sphere with axial or radial thermal gradients // Phys. Fluids. 2017. **29**. P. 1–15.
- Takagi D., Huppert H. E. Flow and instability of thin films on a cylinder and sphere // J. Fluid Mech. 2010. 647. – P. 221–238.
- Wilson S. K. The onset of steady Marangoni convection in a spherical geometry // J. Engrg. Math. 1994. 28. – P. 427–445.
- 9. *Kang D., Sangsawang Th., Zhang J.* Weak solution of a doubly degenerate parabolic equation. arXiv: 1610.06303v2. 2017.
- 10. Taranets R. M. Strong solutions of the thin film equation in spherical geometry. arXiv: 1709.10496. 2017.
- 11. Bernis F., Friedman A. Higher order nonlinear degenerate parabolic equations // J. Differential Equations. 1990. **83**, № 1. P. 179–206.

- 12. Bertozzi A. L. et al. Singularities and similarities in interface flows // Trends and perspectives in applied mathematics. New York: Springer, 1994. P. 155–208.
- 13. Beretta E., Bertsch M., Dal Passo R. Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation // Arch. Ration. Mech. Anal. 1995. 129, № 2. P. 175–200.
- 14. *Chugunova M., Pugh M. C., Taranets R. M.* Nonnegative solutions for a long-wave unstable thin film equation with convection // SIAM J. Math. Anal. 2010. **42**, № 4. P. 1826–1853.
- 15. *Carrillo J. A., Toscani G.* Long-time asymptotics for strong solutions of the thin film equation // Comm. Math. Phys. 2002. **225**, № 3. P. 551–571.
- 16. *Carlen E. A., Ulusoy S.* Asymptotic equipartition and long time behavior of solutions of a thin-film equation // J. Differential Equations. 2007. **241**, № 2. P. 279–292.
- 17. Burchard A., Chugunova M., Stephens B. K. Convergence to equilibrium for a thin-film equation on a cylindrical surface // Comm. Partial Differential Equations. 2012. 37, № 4. P. 585–609.
- 18. *Friedman A*. Interior estimates for parabolic systems of partial differential equations // J. Math. Mech. 1958. 7, № 3. P. 393–417.
- 19. *Caffarelli L., Kohn R., Nirenberg L.* First order interpolation inequalities with weights // Compos. Math. 1984. **53**, № 3. P. 259–275.

Received 17.10.17, *after revision* — 03.02.18