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PARTIAL SOLUTIONS OF A SYSTEM OF EULER EQUATIONS
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We consider equations of hydrodynamics with certain additional constraints. Group-theoretical methods
are applied to find invariant solutions.

Розглянуто рiвняння гiдродинамiки з певними додатковими зв’язками. Для знаходження їхнiх iн-
варiантних розв’язкiв використано теоретико-груповi методи.

Introduction. The past century in mathematical physics was marked with a large number of
research papers on particular solutions to nonlinear differential equations. Besides the fact that
exact solutions are almost always interesting themselves, they also have a valuable practical
application to verification of various numerical methods of solving of nonlinear differential
equations.

There are many examples of explicitly solved problems of fluidmechanics in the literature. All
known solutions and multiparametric families of new particular solutions appear to be obtainable
by means of group-theoretical methods [1 – 8]. Moreover, these methods are useful for finding
particular solutions of nonlinear differential equations that satisfy certain prescribed initial or
boundary conditions.

In the present paper we look for invariant solutions of a system of Euler equations that satisfy
the Rankine –Hugoniot conditions.

1. Formulation of the problem. To describe the motion of nonviscous compressible liquid
we use the system of equations

Dtu
k(t, x) + ρ−1∇kp(t, x) = 0,

Dtρ(t, x) + ρ∇kuk(t, x) = 0,
(1)

where t ∈ R1, x ∈ Rn, n = 1, . . . , 3, uk(t, x) stands for the k -th component of the medium’s
velocity k = 1, . . . , n, p is the pressure, ρ is the liquid density, and Dt =

∂

∂t
+ uk∇k is the

total derivative with respect to time with ∇k =
∂

∂xk
. Repeating indices mean summation, unless

otherwise noted.
The main thermodynamical characteristics of the medium ρ, p and T are expected to be

related by an expression

p = Φ(ρ, T ), (2)

where Φ is a smooth (piecewise smooth) function. We also assume that the process described
by system (1), (2) is either isothermal (T = const) or homothermal (vkT = 0, k = 1, . . . , n).
Therefore T does not depend on spatial coordinates and state equation (2) reads as
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p = F (ρ, t), (3)

with another function F.
In order to represent system (1) in a convenient for the following analysis form we introduce

the notations

ukµ =
∂uk

∂xµ
, ρµ =

∂ρ

∂xµ
, pk =

∂p

∂xk
,

where k = 1, . . . , n, µ = 0, . . . , n, and x0 = t. Using these notations we represent system (1) in
the form

uk0 + ukju
j + ρ−1pk = 0, ρ0 + ujρj + ρujj = 0. (4)

Substituting (3) into the first equation (4) we obtain

uk0 + ujukj + ρ−1Fρρk = 0, (5)
ρ0 + ujρj + ρujj = 0, (6)

where Fρ =
∂F

∂ρ
.

For the symmetry analysis of system (5), (6) we use the infinitesimal Sophus Lie method. Its
brief description is following. Let

F ν(x, u, u(1)) = 0, ν = 1, . . . , N, (7)

be a system of first order differential equations, where x = (x1, . . . , xn), u =
(
u1, . . . , um

)
, and

u(1) = Du.
We consider a one-parameter local group G of transformations

x′ = f(x, u; a) = 0 : f
∣∣
a=0

= x,

u′ = g(x, u; a) = 0 : g
∣∣
a=0

= u
(8)

in the space Rn+m of the variables (x, u). Transformations (8) induce a one-parameter group of
transformations in the space of the variables u(1),

u(1)
′ = Ψ(x, u, u(1); a) = 0 : Ψ

∣∣
a=0

= u(1), (9)

where Ψ(x, u, u(1); a) is a function which can be determined once we know f and g. As a result
we have a one-parameter group G(1) of transformations in the space Rn+m+nm of the variables
(x, u, u(1)). Transformations (9) are referred to as the prolongation of transformations (8), and
the group G(1) is the first prolongation of G [1, Chapter 2.3].

Definition 1. System of equations (7) is said to be invariant with respect to group G of
point transformations (8) if the manifold determined by equations (7) in the space Rn+m+nm is
invariant with respect to the first prolongation G(1) of group G.

Let

X = ξj(x, u)
∂

∂xj
+ ηα(x, u)

∂

∂uα
,

where
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132 I. I. YURYK

ξj(x, u) =
∂f(x, u, a)

∂a

∣∣∣∣
a=0

,

ηα(x, u) =
∂g(x, u, a)

∂a

∣∣∣∣
a=0

.

The operator X is said to be the infinitesimal operator of the one-parameter group G1 of
transformations, and functions ξj and ηα are its coordinates. The first prolongation of the group
G1 corresponds to an infinitesimal operator of the form

X(1) = X + ζαi
∂

∂uαi
,

where

ζαi =
∂ηα

∂xi
+ uµi

∂ηα

∂uµ
− uαj

(
∂ξj

∂xi
+ uβi

∂ξj

∂uβ

)
. (10)

One of the prominent results in the group theory of continuous transformations is the fact that
the invariance criterion for a differential equation with respect to group G1 is stated in terms of
the correspondent infinitesimal symmetry operator, cf. [2].

Proposition 1. System of equations (7) is invariant with respect to group G1 if and only if

X(1)F
ν(x, u, u(1))

∣∣
F=0

= 0, ν = 1, . . . , N. (11)

Condition (11) is equivalent to a system of first order linear differential equations in x, u and
u(1) named the system of determining equations.

Thus the problem of finding the maximal local group of point transformations that are
admissible for system (7) is to determine the coordinates of the infinitesimal operators that
generate its one-parameter subgroups.

In the case of system (5), (6) the infinitesimal symmetry operator is expected to be of the
form

Z = ξµ(x, u, ρ)
∂

∂xµ
+ ηk(x, u, ρ)

∂

∂uk
+ Λ(x, u, ρ)

∂

∂ρ
, (12)

where µ = 0, . . . , n, k = 1, . . . , n.
Acting by operator (12) on equations (5), (6) we obtain a rather cumbersome system of

first-order linear differential equations. Eliminating the variables uk0 and ρ0 by virtue of their
expressions from (5) and (6), we transform it to another system of equations where the quantities
xα, u

k, ukj and ρj will be treated as independent variables from this point. As the coordinates of
the infinitesimal operator do not depend on ukj and ρj , the two equations obtained from (5) and
(6) by means of criterion (11) can be split with respect to these variables. As a result we have the
system of differential equations

ηkul + ξlk = 0, ηkul + ξkl = 0, k 6= l,

ηj + ujξ00 − ξ
j
0 −

n∑
i=1

ξji u
i = 0, Λρ + ρ−1Λ + ξkk − ξ00 − ηkuk = 0,

Λ0 +

n∑
l=1

(
ulΛl + ρull

)
= 0, (13)
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2Fρ

(
ξ00 − ξkk

)
+ FρρA+ F0ρξ

0 = 0, (14)

where ξ0 = ξ0(x0), ξ
k = ξk(x), ηk = ηk(x, u), Λ = Λ(x, u, ρ). In all the formulae (13), (14)

there is no summation over repeating indices.
Note that the arbitrary function F appears only in (14). This equation is refereed to as a

classifying condition.
2. Symmetry of system (5), (6). It is easy to check by direct calculations that system (13)

has the solution
ξ0 = κx20 + λx0 + α, Λ =

(
c− n

2
ξ̇0(x0)

)
ρ,

ξk =

(
1

2
ξ̇0(x0) + δ

)
xk + µkx0 +

n∑
l=1

akl xl + νk,

ηk = κxk + µk +

n∑
l=1

akl u
l +

(
δ − 1

2
ξ̇0(x0)

)
uk,

where ξ̇0(x0) = dξ0(x0)/dx0, a
k
l = −alk, c, α, δ, κ, λ, µk and νk are arbitrary parameters.

Substituting this solution into (14) we have(n
2
ξ̇0(x0)− c

)
ϕρ − ξ0ϕ0 =

(
ξ̇0(x0)− 2δ

)
ϕ, (15)

where ϕ(ρ, t) = Fρ(ρ, t). Note that the parameters akl , µk and νk (and α in the case when
ϕ0 = 0) are not involved in system (15). Therefore, for arbitrary function F (ρ, l) system (13),
(14) admits the solution

ξ0 = 0, ξk =
n∑
j=1

akjxj + µkx0 + νk,

ηk =

n∑
j=1

akju
j + µk, akj = −ajk.

(16)

In the case when Fρ = ϕ(ρ) the same solution with ξ0 = α = const is also possible.
The functions ξ0, ξk and ηk, k = 1, . . . , n, defined by (16) correspond to the differential

operators

Pk =
∂

∂xk
, Gk = x0

∂

∂xk
+

∂

∂uk
,

Jkr = xk
∂

∂xr
− xr

∂

∂xk
+ uk

∂

∂ur
− ur ∂

∂uk
.

(17)

It is easy to check that the vector space 〈Pk, Gk, Jkr〉, k = 1, . . . , n, r = 1, . . . , n, is closed
under the Lie bracket

X,Y −→ [X,Y ] = XY − Y X

and therefore the space of these operators possesses the structure of a Lie algebra. This is a
general property [2], namely, the set of infinitesimal operators that generate the one-parameter
groups of transformations admissible for a differential equation (or a system) necessarily form a
Lie algebra. Operators (17) with P0 =

∂

∂x0
(the case α = ξ0 6= 0) form the Lie algebra of the

Galilean group. Therefore the following statement holds.
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134 I. I. YURYK

Theorem 2.1. For arbitrary function Fρ = ϕ(ρ, t) system of equations (5), (6) admits
n(n+ 3)

2
-parameter group of transformationswith the Lie algebra generated by the operators (17).

In the case when Fρ does not depend on x0 explicitly system (5), (6) admits the Galilean
group G(n).

Thereby, we have found the symmetry of system (5), (6) under arbitrary functional relationship
p = F (ρ, t). However, for some values of F symmetry of this system appears to be essentially
wider. In order to list all the cases of symmetry extensions, it is necessary to get the set of
solutions to equation (15) under various constraints on the parameters involved in this equation.

As a result of solving equation (15) we have found 12 cases of symmetry extension for the
system in question. The corresponding functions ϕν = and the set of infinitesimal symmetry
operators admitted by system (5), (6) are presented in Table 1.

Observe that for all state equations that admit an extension of the symmetry (except the first
one, where ϕ = ϕ1 = Mρ2/n ) an arbitrary one-parameter invariance group of Euler equations is
generated by an operator of the form

Z = (α+ λx0)
∂

∂x0
+Axk

∂

∂xk
+Buk

∂

∂uk
+ Lρ

∂

∂ρ
. (18)

The operator (18)with the constraint α = 0 is referred to as the generator of scale transformations.
The solutions of system (5), (6) that are invariant with respect to this operator are called self-
similar, or automodel solutions.

Theorem 2.2. The symmetry extension of system (5), (6) is possible in 12 cases presented in

Table 1. The maximal invariance group for this system is the
n(n+ 3)

2
+ 4-parameter projective

group. This group is admissible for system (5), (6) if and only if Fρ = cρ2/n.
Remark 2.1. Observe that the one-dimensional case is special. Namely, the two first equati-

ons in system (13) appear only when n > 1. As it is demonstrated in [9], for the state equation of
the form p =

M

3
ρ3, which describes an ideal polytropic gas, system (5), (6) under n = 1 admits an

infinite group. Due to this fact the general solution was obtained for system (5), (6) in this case [9].
3. Invariant solutions of system (5), (6) and Rankine –Hugoniot conditions. In this

section we find solutions of system (5), (6) in the case n = 1 that are compatible with the
Rankine –Hugoniot conditions.

In this case each operator that generates a one-parameter group of admissible transformations
for system (5), (6) can be presented as

Z =
(
α+ λt+ κt2

) ∂
∂t

+ (µt+ ν +Ax+ κxt)
∂

∂x
+

+ (κx+ µ+Bu− κtu)
∂

∂u
+ (L− κt)ρ

∂

∂ρ
, (19)

where t = x0, x = x1, α, δ, κ, λ, µ and ν are arbitrary constant parameters, B = δ − λ/2,
A = B + λ, and L is a function of these parameters.

Following the well known technique [1, 2] we find the solutions of (5), (6) that are invariant
with respect to a one-parameter group of transformations with infinitesimal symmetry operator of
the form (19) by means of transition to invariant variables which can be expressed via solutions
of equation

ZJ(t, x, u, ρ) = 0. (20)
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Table 1. List of inequivalent cases for the state equations and the corresponding operators

ϕ = Fρ Zν Notes

ϕ1 = Mρ2/n Z1 = αP0 + λL1 + δL2 + n

(
δ − λ

2

)
L3 + κL0,

L0 = x20
∂

∂x0
+ x0xk

∂

∂xk
+

+
(
xk − x0uk

) ∂

∂uk
+ (−1)nx0ρ

∂

∂ρ
,

P0 =
∂

∂x0
,

L1 = x0
∂

∂x0
+

1

2
xk

∂

∂xk
− 1

2
uk

∂

∂uk
,

L2 = xk
∂

∂xk
+ uk

∂

∂uk
, L3 = ρ

∂

∂ρ

ϕ2 = Mρκ Z2 = αP0 + λL1 + δL2 +
2

κ

(
δ − λ

2

)
L3 κ 6= 0

ϕ3 = Mxσ0ρ
κ Z3 = λL1 + δL2 +

[
2

κ

(
δ − λ

2

)
− σ

κ
λ

]
L3 κ 6= 0

ϕ4 = ρ2/nG(γ), Z4 = λL1 +
κ

n
λL2 + nλ

(
κ

n
− 1

2

)
L3 σ = 1− 2κ

n
γ = ρ2/nxσ0

ϕ5 = Mxσ0 Z5 = λL1 +
σ + 1

2
λL2 +

(
µ− n

2
λ
)
L3

ϕ6 = x−10 G(ρ) Z6 = λL1

ϕ7 = Φ
(
ρ2/nxσ0

)
Z7 = λL1 +

λ

2
L2 + n

σ

2
λL3 σ = 1− 2κ

n

ϕ8 = Φ
(
ρ2/ne−σx0

)
Z8 = αP0 + n

σ

2
αL3

ϕ9 = eσx0Φ(ρ) Z9 = αP0 +
σ

2
αL2

ϕ10 = xσ0Φ(ρ) Z10 = λ

[
L1 +

σ + 1

2
L2

]
ϕ11 = Φ(ρ) Z11 = αP0 + λ

[
L1 +

1

2
L2

]
ϕ12 = ρκΦ(x0) Z12 = δ

(
L3 +

κ

2
L2

)

In order to list the cases, when invariant solutions are applicable to description of point explosion
in a medium with the state equation p = F (ρ, t) it is necessary to analyze the invariance of the
manifold, determined by boundary conditions with respect to transformations generated by the
operator (19).
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The role of “boundary conditions” in the case of point explosion is played by the Rankine –
Hugoniot conditions [10]

ρ2(u2 −D) + ρ1D = 0, ρ2(u2 −D)2 + p2 = ρ1D
2 + p1 (21)

which represent the discontinuity of main characteristics at a material medium of the shock wave.
In formula (21) the quantities with the index 2 describe the values of these functions behind the
shock wave front, and those with the index 1 before it. The medium is expected to be motionless,
u1 = 0, D is the velocity of the shock wave front and p1, ρ1 are constants, ρ1 > 0.

It is obvious that in the one-dimensional case the motion of the shock wave front in the
point explosion problem can be determined by a relation xfront = g(t) with a certain function g.
Therefore, the manifold M defined by the boundary conditions (21) is determined by the system

x− g(t) = 0,

ρ[u− ġ(t)] + ρ1ġ(t) = 0, (22)
ρ[u− ġ(t)]2 + p(ρ, t)− ρ1ġ2(t)− p1 = 0, (23)

where ρ1, p1 are constants that are equal to initial values of the density and the pressure in the
medium, correspondingly, g(t) is unknown function, and ġ(t) = dg(t)/dt.

Note that infinitesimal operator of the form (19) with coefficients involving quadratic terms
as admissible if and only if p =

M

3
ρ3. In this case system (5), (6) has a general solution, therefore

we can set κ = 0 in (19).
Applying the infinitesimal invariance criterion (11) to the manifold M we obtain the system

µ− Lġ = 0, (24)
ν + µt+Ag(t)− (α+ λt)ġ(t) = 0, (25)
ρ21
ρ
ġ2(t)(L+ 2B) + ρLpρ + (α+ λt)pt − 2ρ1(µ+Bġ)ġ = 0. (26)

To satisfy the condition (24) in the case when L 6= 0 it is necessary that

g(t) = St+R,

where S and R are certain constants, S 6= 0. Formula (25) implies that L = −B. Analyzing the
functions ϕ = Fρ and the corresponding operators Zν (see Table 1) we conclude that the case
L 6= 0 is possible only for a state equation of the form

p = c− M

ρ
, M = (Sρ1)

2,

which corresponds to the function ϕ = Mρσ with σ = −2.
Since L = 0 for the other cases conditions (24) – (26) can be represented as

µ = L = 0, (27)
ν +Ag − (α+ λt)ġ = 0, (28)

2B
ρ21
ρ
ġ2 − 2ρ1ġ

2B + (α+ λt)pt = 0. (29)
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It is necessary to analyze condition (29) now. Note that the operators listed in Table 1 can be
partitioned into two groups according to the criterion whether L is a multiple of B. Thereby, the
first group consists of Z1, Z2, Z4, Z11 and Z12. For the operator Z4 the restrictions (27) imply
that the corresponding function ϕ4 does not depend on t and, therefore, it coincides with ϕ11.
For the operator Z12 the restriction L = 0 makes the operator vanish.

By virtue of (27) the functions ϕ1, ϕ2 and ϕ11 correspond to the same infinitesimal symmetry
operator

ZII = (α+ λt)
∂

∂t
+ (ν + λx)

∂

∂x
. (30)

Therefore we can consider these three cases together. Denote the function that corresponds to
operator (30) by ΦII(ρ) = ϕ1(ρ) = ϕ2(ρ) = ϕ11(ρ). It is clear that pII = ΦII(ρ) + H(t) with a
certain function H(t). For operator (30) equation (29) is equivalent to the condition

(α+ λt)(pII)t = 0,

which leads to H = c = const.
Draw our attention to other cases. If L = 0 then the functions ϕ7 and ϕ8 coincide with ϕ11,

and the functions ϕ3, ϕ5, ϕ6 and ϕ10 can be represented as

ϕIII = tσΦ̇(ρ)

due to the fact that the infinitesimal symmetry operator for all these cases is the same, namely

ZIII = λt
∂

∂t
+ (ν +Ax)

∂

∂x
+Bu

∂

∂u
,

where A =
λ

2
(σ + 2), B =

λσ

2
, σ 6= 0.

Formula (29) enables one to recover pIII ,

pIII = tσΦ(ρ) +H(t).

Observe that the derivative of pIII with respect to t can be expressed as

(pIII)t =
σ

t
(pIII −H) +

dH

dt
.

So, the condition (29) is equivalent to the equation

σp1 − σH + t
dH

dt
= 0.

Hence H(t) = c1t
σ + c2 and

pIII = tσΦ(ρ) + c, c = p1.

The last case to be considered is Fρ = ϕ9. Then

pIV = e2κtΦ(ρ) +H(t), ZIV = α

(
∂

∂t
+ κx

∂

∂x
+ κu

∂

∂u

)
,
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and hence B = κα. Expressing (pIV )t in terms of p, H and dH

dt
making use of formulae (22)

and (23) we find that

pIV = e2κtΦ(ρ) + p1.

Hereby, all the functional relationships p = F (ρ, t) for which the corresponding invariance
solutions are compatible with the Rankine –Hugoniot conditions are listed. In what follows we
determine the function g(t) for each of these cases and verify that g = const i.e., that a shock
wave really propagates in a medium. Solving equation (28) we obtain

gII(t) =

c2 +
ν

α
t, if λ = 0,

c2(α+ λt)− ν

α
, if λ 6= 0

(31)

in the case Z = ZII , p = Φ(ρ) + p1,

gIII(t) =


ν

λ
ln t+ c3, if κ =

σ

2
+ 1 = 0,

c3t
κ − ν

λκ
, if κ 6= 0

(32)

for the case Z = ZIII , p = tσΦ(ρ) + p1, and

gIV (t) = c4e
κt − ν

κα
(33)

for Z = ZIV , p = e2κtΦ(ρ) + p1. In expressions (31) – (33) c2, c3 and c4 are arbitrary constants.
Therefore, if we restrict the consideration to the symmetry operators that do not contain any

quadratic terms in their coefficients, the following theorem holds.
Theorem 3.1. The four classes of invariant solutions to system (5), (6) compatible with the

Rankine –Hugoniot conditions under n = 1 are:
(a) solutions that are invariant with respect to the one-parameter subgroup generated by the

operator

ZI = (α+ λt)
∂

∂t
+ (ν −BSt+Ax)

∂

∂x
+Bu

∂

∂u
+ Lρ

∂

∂ρ
,

where L = −B, α, λ, ν, A, B and S are constants, B 6= 0 and S 6= 0, if

p = c− (Sρ1)
2

ρ
;

(b) solutions invariant with respect to the one-parameter subgroup generated by the operator

ZII = (α+ λt)
∂

∂t
+ (ν + λx)

∂

∂x
,

if

p = Φ(ρ) + p1;
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(c) solutions invariant with respect to the one-parameter subgroup generated by the operator

ZIII = λt
∂

∂t
+ (ν +Ax)

∂

∂x
+Bu

∂

∂u
,

where A = λ
(σ

2
+ 1
)
, B =

λσ

2
, if

p = tσΦ(ρ);

(d) solutions invariant with respect to the one-parameter subgroup generated by the operator

ZIV = α
∂

∂t
+ (ν + καx)

∂

∂x
+ καu

∂

∂u
,

if

p = e2κtΦ(ρ) + p1.

Hereby, the cases when the boundary-value problem (5), (6), (21) admits invariant solutions
are exhaustively described.

4. Partial solutions. Invariant variables depend on the parameters α, λ, ν and σ involved
in the coordinates of an infinitesimal symmetry operator, so the solution of the system depends
on relations existing between these parameters. For the case Z = Z1 there are three possibilities:

(a) if A 6= 0, B 6= 0 and λ 6= 0 then solving equation (20) we have

ω = ω1 = (x− St−R)τ−A/λ, τ = α+ λt,

u = S + U(ω)τB/λ, ρ = R(ω)τ−B/λ.
(34)

Substituting expressions (34) into (5), (6) we obtain the equations for the point explosion problem
in the invariant variables, (

U − A

λ
ω

)
dU

dω
+
M

R3

dR

dω
+
B

λ
U = 0,

R
dU

dω
+

(
U − A

λ
ω

)
dR

dω
− B

λ
R = 0

(35)

with the boundary conditions of the form

R (ω∗)U (ω∗) + ρ1S = 0, c− p1 − ρ1S2 = 0,

R (ω∗) [U (ω∗)]2 −M [R (ω∗)]−1 = 0
(36)

at the shock wave front, where ω∗ = 0 ;
(b) if λ = 0, then

ω = ω2 = e−
δ
α
t(x− St−R), u = S + U(ω)e

δ
α
t, ρ = R(ω)e−

δ
α
t.

In the new variables system (5), (6) rewrites as(
U − δ

α
ω

)
dU

dω
+
M

R3

dR

dω
+
δ

α
U = 0,

R
dU

dω
+

(
U − δ

α
ω

)
dR

dω
− δ

α
R = 0;

(37)
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(c) if A = 0, λ = −2δ then

ω = ω3 = St− x, u = S + U(ω)τ−1, ρ = R(ω)τ, τ = α+ λt,

and in the invariant variables system (5), (6) takes the form

U
dU

dω
+
M

R3

dR

dω
+ λU = 0,

R
dU

dω
+ U

dR

dω
− λR = 0.

(38)

The boundary conditions for the cases (b) and (c) are expressed by formula (36) with ω∗ = ω∗2 = 0
and ω∗ = ω∗3 = −R.

Consider the case Z = ZII . Two possibilities appear:
(a) if λ = 0 then

ω = ω4 = νt− αx, u = U(ω4), ρ = R(ω4).

Rewrite system (5), (6) in the new variables:(
U − ν

α

) dU
dω

+
1

R

dΦ(R)

dR

dR

dω
= 0,

R
dU

dω
+
(
U − ν

α
ω
) dR
dω

= 0.

The boundary conditions (20) after the substitution take the form[
R
(
U − ν

α

)
+ ρ1

ν

α

]∣∣∣
ω=ω∗

4

= 0,[
R
(
U − ν

α

)2
+ Φ(R)

]∣∣∣∣
ω=ω∗

4

= c1

( ν
α

)2
,

where ω∗4 = −c1α ;
(b) if λ 6= 0 then

ω = ω5 =
x+ ν/λ

t+ α/λ
, u = U(ω), ρ = R(ω).

In the new variables system (5), (6), (21) takes the form

(U − ω)
dU

dω
+

1

R

dΦ(R)

dR

dR

dω
= 0,

R
dU

dω
+ (U − ω)

dR

dω
= 0,

[R(U − c1λ) + λc1ρ1]|ω=ω∗
5

= 0,[
R(U − c1λ)2 + Φ(R)− ρ1(λc1)2

] ∣∣∣
ω=ω∗

5

= 0,

where ω∗5 = c1λ.
Consider now the case Z = ZIII .
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(a) let κ =
σ

2
+ 1 = 0. Then

ω = ω6 = x− ν

λ
ln t, u = U(ω)t−1, ρ = R(ω)

and system (5), (6), (21) in the invariant variables takes the form(
U − ν

λ

) dU
dω

+
1

R

dΦ(R)

dR

dR

dω
= U,

R
dU

dω
+
(
U − ν

λ

) dR
dω

= 0,[
R
(
U − ν

λ

)
+ ρ1

ν

λ

]∣∣∣
ω=ω∗

6

= 0,[
R
(
U − ν

λ

)2
+ Φ(R)− ρ1

(ν
λ

)2]∣∣∣∣
ω=ω∗

6

= 0,

where ω∗6 = c3 ;
(b) if κ 6= 0 then

ω = ω7 =
x+

ν

λκ
tκ

, u = tκ−1U(ω), ρ = R(ω), (39)

after the substitution of (39) equations (5), (6) take the form

(U − κω7)
dU

dω
+

1

R

dΦ(R)

dR

dR

dω
= (1− κ)U,

R
dU

dω
+ (U − κω)

dR

dω
= 0,

and boundary conditions (21) become

[R(U − κc3) + ρ1κc3]|ω=ω∗
7

= 0,[
R(U − κc3)2 + Φ(R)− ρ1(κc3)2

]∣∣
ω=ω∗

7
= 0,

where ω∗7 = c3.

Lastly, for the case Z = ZIV we have

ω = ω8 =
(
x+

ν

ακ

)
e−κt, u = U(ω)eκt, ρ = R(ω),

system (5), (6) in the invariant variables takes the form

(U − κω)
dU

dω
+

1

R

dΦ(R)

dR

dR

dω
+ kU = 0,

R
dU

dω
+ (U − κω)

dR

dω
= 0,

ISSN 1562-3076. Нелiнiйнi коливання, 2019, т. 22, № 1



142 I. I. YURYK

and the conditions at the shock wave front have the form
[R(U − κc4) + ρ1κc4]|ω=ω∗

8
= 0,[

R(U − κc4)2 + Φ(R)− ρ1(κc4)2
]∣∣
ω=ω∗

8
= 0,

where ω∗8 = c4.
It is clear that all the systems of ordinary differential equations presented in this section can

be presented in the form

(U − a− bω)
dU

dω
+ Ψ(R)

dR

dω
= hU,

R
dU

dω
+ (U − a− bω)

dR

dω
= lR,

(40)

where a, b, h and l are some constants and Ψ(R) = R−1
dΦ

dR
.

Suppose that in formula (40) b = 0, h = 0 and l = 0. The solution of the system will be
nonconstant only if

U = a±
√
RΨ.

Substituting this expression into formula (40) we have[
3Ψ(R) +R

dΨ

dR

]
dR

dω
= 0.

Thus, system (40) in this case has nonconstant solutions if and only if Ψ = cR−3. These solutions
are

R = f(ω), U = a+ c5f
−1,

where f is an arbitrary function, c5 is a constant.
Let b = 0, l = 0 and b = 1 in formula (40). It is easy to see that under these conditions the

system has the first integral U = a+ c6R
−1. Substituting U into the first equation of system (40)

after simple algebraic transformations we have∫ [
R3Ψ(R)− c26

]
R

aR+ c6
dR = ω − ω0.

Consider system (40) under the constraints a = 0, h = 0 and l = 0. The transformation
z = bω converts it to

(Ũ − z) dŨ
dz

+ Ψ̃(R̃)
dR̃

dz
= 0,

R̃
dŨ

dz
+ (Ũ − z) dR̃

dz
= 0,

(41)

where Ũ , R̃, Ψ̃ are the old functions expressed in terms of the variable z. For the function R̃
to be nonconstant it is necessary that Ũ = ε[R̃Ψ̃(R̃)]1/2 + z, where ε = ±1. Substituting Ũ into
equation (41) we have ∫

3Ψ̃(R̃) + R̃dΨ̃/dR̃

2ε
√
R̃Ψ̃

dR̃ = ω − ω0.
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In the case when a = 0, l = 0 and h = b system (40) has the first integral

U

2
(U − 2bω) + χ(R) = c7, Ψ(R) =

dχ(R)

dR
.

Setting χ(R) = MRκ+1 we have

R = T [2c7 − U(U − 2bω)]
1

κ+1 , where T = (2M)−
1

κ+1 .

Substituting the value of R into the second equation of system (40) we have[
2c7 − U(U − 2bω)

1
κ+1

] dU
dω

+

+
bω − U
κ+ 1

[
2c7 − U(U − 2bω)−

κ
κ+1

][dU
dω

(U − 2bω) + U

(
dU

dω
− 2b

)]
= 0.

If c7 = 0 then the change U = Vω brings this expression to(
V + ω

dV

dω

)
L− 2b

κ+ 1
V (V − b) = 0, (42)

where L =
2(V − b)2

κ+ 1
+ V (V − 2b). Equation (42) can be integrated in quadratures,

∫
L

2b

κ+ 1
V (V − b)− V L

dV = ln

(
ω

ω0

)
.

The ways of solving system (40) under p = tσ(Aρκ+1 + B) and arbitrary values of b and
h are analyzed in [11]. Particularly, it is demonstrated therein that this system can be always
transformed to a single ordinary differential equation.

If we set h = −l and a = 0 in system (40), see formulae (35), (37) and (38), then it is possible
to specify three cases when the system has the first integral:

(a) if a = 0 and b = l = −h, then

R(U − bω) = c8;

(b) if a = 0 and b = h = −l, then

U2

2
− bωU + χ(R) = c9,

d

dR
χ(R) = Ψ(R);

(c) if a = 0, b = 0 and h = −l, then

RU2 + χ(R) = c10,
d

dR
χ(R) = Ψ(R).

In each of these cases the original problem can be reduced to solving of a single differential
equation.

ISSN 1562-3076. Нелiнiйнi коливання, 2019, т. 22, № 1



144 I. I. YURYK

5. Conclusion. In this paper group analysis of a system of Euler equations with a state
equation of the medium is carried out. The group classification provided for the state equations is
of great practical importance, because there is no unified analytical expression that satisfactorily
describes the relationship of thermodynamic parameters of liquid throughout the domain where
these parameters vary. In many cases the state equations listed in Table 1 coincide with functional
relationships known as state equations for liquid in limited ranges of values of thermodynamic
parameters.
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