УДК 623.438.3

А.В. Ченыкаев, Г.В. Ермаков, И.Н. Майборода

Национальный технический университет «Харьковский политехнический институт», Харьков

МЕТОД РАСЧЕТА НАПРАВЛЕННЫХ ХАРАКТЕРИСТИК СФЕРИЧЕСКОЙ АНТЕННОЙ РЕШЕТКИ

В статье приводится метод расчета направленных характеристик сферической антенной решетки. В основу метода положена возможность фокусировки электромагнитного излучения при формировании многочастотного пространственно-временного сигнала, для которого получены основные расчетные соотношения для расчета поля в дальней зоне.

Ключевые слова: сферическая антенная решетка, многочастотный пространственно-временной сигнал, дальняя зона, рупорный излучатель.

Введение

Анализ литературы. Одним из возможных путей создания специализированных РТС для функционального подавления и поражения (ФПП) комплексов активной защиты (КАЗ) бронетехники является разработка антенных систем с использованием фокусировки электромагнитного излучения (ЭМИ) в зоне Фраунгофера [1, 2].

В [3 - 5] рассмотрены методы фокусировки ЭМИ на основе взаимосогласованного пространственно-фазо-частотного (ПФЧ) управления излучаемыми сигналами в передающих плоских, цилиндрических антенных решетках (АР) и многопозиционных системах излучателей. Отмечается, что фокусировка ЭМИ может быть достигнута за счет дополнительных степеней свободы при управлении, что дает возможность не только формировать в пространстве мощные короткие пространственно-временные радиоимпульсы, но и сканировать сфокусированным потоком электромагнитного излучения вдоль заданных отрезков прямых.

Одним из известных методов фокусировки ЭМИ на основе взаимосогласованного ПФЧ управления излучаемыми сигналами является метод, предусматривающий одноступенчатое V-образное распределения частот по апертуре передающих плоских AP [3, 4], которые, как известно, имеют ряд недостатков по сравнению с выпуклыми (конформными) AP. Поэтому **целью** данной статьи является анализ возможностей фокусировки сферической AP (CAP) с ПФЧ управлением ЭМИ при использовании равнодискретного V-образного закона распределения частот по ее апертуре.

Основной материал

Антенная система средства ФП КАЗ должна быть обзорной по азимуту и углу места. Применение плоских ФАР в этом случае вызывает необходимость предусмотреть механическое вращение решетки по аналогии с антенными системами разведки и целеуказания. Однако при вращении решетки происходит "лишнее" излучение энергии в направлениях, отличных от направления фокусировки. Существенным достоинством сферической АР является возможность ФП одновременно нескольких единиц бронетехники, находящихся на разных азимутах.

Известно [7], что при сканировании возникают искажения диаграммы направленности (ДН), что приводит к снижению коэффициента направленного действия (КНД). Например, при сканировании на угол более 45⁰ в плоской АР наблюдается значительное увеличение боковых лепестков, а при угле 60⁰ использование сканирования вообще теряет смысл. При сканировании лучом в плоской АР возникают искажения и в угломестной, и в азимутальной плоскостях. При использовании САР искажения в ДН не возникают в силу конформности АР.

Еще одним важным достоинством САР является более слабая по сравнению с плоскими антенными решётками взаимная связь излучателей из-за пространственного разворота их осей, зависящего от радиуса САР. В соответствии с этим уменьшается уровень боковых лепестков ДН антенны, что приводит к увеличению КНД по сравнению с плоской АР.

Известно также, что для отсутствия дифракционных максимумов необходимо, чтобы расстояние между излучателями в плоской AP было бы меньше рабочей длины волны. Для САР имеется возможность уменьшения количества элементов в решетке путём увеличения шага размещения до $d \le 1,1 \lambda$, где λ – длина волны за счет кривизны поверхности, что приводит к уменьшению ее габаритных размеров.

Еще одним параметром, существенно влияющим на выбор типа антенной системы, является полоса пропускания АР. Рассмотрим частотные свойства, связанные с построением АР, в предположении, что элементная база (фазовращатель, излучатель, линия передачи и т. д.) не ограничивает полосу пропускания. В АР с параллельным питанием линиями равной электрической длины начальное фазовое распределение не зависит от частоты и может быть равномерным. Широкополосные (диапазонные) фазовращатели создают фазовые сдвиги, также не зависящие от частоты. При отклонении луча от нормали с плоской решеткой по азимуту на угол $\beta_{c\kappa}$ необходим фазовый сдвиг ϕ между двумя произвольными излучателями, отстоящими друг от друга на шаг d в плоскости сканирования, определяемый по формуле:

$$\varphi = \frac{2\pi d \sin \beta_{CK}}{\lambda}$$

Изменение длины волны λ , на величину $\Delta\lambda$ приведет к отклонению луча на $\Delta\beta_{c\kappa}$, определяемому из условия:

$$\varphi = \frac{2\pi d \sin \beta_{c\kappa}}{\lambda} = \frac{2\pi d \sin \left(\beta_{c\kappa} + \Delta \beta_{c\kappa}\right)}{\lambda + \Delta \lambda}$$

Отсюда можно определить частотный ход луча:

$$\Delta\beta_{C\kappa}=\frac{\Delta\lambda}{\lambda}tg\beta_{C\kappa},$$

который не зависит от размера антенны и растет с отклонением луча $\beta_{c\kappa}$. В результате этого изменяется направленность действия: растет уровень боковых лепестков (УБЛ) и падает КНД. Задавшись допустимым изменением характеристик, можно найти рабочую полосу. Если принять, что смещение луча не должно превышать половины его ширины, то:

$$\frac{\Delta\lambda}{\lambda} tg\beta_{c\kappa} \approx \frac{\lambda}{4L\cos\beta}$$

Если задаться допустимым падением КНД на 1 дБ в секторе 55°, то расчеты позволяют установить простую связь между рабочей полосой частот в процентах и шириной диаграммы направленности антенны в градусах:

$$\frac{\Delta f}{f} (\%) \approx 2\beta_{0,7E} \ .$$

В качестве критерия рабочей полосы может быть принято изменение уровня боковых лепестков. При определении полосы необходимо также учитывать характеристики сигналов (очень короткие импульсы, длинные импульсы с меняющейся частотой и т. д.). Переход к пространственному или последовательному возбуждению элементов АР мало изменяет полосу пропускания. Незначительная рабочая полоса и уменьшение ее с ростом направленности является существенным недостатком плоской ФАР.

Известны два способа построения широкополосных АР. В первом случае фазовращатели в АР заменяют управляемыми линиями задержки: отрезками линий с волной типа Т, плавно (дискретно) изменяющими длину в пределах половины длины раскрыва антенны ("тромбонными" фазовращателями). В такой антенне разность хода лучей компенсируется длиной питающих линий. Такие устройства реализуются в КВ-диапазоне и мало пригодны в СВЧ-диапазоне.

Второй способ основан на использовании выпуклых АР. Как следует из приведенных выше соотношений, расширение полосы пропускания достигается уменьшением Вск. В таких АР широкоугольное сканирование обеспечивается коммутацией излучающей части антенны, а формирование луча происходит в условиях, близких к излучению по нормали в плоских АР. В осесимметричных выпуклых АР удается не только ослабить или устранить частотный ход луча в широкой полосе частот, но и уменьшить частотное изменение ширины ДН. Однако конструкция таких антенн значительно усложняется по сравнению с конструкцией плоских антенн, так как кроме фазовращателей необходима система коммутаторов, управляющая излучающим сектором, и растет число управляемых элементов АР.

Для определения рабочей зоны САР определимся, что под рабочей зоной АР будем понимать количество излучателей, принимающих участие в формировании поля в дальней зоне при конформном сканировании. Учитывая, что наименьший шаг антенной решетки d=0,8 λ =2,4 см, а наличие круговой поляризации обеспечивается в случае равенства линейных размеров раскрыва рупора, как излучателя САР, найдем, что линейный размер раскрыва рупорного излучателя составляет величину L_E=L_H=2,4 см. При определении количества излучателей учтем, что ширина ДН пирамидального рупора при L_H=2,4 см составляет величину 2 $\Theta_{0,5P}$ =76⁰, ближняя граница дальней зоны (Фраунгофера) – 400 м, R_{макс}=5000 м.

На рис. 1 представлена геометрия задачи для определения рабочей зоны САР.

для определения рабочей зоны САР

На рис. 1 представлены следующие обозначения: R_{φ} =400÷5000 м – расстояние до точки фокусировки; AC=x_{mn} – абсцисса mn-го излучателя; OA = y_{mn} – ордината mn-го излучателя; $R_{c\phi}$ =1,25 м – радиус сферы; β – угол между направлением главного максимума ДН излучателя и отрезком AC.

С учетом геометрии задачи рабочей будем считать такую зону САР, для излучателей которой угол $\beta \le 35^{0}$. С учетом рис. 1:

$$x_{mn} = R_{c\phi} \cos \alpha_{mn} = \frac{R_{\phi}}{tg\gamma},$$

где $\gamma = \pi - \alpha_{mn} - 35^0 = 145^0 - \alpha_{mn}$.

После несложных преобразований получим:

$$\frac{g145^{\circ} \cdot R_{c\phi} \cos^2 \alpha_{mn} + R_{c\phi} \sin^2 \alpha_{mn}}{\cos \alpha_{mn}} - R_{\phi} \left(1 + tg145^{\circ} tg\alpha_{mn}\right) = 0.$$

Решение такого трансцендентного уравнения аналитическим путем невозможно. Расчеты численными методами показали, что при R_{ϕ} =5000 м величина α_{mn} =± 60⁰. Предположим, что общее количество излучателей равно 260. Тогда получим, что рабочую зону САР для конформного сканирования составляет N_p=88 излучателей.

При вертикальной поляризации коэффициент рассогласования по поляризации можно принять K_{non} =0,5. С целью разработки практических рекомендаций по созданию многочастотного средства ФП рассмотрим САР с излучателями в виде пирамидальных рупоров. Круговая поляризация может быть обеспечена путем добавления в питающий прямоугольный волновод фазосдвигающей секции и разворотом горловины рупора на угол 45⁰ по отношению к питающему волноводу.

Известно [6], что рупорные излучатели имеют равномерное амплитудное распределение в вертикальной и спадающее к краям амплитудное распределение в горизонтальной плоскости. Эскиз сферической AP с рупорными излучающими элементами и расчетные системы координат представлены на рис. 2.

Рис. 2. Рабочая зона САР в общей системе координат ОХҮΖ, излучатель в местной системе координат ох'у'z'

Как отмечалось выше, к основным конструктивным особенностям САР, которые должны учитываться при анализе пространственных, временных и энергетических характеристик сфокусированных ЭМИ, относятся следующие:

 излучающие элементы располагаются на выпуклой поверхности, форму которой необходимо задавать в принятой при расчётах системе координат;

 – оси излучающих элементов расположены по нормали к выпуклой поверхности и не параллельны друг другу. Напряженность электрического поля E_{0m} в направлении главного максимума определяется в виде [6]:

$$E_{0m} = \frac{\sqrt{60PG}}{R_{\phi}}, \qquad (1)$$

где P – мощность, подводимая к антенне; G – коэффициент усиления антенны; R_{ϕ} – расстояние от антенны до места расположения поражаемой единицы бронетехники.

Мгновенное значение напряженности электрического поля будет иметь вид:

$$E_0 = \frac{\sqrt{60PG}}{R_{\phi}} e^{-j(\omega t - kR_{\phi})}.$$
 (2)

Зависимость (2) справедлива для антенн любого типа, если подставить в них соответствующее значение коэффициента направленного действия.

Для проведения расчетов напряженности электрического поля, создаваемого САР в заданной точке наблюдения (или в заданный момент времени) для одиночного импульса, воспользуемся выражением [4]:

$$\dot{\vec{E}}(P_{\phi}, t) = \sum_{m=ln=1}^{M_x} \sum_{m=ln=1}^{N_z} \frac{\vec{F}_{mn}(\beta_{\phi}, \alpha_{\phi})}{R_{mn}} \sqrt{60 P_{mn} G_{max_{mn}}} \times \times \exp\left\{j \left[2\pi f_{0 mn}\left(t - \frac{R_{mn}}{c}\right) + \phi_{0 mn}\right]\right\},$$
(3)

где т и п – индексы, определяющие номер излучателя; M_x , N_y – количество излучающих элементов вдоль направляющей и образующей цилиндра соответственно; $\dot{\vec{F}}_{mn}(\beta_{\phi}, \alpha_{\phi})$ – векторная комплексная нормированная ДН излучателя САР в общей системе координат; R_{mn} – расстояние от излучателя решетки до точки фокусировки; P_{mn} – мощность, подводимая к mn-му элементу АР; $G_{max mn}$ – коэффициент усиления одиночного излучателя; $f_{0 mn}$, $\phi_{0 mn}$ – частота и начальная фаза спектральной составляющей многочастотного (МЧ) сигнала, подводимая к элементу САР; t – момент времени наблюдения.

В рассматриваемом случае для ФП КАЗ используется пачка импульсов N. Тогда поле в окрестности точки фокусировки P_{ϕ} будет представлять собой последовательность многочастотных МЧ пространственно-временного сигнала (ПВС), где каждый фокусируемый сигнал описывается выражением (3) с максимумом, формируемым в точке P_{ϕ} , с учетом периода следования импульсов.

При определении напряженности электрического поля в точке фокусировки $P_{\phi}(x_{\Phi}, y_{\Phi}, z_{\Phi})$ для mn-ого излучателя необходимо предварительно рассчитать координаты x_{mn} , y_{mn} , z_{mn} расположения источника в заданной системе координат.

Исходными данными для расчета в этом случае являются радиус сферы R_{сф}, количество излучателей

вдоль сечения сферы горизонтальной плоскостью М_x, количество излучателей вдоль сечения сферы вертикальной плоскостью N_z:

$$d_{x} = \frac{2\pi R_{c\phi}}{M_{x}}, \qquad \alpha_{mn} = 2\arcsin\left(\frac{2R_{c\phi}}{d_{x}}\right), \qquad (4)$$
$$d_{z} = \frac{2\pi R_{c\phi}}{N_{z}}, \qquad \beta_{mn} = 2\arcsin\left(\frac{2R_{c\phi}}{d_{z}}\right).$$

Для сделанных предположений координаты mn-ого излучателя будут:

$$\begin{cases} x_{mn} = R_{c\phi} \cos \alpha_{mn} \cos \beta_{mn}, \\ y_{mn} = R_{c\phi} \sin \alpha_{mn} \cos \beta_{mn}, \\ z_{mn} = R_{c\phi} \sin \beta_{mn}. \end{cases}$$
(5)

Тогда расстояние от начала координат до точки расположения излучателя определится из выражения:

$$r_{mn} = \sqrt{x_{mn}^2 + y_{mn}^2 + z_{mn}^2} \; ,$$

от излучателя до точки фокусировки:

$$R_{mn} = \sqrt{(x_{\Phi} - x_{mn})^2 + (y_{\Phi} - y_{mn})^2 + (z_{\Phi} - z_{mn})^2},$$

от начала координат до точки фокусировки $P_\varphi(x_\varphi,\,y_\varphi,\,z_\varphi)$:

$$R_{\Phi} = \sqrt{x_{\Phi}^2 + y_{\Phi}^2 + z_{\Phi}^2} \ . \label{eq:R_phi}$$

Для расчета напряженности электрического поля в соответствии с (3) необходимо для каждого mn-ого излучателя выполнить пересчет ДН из общей в местную систему координат. Опуская несложные промежуточные выкладки, найдем угол места Θ_{ϕ} и азимут ϕ_{ϕ} точки наблюдения в системе координат излучателя:

$$\Theta_{\phi} = \arccos \frac{\sqrt{(x_{mn} + x_{\phi})^2 + (y_{mn} + y_{\phi})^2}}{\sqrt{x_{\phi}^2 + y_{\phi}^2 + (z_{mn} + z_{\phi})^2}},$$
(6)

$$\varphi_{\varphi} = \arccos \frac{x_{mn} + x_{\varphi}}{\sqrt{(x_{mn} + x_{\varphi})^2 + (y_{mn} + y_{\varphi})^2}}.$$

С учетом (6) амплитудная ДН mn-го рупора $F_{mn}(\Theta_{\Phi}, \phi_{\Phi})$ будет иметь вид [6]:

$$F_{mn}\left(\Theta_{\phi},\phi_{\phi}\right) = \frac{1 + \cos\Theta_{\phi}}{2} \frac{\sin\Psi_{E}}{\Psi_{E}} \frac{\cos\Psi_{H}}{1 - \left(\frac{2}{\pi}\Psi_{H}\right)^{2}}, \quad (7)$$

где
$$\Psi_E = \frac{\pi L_E}{\lambda} \sin \Theta_{\phi} \cos \varphi_{\phi}$$
,
 $\Psi_H = \frac{\pi L_H}{\lambda} \sin \Theta_{\phi} \sin \varphi_{\phi} - \text{обобщенные углы;}$

$$L_E, L_H$$
 – линейные размеры раскрыва рупора; λ_B – длина волны в волноводе.

Учитывая, что для пирамидальных рупоров фазовое распределение вдоль апертуры является постоянным, общее соотношение для напряженности электрического поля, создаваемого одиночным импульсом, излучаемым цилиндрической ФАР, в точке фокусировки (3) с учетом (6), (7) имеет вид:

$$\dot{\vec{E}}(P_{\phi},t) = \sum_{m=ln=l}^{M_x} \sum_{m=ln=l}^{N_z} \frac{\dot{\vec{F}}_{mn}(\phi_{\phi},\Theta_{\phi})}{R_{mn}} \sqrt{60 P_{mn} G_{max mn}} \times \\ \times \exp\left\{j\left[2\pi f_{0 mn}\left(t - \frac{R_{mn}}{c}\right) + \phi_{0 mn}\right]\right\},$$
(8)

где $\phi_{\phi}, \Theta_{\phi}$ – углы в направлении на точку фокусировки и определяемые из выражения (6);

 f_{0mn}, ϕ_{0mn} – частота и фаза спектральной составляющей, излучаемая mn-м излучателем.

Рассматриваемая конструкция сферической АР с пирамидальными излучателями имеет круговую поляризацию. В этом случае можно предположить, что поляризационная ДН не будет зависеть от положения отдельного излучателя.

Если расстояние R_{mn} разложить в ряд Тейлора в районе точки фокусировки, ограничившись первыми тремя членами разложения, и считать допустимым $\left|y_{mn}\right|<<\left|y_{\varphi}\right|$, то выражение для максимального значения поля одиночного импульса, излучаемого САР, в точке фокусировки P_{φ} в момент времени t_{φ} примет вид:

$$\dot{E}(P_{\phi}, t_{\phi}) = \sum_{m}^{M_{x}} \sum_{n}^{N_{z}} \frac{\dot{F}_{mn}(\phi_{\phi}, \Theta_{\phi})}{R_{mn}} \sqrt{60P_{mn}G_{max mn}} \times \\ \times \exp\left(-j\left[\frac{2\pi f_{0mn}}{c}\left[\frac{ct_{\phi} - y_{\phi} - \frac{\rho_{mn}^{2}}{2y_{\phi}} - \frac{x_{\phi}^{2} + z_{\phi}^{2}}{2y_{\phi}} + Y_{mn} + \frac{x_{mn}x_{\phi} + z_{mn}z_{\phi}}{y_{\phi}}\right] + \phi_{0mn}\right]\right), (9)$$

$$rge \quad \rho_{mn}^{2} = x_{mn}^{2} + z_{mn}^{2};$$

$$\begin{split} Y_{mn} &= y_{mn} + \frac{1}{2y_{\Phi}^{2}} y_{mn} + \frac{1}{2y_{\Phi}^{2}} y_{mn} + \frac{1}{2y_{\Phi}^{2}} y_{mn}; \\ &- \frac{x_{mn} x_{\Phi} + z_{mn} z_{\Phi}}{y_{\Phi}^{2}} y_{mn}; \\ t_{\Phi} &= \sqrt{x_{\Phi}^{2} + y_{\Phi}^{2} + z_{\Phi}^{2}} \Big/ c \; . \end{split}$$

Выражение (9) является общим и справедливо для ближней и дальней зоны. Условие синфазного сложения волн выполняется в случае:

$$2\pi f_{0mn}\left(t_{\phi} - \frac{R_{mn}}{c}\right) + \phi_{0mn} = 0, \qquad (10, a)$$

где

$$\varphi_{0mn} = \frac{2\pi f_{0mn}}{c} \cdot \frac{2y_{\phi}^2 + x_{mn}^2 + z_{mn}^2}{2y_{\phi}} - 2\pi f_{0mn} t_{\phi} .$$
(10, 6)

Выражение (10, б) определяет закон фазового распределения по апертуре САР в ближней зоне при фокусировке вдоль направления нормали, зависящего от частотного распределения.

Учитывая геометрические размеры САР, для дальней зоны в направлении нормали можно предположить, что

 $|\mathbf{x}_{mn_{max}}| = 1,25 \text{ M} | \ll |\mathbf{y}_{d}|$

$$|\mathbf{z}_{\mathrm{mn}_{\mathrm{max}}}| = 0,5 \mathrm{M} | \ll |\mathbf{y}_{\mathrm{\Phi}}|,$$

т.е. выражение (10, б) может быть преобразовано к следующему виду:

$$\varphi_{0mn} = \frac{2\pi f_{0mn}}{c} \cdot y_{\phi} - 2\pi f_{0mn} t_{\phi} =$$
$$= f_{0mn} \left(\frac{2\pi}{c} y_{\phi} - 2\pi t_{\phi} \right),$$

значит для антенны при расположении точки фокусировки на направлении нормали (ось ОҮ) для получения синфазного сложения полей в дальней зоне необходимо задаваться линейным частотным распределением по апертуре, наклон которого зависит от расстояния до точки фокусировки.

При отклонении точки фокусировки по углу места от направления нормали к оси решетки выражение для фазового распределения будет иметь вид:

$$\begin{split} \phi_{0mn} = & -\frac{2\pi f_{0mn}}{c} \times \\ \times \left[ct_{\varphi} - y_{\varphi} - \frac{\rho_{mn}^2}{2y_{\varphi}} - \frac{x_{\varphi}^2 + z_{\varphi}^2}{2y_{\varphi}} + \frac{x_{mn}x_{\varphi} + z_{mn}z_{\varphi}}{y_{\varphi}} + Y_{mn} \right]. \end{split}$$
(11)

Выражение (11) является алгоритмом фазирования САР: после получения ЦУ и определения x_{ϕ} , y_{ϕ} , z_{ϕ} , t_{ϕ} для каждого mn-ого излучателя определяются его координаты и выбирается значение частоты f_{0mn} , в соответствии с которым рассчитываются фазы, что обеспечивает синфазное сложение полей спектральных составляющих в точке фокусировки в момент времени t_{ϕ} .

Выводы

Разработан метод расчета направленных характеристик сферической антенной решетки. В основу метода положена возможность фокусировки электромагнитного излучения при формировании многочастотного пространственно-временного сигнала, для которого получены основные расчетные соотношения для расчета поля в дальней зоне.

Предложен алгоритм фазирования сферической антенной решетки для функционального подавления и поражения комплексов активной защиты бронетехники.

Список литературы

1. Содин Л.Г. Импульсное излучение антенны (электромагнитный снаряд) / Л.Г. Содин // Радиотехника и электроника. – 1991. – Т. 36, № 5. – С. 1014–1022.

2. Гомозов В.И. Пространственно-фазово-частотная фокусировка сигналов в плоских ФАР при V-образной дискретизации частот / В.И. Гомозов, А.В. Гомозов, С.В. Титов // Радиотехника. Всеукр. межвед. науч.-техн. сб. – 2001. – Вып. 122. – С. 201–207.

3. Гомозов В.И. Метод формирования последовательностей сфокусированных пространственно-временных импульсов при использовании многоступенчатого V-образного распределения частот по апертуре плоских ФАР / В.И. Гомозов, А.В. Гомозов, С.В. Титов // Радиотехника. Всеукр. межвед. науч.-техн. сб. – 2002. – Вып. 130. – С. 33–38.

4. Фокусировка электромагнитного излучения и ее применение в радиоэлектронных средствах СВЧ / Под ред. В.И. Гомозова. – Х.: "Городская типография, 2011. – 330 с.

5. Ясечко М.Н. Излучение последовательностей многочастотных пространственно–временных сигналов цилиндрическими антенными решетками с заданными характеристиками / М.Н. Ясечко, Г.В. Ермаков // Збірник наукових праць ХУПС. –Х.: ХУПС, 2011. – № 1 (27). – С. 119–122.

6. Шифрин Я.С. Антенны / Я.С. Шифрин. – Х.: Изд– во ВИРТА, 1976. –407 с.

Поступила в редколлегию 27.02.2014

Рецензент: д-р техн. наук проф. И.И. Обод, Национальный технический университет «ХПИ», Харьков.

МЕТОД РОЗРАХУНКУ СПРЯМОВАНИХ ХАРАКТЕРИСТИК СФЕРИЧНОЇ АНТЕННОЇ РЕШІТКИ

О.В. Ченикаєв, Г.В. Єрмаков, І.М. Майборода

В статті розроблений метод розрахунку спрямованих характеристик сферичної антенної решітки. В основу методу покладена можливість фокусування електромагнітного випромінювання при формуванні багаточастотного просторовочасового сигналу, для якого отримані основні розрахункові співвідношення для розрахунку поля в дальній зоні.

Ключові слова: сферична антенна решітка, багаточастотний просторово-часовий сигнал, дальня зона, рупорний випромінювач

METHOD OF THE DIRECTED DESCRIPTIONS SPHERICAL ARRAY CALCULATION

A.V. Chenykayev, G.V. Yermakov, I.N. Maiboroda

In the article method of the directed descriptions spherical array calculation is driven. The basis of method is possibility of electromagnetic radiation focusing at forming of multifrequency spatio-temporal signal. For that basic method of calculation correlations are got main expressions for the calculation of the field in a far zone.

Keywords: spherical array, multifrequency spatio-temporal signal, far zone, feedhorn.