УДК 621.396.96

И.Е. Ряполов, В.А. Василец, О.И. Сухаревский

Харьковский университет Воздушных Сил им. И.Кожедуба, Харьков

ХАРАКТЕРИСТИКИ РАССЕЯНИЯ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА RQ-4B GLOBAL HAWK В САНТИМЕТРОВОМ И ДЕЦИМЕТРОВОМ ДИАПАЗОНАХ ДЛИН ВОЛН

В статье получены характеристики рассеяния беспилотного летательного аппарата в сантиметровом и дециметровом диапазоне длин волн для различных ракурсов облучения. Беспилотный летательный аппарат имеет сложную аэродинамическую структуру, он содержит идеально проводящие и диэлектрические рассеиватели, а также радиопрозрачный обтекатель

Ключевые слова: беспилотный летательный аппарат, высокочастотный метод расчета, диаграмма обратного вторичного излучения, эффективная поверхность рассеяния.

Введение

Постановка проблемы. Военное руководство США и НАТО, Германии, Франции, а также ряда ведущих стран мира рассматривают беспилотные самолеты-разведчики в качестве одного из важнейших видов военной авиационной техники, обеспечивающей повышение боевых возможностей вооруженных сил [1].

Результаты исследований и боевого применения беспилотных летательных аппаратов (БПЛА) свидетельствуют о том, что основными факторами повышения их боевых качеств являются: увеличение продолжительности полета, малогабаритное оборудование модульного типа, передача разведывательных данных в реальном масштабе времени и снижение заметности в широком диапазоне длин волн.

Одним из ярких представителей БПЛА объединяющий в себе все вышесказанные боевые качества является RQ-4 Global Hawk. Возможности Global Hawk вызвали большой интерес не только у американских военных, но и у военных Австралии, Великобритании, Израиля и Саудовской Аравии.

Анализ литературы. В [2] предложен метод расчета эффективной поверхности рассеяния (ЭПР) антенной системы с носовым диэлектрическим обтекателем. Сделана попытка оценить влияние обтекателя на ЭПР находящейся под ним параболической антенны. Предложенную в [2] методику можно обобщить и распространить на задачи расчета вторичного излучения (ЭПР) моделей БПЛА, представляющих собой идеально проводящие объекты, находящиеся внутри диэлектрической оболочки (фюзеляжа БПЛА). Получение информации о характеристиках рассеяния подобных объектов позволит выявить участки поверхности объекта, вносящие доминирующий вклад в обратное рассеяния объекта в целом, оценить эффективность предполагаемых мероприятий по оптимизации радиолокационных характеристик, как всего объекта, так и отдельных его участков.

Исходя из сказанного, разработан высокочастотный метод расчета вторичного излучения модели фюзеляжа БПЛА [3], основные положения которого опираются на методику, предложенную в [2]. Поверхность рассматриваемого летательного аппарата имеет элементы, выполненные из диэлектрических материалов и не имеющие внутри идеально проводящих рассеивателей (например крыло и хвостовое оперение). С целью учета вклада таких элементов БПЛА в общее рассеянное поле, в [4] был предложен высокочастотный метод расчета вторичного излучения диэлектрических частей модели БПЛА.

Целью статьи является получение (с помощью математического моделирования) и анализ характеристик рассеяния беспилотного летательного аппарата RQ-4B Global Hawk.

Основная часть

БПЛА RQ-4В выполнен по нормальной аэродинамической схеме с низкорасположенным крылом большого удлинения (рис. 1).

Рис. 1. Компоновочная схема БПЛА RQ-4В

Фюзеляж типа полумонокок изготавливается из алюминиевых сплавов. Он состоит из трех основных частей. В передней части расположен приборный отсек. В нем, под большим радиопрозрачным обтекателем, расположена параболическая антенна спутниковой связи диаметром 1,22 м. В этом же отсеке размещена вся разведывательная аппаратура. В средней части находится большой топливный бак, в хвостовой части расположен реактивный турбовентиляторный двигатель. Крыло и V-образное хвостовое оперение полностью изготовлено из композитного материала на основе углеволокна [5].

БПЛА сам по себе представляет собой платформу для различного разведывательного оборудования. На Global Hawk устанавливаются три подсистемы разведывательной аппаратуры. Они действуют на разных длинах волн, могут работать одновременно и обладают следующими особенностями:

- радар с синтезированной апертурой предназначен для работы в любых погодных условиях. В нормальном режиме работы он обеспечивает получение радиолокационного изображения местности с разрешением 1 м. За сутки может быть получено изображение с площади 138 км² на расстоянии 200 км. В точечном режиме ("spotlight" mode), в результате съемки области размером 2 х 2 км, за 24 часа может быть получено более 1900 изображений с разрешением 0,3 м. В режиме X-Band радар может сопровождать движущуюся цель, если ее скорость более 7 км/ч;

 на БПЛА имеются две антенны радара (расположены по бокам в нижней части приборного отсека фюзеляжа) и необходимое электронное оборудование;

- имеющаяся электронно-оптическая цифровая камера обеспечивает получение изображений с высоким разрешением. Датчик, (1024 x 1024 пикселей) сопряжен с телеобъективом, фокусное расстояние которого 1750 мм. В зависимости от программы, есть два режима работы. Первый — сканирование полосы шириной 10 км. Второй — детальное изображение области 2 x 2 км. Для получения ночных изображений используется ИК-датчик (640 x 480 пикселей). Он использует тот же самый телеобъектив. Объектив может поворачиваться на угол 80 градусов.

Радар, дневная и инфракрасная камеры могут работать одновременно, что позволяет получать большой объем информации. Дневная/инфракрасная камера обладает скоростью выдачи информации 40 млн. пикселей в секунду, что составляет, в зависимости от цветового разрешения, 400 Мбит/сек. Бортовая система сбора и хранения информации сжимает полученные цифровые изображения и записывает их.

Для передачи информации потребителем могут быть использованы несколько каналов связи. По спутниковому каналу скорость передачи информации составляет 50 Мбит/с. Для этих целей используется спутниковая система связи Ки-диапазона. По прямому каналу диапазона UHF можно передавать информацию со скоростью 137 Мбит/с.

Информация направляется на наземную станцию управления полетом и на станцию управления взлетом/посадкой. В перспективе пользователи, не имеющие связи с наземной станцией, смогут получать изображения напрямую от БПЛА Global Hawk.

Учитывая большие электрические размеры рассматриваемого БПЛА, для расчета вторичного излучения объекта можно применять коротковолновые асимптотические методы. В качестве метода расчета выбран метод, основанный на раздельном оценивании вкладов гладкой и кромочной участков поверхности объекта [2]. При этом, гладкая часть поверхности объекта была разбита на несколько частей:

1. Металлические (идеально проводящие) элементы. К данным элементам относится нижняя, боковая часть и участок поверхности верхней части фюзеляжа.

2. Оборудование, находящееся под диэлектрической оболочкой:

- параболическая антенна спутниковой связи диаметром 1,22 м;

- электронно-оптическая цифровая камера;

- радар с синтезированной апертурой;

- параболическая антенна передачи команд;

- реактивный турбовентиляторный двигатель.

3. Элементы, изготовленные из композитного материала на основе углеволокна:

- крыло;

V-образное хвостовое оперение.

Модель БПЛА RQ-4В представлена на рис. 2.

Рис. 2. Модель БПЛА RQ-4B Global Hawk

Моделирование поверхности 1, 3 проводилось в соответствии с методом изложенном в [2].

Моделирование поверхности 2 проводилось в несколько этапов:

 моделирование поверхности идеально проводящих объектов оборудования находящегося под диэлектрической оболочкой;

- моделирование поверхности диэлектрической оболочки.

Далее производился расчет рассеяния с учетом указанных операций. Моделирование поверхностей проводилось с помощью их аппроксимаций участками трехосных эллипсоидов для каждой поверхности отдельно, а именно:

- для параболической антенны спутниковой

связи было использовано 11 участков трехосных эллипсоидов;

- для системы подвеса антенны – 2;

- для основания, на котором установлена антенна – 6;

- для двигателя 5;
- для хвостового оперения 4;
- для электронно-оптической цифровой камеры 3;
- для носовой части фюзеляжа 3;
- для фюзеляжа 13;
- для колеса передней стойки шасси 1;
- для радара с синтезированной апертурой 4;
- для крыла 4;

 для параболической антенны передачи команд – 2.

Моделирование диэлектрических обтекателей было проведено следующим образом:

 обтекатель параболической антенны спутниковой связи аппроксимирован 7 участками трехосных эллипсоидов;

- обтекатель двигателя – 5;

 обтекатель электронно-оптической цифровой камеры – 3;

обтекатель носовой части фюзеляжа – 2;

обтекатель колеса передней стойки шасси – 1;
обтекатель параболической антенны передачи команд – 2;

- обтекатель радара с синтезированной апертурой – 1.

Таким образом, при моделировании поверхности БПЛА RQ-4B, с учетом элементов находящихся под диэлектрической оболочкой было использовано 79 участков трехосных эллипсоидов. Из них 58 участков эллипсоидов использованы для моделирования идеально проводящих элементов, а также диэлектрических элементов, не содержащих внутри идеально проводящих рассеивателей (крыло, хвостовое оперение). Участки 21 эллипсоида использовались для аппроксимации диэлектрических оболочек, имеющих внутри идеально проводящие элементы.

Полученная модель БПЛА RQ-4B Global позволяет рассчитать диаграммы обратного вторичного излучения (ДОВИ) для сантиметрового и дециметрового диапазонов длин волн.

На рис. 3-5 представлены ДОВИ для различных длин волн зондирующего сигнала λ при фиксированных углах места ε (отрицательные углы подразумевают зондирование из нижней полусферы). Анализ графиков показывает, что качественно зависимости ЭПР модели БПЛА RQ-4B Global Hawk от азимутов похожи друг на друга вне зависимости от угла места зондирования ε и частоты зондирования.

Локальный максимум в сантиметровом диапазоне длин волн при азимутах близких к 0^0 (облучение спереди) и для $\varepsilon = 0^0$ обусловлен рассеянием на находящейся в носовой части зеркальной антенной системе и передней части фюзеляжа БПЛА.

Наwk для λ =3 см при различных углах места зондирования є: $a - 0^\circ$; $6 - 10^\circ$; $B - 20^\circ$ Намк для λ=10 см при различных углах места зондирования ε: aa – 0°; б – 10°; в – 20° Рис. 5. ДОВИ БПЛА RQ-4B Global Hawk для λ=30 см при различных углах места зондирования ε: a – 0°; б – 10°; в – 20° Величина ЭПР на указанном ракурсе зондирования составляет $\approx 1000 \text{ м}^2$ (рис. 3, а). В случае изменения угла места зондирования (до -10^0 , -20^0) ЭПР указанного участка снижается до единиц квадрат-

указанного участка снижается до единиц квадратных метров (рис. 3, б, в). При азимутах близких к 90⁰ локальные максимумы обусловлены рассеянием на боковом идеально проводящем участке поверхности фюзеляжа (рис. 3).

При переходе к дециметровому диапазону (рис. 4, 5) максимум, связанный с рассеянием на носовой части БПЛА падает.

Следует отметить, что при λ =30 см при нулевом азимутальном направлении зондирования рассеяние на находящейся в носовой части зеркальной антенной системе и передней части фюзеляжа БПЛА ЭПР имеет относительно большее значение (до 10 м²) (рис. 5, б), по сравнению с рис. 3, б (λ =3 см) и рис. 4б (λ =10 см).

При облучении сзади (рис. 3 – 5) для ε =-10⁰ и ε =-20⁰ значения ЭПР выше, чем соответствующие значения для ε =0⁰, что связано с особенностями рассеяния на идеально проводящем нижнем плоском участке задней части фюзеляжа.

В табл. 1, 2 представлены средние и медианные значения БПЛА RQ-4B Global Hawk соответственно.

Таблица 1

Средние значения ЭПР БПЛА RQ-4B Global Hawk

λ, см ε, град	3 см	10 см	30 см
0	67,2	71,9	71,1
-10	4,6	5,4	5,4
-20	6,3	6,2	6,1

Таблица 2

Медианные значения ЭПР БПЛА RQ-4B Global Hawk

λ, см ε, град	3 см	10 см	30 см
0	0,7	0,7	0,5
-10	0,7	0,5	0,5
-20	0,6	0,5	0,4

Средние значения ЭПР (табл. 1) слабо зависят от частоты зондирующего сигнала. Медианные же значения (табл. 2) снижаются при увеличении длины волны зондирующего сигнала.

Выводы

В статье методом математического моделирования получены характеристики рассеяния беспилотного летательного аппарата RQ-4B Global Hawk. Этот летательный аппарат обладаем сложной аэродинамической структурой. Его конструкция включает в себя идеально проводящие и диэлектрические рассеиватели, а также радиопрозрачный обтекатель.

Следует отметить, что в рассматриваемом диапазоне частот зондирующего сигнала (1 – 10 ГГц) средние значения ЭПР БПЛА RQ-4B Global Hawk (для азимутальных направлений 0 – 180°) меняются от 6,1 до 71,9 м², а медианные (для тех же азимутальных направлений) – от 0,4 до 0,7 м².

Список литературы

1. Кузьмин А. Изменения в концепции создания боевых БЛА / А. Кузьмин // ЗВО. – 1999. – №11. – С. 40-42

2. Рассеяние электромагнитных волн воздушными и наземными радиолокационными объектами: монография / О.И. Сухаревский, В.А. Василец, С.В.Кукобко [и др.]; под ред. О.И. Сухаревского. – Х.: ХУПС, 2009. – 468 с.

3. Высокочастотный метод расчета вторичного излучения модели фюзеляжа беспилотного летательного аппарата / И.Е. Ряполов, В.А. Василец, О.И. Сухаревский, К.И. Ткачук // Системи озброєння і військова техніка. – Х.: ХУПС, 2014. – № 1(37). – С. 222-225.

4. Ряполов И.Е. Высокочастотный метод расчета рассеяния вторичного излучения диэлектрических частей модели беспилотного летательного аппарата / И.Е. Ряполов, В.А. Василец, О.И. Сухаревский // Системи обробки інформації. – Х.: ХУПС, 2014. – №2 (118). – С. 58-62.

5. RQ-4 Global Hawk [Электронный ресурс]. – Режим доступа: https://ru.wikipedia.org/wiki/RQ-4 Global Hawk.

Поступила в редколлегию 8.09.2014

Рецензент: д-р техн. наук, проф. С.П. Лещенко, Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков.

ХАРАКТЕРИСТИКИ РОЗСІЮВАННЯ БЕЗПІЛОТНОГО ЛІТАЛЬНОГО АПАРАТУ RQ-4B GLOBAL HAWK У САНТИМЕТРОВОМУ ТА ДЕЦИМЕТРОВОМУ ДІАПАЗОНУ ДОВЖИН ХВИЛЬ

І.Є. Ряполов, В.О. Василець, О.І. Сухаревський

У статті отримані характеристики розсіяння безпілотного літального апарату у сантиметровому та дециметровому діапазоні довжин хвиль для різних ракурсів опромінювання. Безпілотний літальний апарат має складну аеродинамічну структуру, він містить ідеально провідні та діелектричні розсіювачі, а також радіопрозорий обтічник. Ключові слова: безпілотний літальний апарат, високочастотний метод розрахунку, діаграма зворотного вто-

ринного випромінювання, ефективна поверхня розсіювання.

SCATTERING CHARACTERISTICS OF UNMANNED AERIAL VEHICLE RQ-4B GLOBAL HAWK IN SHF AND UHF BANDS

I.E. Ryapolov, V.A. Vasilets, O.I. Sukharevsky

Scattering characteristics of unmanned aerial vehicle in UHF and SHF bands for different aspect angles of radar sounding were obtained in the work. Unmanned aerial vehicle has a complex aerodynamic structure. It consists of perfectly electrically conducting and dielectric scatterers, and also radioparent radome.

Keywords: back scattering radiation diagram, high frequency calculation method, radar cross section, unmanned aerial vehicle.