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RADIATION OF SPATIALLY LIMITED INHOMOGENEOUS PLASMA

The efficiency of the transformation of the surface wave energy of a longitudinally inhomogeneous cylindrical
plasma column into radiation is investigated. Plasma is limited by a dielectric shell. The analysis was carried out by
the method of spectral decomposition of the field by a complete set of functions, including surface and spatial waves
of the plasma column. A system of integro-differential equations for coefficients of decomposition is derived. These
coefficients determine the amplitudes of the transmitted, reflected and scattered waves, as well as radiation patterns.
The system of equations is solved for an arbitrary longitudinal change in the density of the plasma. The dependences
of the transformation coefficients of the surface wave energy on the plasma density gradient, the electric length of
the plasma inhomogeneity section, the electric radius of the plasma cylinder, the dielectric constant and the
dielectric thickness are calculated. Examples are given where the part of the energy of a surface wave, which is
transformed into a radiation at sharp angles, is 35%. The padiation patterns are pointed and have one beam. The
maximum of radiation is formed at an angle, that equal several degrees relative to the direction of propagation of
the surface wave. The width of the beam decreases, and its position shifts to zero, when the density gradient of the

plasma increases. The influence of dielectric properties on the radiation characteristics is investigated.

Keywords: Cylindrical plasma antenna, spectral decomposition method, radiation, surface waves.

Introduction

The cylindrical column of low-temperature plasma
can be used as a transmitting antenna, as shown in [1-2].
The surface wave is arisen at the end of a dielectric
waveguide filled with a plasma,as shown in the
experiments, described in these papers.

At the same time, part of the energy of the wave is
spent on the creation of a plasma whose density
decreases as it is removed from the butt-end. It is
precisely because of the longitudinal heterogeneity of
the plasma density that the plasma antenna is radiated.
Such inhomogeneities in plasma-dielectric waveguides
are always present in the real conditions of the
experiment. Therefore, it is necessary to study the
dependence of the coefficients of the transformation of
the energy of a surface wave on radiation from the
degree of inhomogeneity of the plasma density, for the
proper understanding of the radiation process in
cylindrical plasma antennas and their construction.

The analysis of this inhomogeneity is
fundamentally important, since it depends on the
efficiency of the operational performance of any plasma
waveguide antenna, including the cylindrical one. The
transformation of an axially symmetric surface wave in
a plasma antenna is also investigated. Such antenna is a
cylindrical column of isotropic cold plasma, bounded by
a dielectric. The density of the plasma varies in the
longitudinal direction. In addition, the rate of change in
the density of the plasma in the longitudinal direction

can be arbitrary. This circumstance has required the use
of numerical methods.

A method for solving such problems was developed
by V.V. Shevchenko is described in the monograph [3]. It
is based on Sturm-Liouville theory [4]. According to this
method, the complete field is expanded by a complete set
of functions of a plasma cylinder, which includes surface
and spatial waves of open systems.

The coefficients of a decomposition via
inhomogeneities, depend on the longitudinal
coordination. They can be presented as the system of
integro-differential equations. The influence of the
dielectric on the radiation characteristics of antennas is
investigated. The results of the investigation of a planar
longitudinally inhomogeneous plasma antenna are
presented at the article [5].

1. Basic equations

Fig. 1 shows an unrestricted, plasma-filled
dielectric cylinder along the axis z dielectric cylinder
filled with plasma. In this figure, a — is the radius of the
plasma column, b —is the radius of a homogeneous
dielectric cylinder, z and p — are the cylindrical
coordinates.

When performing 0<z<L the density of the
plasma is inhomogeneous. The permittivity of dielectric
is equal to g4 , and the permittivity of plasma is equal to

12,2
sp—l cop/(n.
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Fig. 1. Plasma column of radius a, enclosed in a
dielectric cylinder with outer radius of a shell b.
The region is shaded, where the plasma density n,(z)

decreases, and its dielectric permittivity €p (z) increases,

as shown in fig. 3

In this formula ® — is the angular frequency of the
wave, cog = 47tnee2 / m, — is the plasma frequency, n, —
the electron density, e, m, — the charge, and the mass

of the electron, respectively. At the beginning, we
consider a plasma cylinder with a homogeneous density
n.. The time dependence of the field components is

determined by the factor exp(—i(ot). In such a
dielectric-limited cylindrical structure, an axially
symmetric slow surface E wave can exist, with

components The

EZO (paz)ﬂEpO (P, Z)a H(pO (pa Z) .
components of the electric field of this wave are
expressed through the azimuthal component of the
magnetic field Hgo(p,z), where ¢ — is the azimuthal

coordinate. This component of the field depends on the
coordinates as follows:

Hoo(p7) = Po (p)exp( ik{z), (1)

where kg — is a wave vector of a surface wave, ¥ (y) —
is, so-called, surface wave cross section function. The
signs + and - in the formula 1, correspond to the wave
propagation along the axis z, and in the opposite

direction. The dependence of the components
E,o (p»2),Epo(p,2) on the coordinate z is the same as
in (1).

The function¥((y), from (1), must satisfy the

boundary conditions on the boundary of the plasma
columnar column with a dielectric, and a dielectric with
a vacuum.

In addition, it must decrease at infinity. Firstly, we

consider the case, when k<k(z) <kyjeq . From the

Maxwell’s equations in cylindrical coordinates and
boundary conditions we obtain formulas for ¥ (y):

Ky (Kgp)a b<p<oo,
1
o (p) =1 AlbJ1 (dp) + A2 N1 (kgp), 2 < p < b, (2)
0
0
A
%bll(lcop), 0<p<a,
Ala
where x9)? =kH?-k?>0, k? =w?/c?,

042 2,2 042 0,2 2 042
(k7)" =0, /¢ +(kp)" >0, (kq) =k"gq - (k,)",
K;(x), I; (x) — are MacDonald function and Bessel
function of the imaginary argument, respectively; Ny —

is the normalization factor, which is found from the
normalization condition:

o0 1 )
[do——=(¥o(m) =1. (3)
o &(P)

The coefficients, in (2), are determined by the
following relations:

0 TEKga
Ala == 5 :
0
| 52810 ()N, (<) - 1y ("a)N (cfa) |,
dep
AO _ TCKgb.
1b 2
0
X B K (Koa)N (Koa)+K (Koa)N (Koa)
0 Ko 1(Kgq 1 0(Kqa) |,
Kd8p
A0 __TCKgb
2b )
0
Ko&d 0 0 0 0
1o Ko (k)1 (kgb) + Ky (kgb)Jo (1¢4b) |.
Kq

Applying the boundary conditions to the function
(2), we obtain the following dispersion equation for the
surface E wave:

KOSdIO (Koa)Nl (Kga) - Kgspll (Koa)NO (Kga)

KOSdIO (Kga)Jl (Kga) - Kggpll (Koa)Jl (Kga)

~ Kgdeo (Kgb)Nl (Kgb)+ K3K1 (Kgb)No (Kgb)

“

ngdKO (Kgb)Jl (Kgb)+ KgKl (Kgb)JO (Kgb)
whereJo; (x), No;(x) — are Bessel and Neumann

functions.
In general, equation (4) has several solutions with

respect to kg , when quantities €p, &4 2, b are given.
Each of these solutions corresponds to a surface
wave. Under the condition of k,/e4 < k(z), the surface

waves does not exist. Formally, this follows from the
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fact that the dispersion equation for this case has no
solution

In addition to the surface wave (1), there are also
axially symmetric solutions of the Maxwell’s equations
corresponding to the spatial waves. The spatial waves
are fast.

They exist under the condition K% = k? —k% >0,
where k, — is the wave number, k( is the transverse

wave number. Spatial E-waves have components

E, (p,z),E (p,z),Hq)(p,z). The azimuthal component

of the magnetic field of the wave can be represented in
the form:

H, (p,2,%, ) = ¥(p,xq) exp(Hik,z) . 5)
In formula (5), the dependence on the transverse
wave number ¥, is singled out. The cross-sectional

function W¥(p,x) of the spatial E -wave is determined

by the expressions:

|
¥(p,xg) =

N(io)
u5J1(K0p)+u6Nl(K0p), b<p<oo, (6)
quil (kgp) +usNy (kgp), a<p<b,

I (xp),

0<p<a,

where

Uy = _w{ i Iy (ka)Nj (qa)—1; (xa) Ny (Kda)}=
2 Kdgp

u, :w{ Red IO(Ka)Jl(Kda)—Il(Ka)JO(Kda)}’
2 K4€p

u3 =ulg (kgb)+uyNo (k)

ug =yt (gb)+usN (kgb),

b
Us :—ﬁ "d 1.13N1 (Kob)—U4N0(K0b) .
2 K08d
nKgb | 14
Ug =— usN; (kgb)—uyNg(xgb);,
o= (k0o ()
|<2=cof,/c2—1<3, Kﬁzkzed—kg,

0,2 2 0,2
(1kq)” =k7eq —(kz)".
The normalization factor N(k) is not given for

brevity. The function (6) satisfies the above mention
boundary conditions. It slowly decreases with p — o,

and therefore is normalized to & function:

jdpL\y(p,Ko)\y(p,ﬁo)za(Ko -%). (D)
0

& (P)

Cross-sectional functions W((y) and ¥(p,xg)

are orthogonal to each other:

0

fao

1
o ©p (p)

We represent the component of the total field

Yo (p)¥(p.xg)=0. (8)

Hy(p,z) in a homogencous plasma layer and a

dielectric in the form of a spectral expansion with
respect to a complete set of functions Hyo(p,z) (1) 1

Ho(p.2,K0)
0 1.0 0 2 0
Hg (p,z) = (B+ exp(ik,z)+BZ exp(—lkzz))‘l’o(p) +

+°J? g {BJr (kg)exp (ikZ.Z) +
+B_(xq)exp(-ik,z)

©)
J‘P(p’ Ko )7
0
where the first term corresponds to the surface waves,
and the second term corresponds to the superposition of
the spatial waves.

Now let the plasma density in the section
0<z<L, as shown in fig. 1, the plasma density n, is
nonuniform in the longitudinal direction, that is,
depending on the coordinate z . In accordance with the
method of spectral decomposition, the coefficients

Bg,BJ_r in the expansion (9) become functions of z.

The constant of propagation k(z) (z) also depends on z.
It is a solution of a dispersion equation containing an
inhomogeneous density n.(z), and functions of a cross
section W (p,z) and ¥ (p,z,x).

In this case, the dielectric is assumed to be

homogeneous. For the following it is convenient to
make the following substitution:

i exp(i(ro (1) ~K}7)

k()

z

Bg (z) Dg z),

1 z
Bi(KO,Z):k—Di(KO,Z), Y0(2) = [dzk)(2), (10)

z 0
where DY (z), Dy (kg,z) — are the new amplitudes of

surface and spatial waves. Substituting (9) with
amplitudes (10) into the Maxwell’s equations and using
the conditions of normalization and orthogonality (3; 7-8),
we obtain a system of four integro-differential equations
for the amplitudes DY (z), D, ((,z). These equations

can be transformed into the following system of integral
equations:

DY (z) = l+sz{A1D2 (2)+ A2D9(z)} +
0

(11
+[dz [ dig {A3D, (Rg,2) + AgD_(Rg.2)},
0 0
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DY (z) = sz{(Az)*DR (2)+ADL@)} +
L

12)
+]dz] R {(A4)" D, (%o, 2) +(A3) D_(Ro,2)}.
L 0
D, (x9.2) = TdZ{ASDS (2)+AgD? (2)] +
+[dz [ ditg {A7D, (Rg.2) + AgD_(Rg.2)}
0 0

D_(kg.2) = jdz{(A6)*D3 (z)+(As)' DO (z)}+

. (14)

+[ dz[ dieg {(AS)*D+ (R,2) +(A7)*D,(r<0,z)}.
L 0

Equations (11-14) satisfy the boundary conditions:

DY (z=0)=1, D’(z=L)=0, s)
D,(z=0)=0, D_(z=L)=0.

The relations (15) correspond to a surface wave
that runs from - to the nonuniform plasma region
[0.L].

The coefficients A;, in equations (11-14) have the
meaning of complex coupling coefficients among the
transmitted surface waves and the reflected waves and
also other types of radiation waves.

This relationship arises from the longitudinal
inhomogeneity of the plasma density. The dependence
A; on the arguments is indicated below in the formulas
(19-25).

It is convenient to expand the complex amplitudes

Dg (Z) , Dy (KO, Z) in the following manner into real
and imaginary parts:
D) (2) =f,(2) +ig)(2) , DY(2) = £, (2) +ig, (2) , (16)
D, (xg,z) =f3(xg,z) +ig3(x(z) ,

D_(xq,z) =14(xg,2) +ig4(koz) . 17

The integral in the expansion (10) describes the ra-
diation. To find its asymptotic behavior by the saddle
point method, where kr — o, and r - the distance from
the segment of the inhomogeneity of the plasma layer to
the observation point, let us proceed, following the
works [3.5], to the complex variable of integration 9
In this

case, the singularity in the integrals (10; 11-14) is re-

by the formulas x,=ksin®, k, =kcos$.

moved, under conditions k, =k . The integration con-
tour C with respect to a complex variable 9 consists of
two parts C; and C, as shown in fig. 2 [3; 5]. Note,
that the point
Im(3)=0, Re(9)=mn/2 in fig 2. There are two saddle

kg =k corresponds to the point

points on the contour. This 3=0 and 3 =n—-0, where
0 — is the angle of inclination of the radius of the obser-
vation point vector to the axis z in the plane (p,z).

They are located on the contour C;, which corresponds
to the following interval of variable change g :
0<xgp <k. The saddle point 3 =0 determines the ra-

diation at acute angles 6, and the point $=n—-0, at
obtuse angles 6. Since both points are located on the
contour C;, we confine ourselves only to this segment

of the contour C when solving the system of integral
equations (11-14).

AImS

C /2 Re S

C

Fig. 2. The contour of integration C =C; +C,
with respect to a complex variable 9

In other words, we assume in (11-14) that
n/2

Ofdfco{ }zlfdfqo{ b=k [ dScosB{ }. (18)

The assumption (18), allows us to decompose the
coefficients A; into real and imaginary parts:

Ai(z)=a1(2), Ay(z)=a,(2)—-iby(z), (19)
A3(Kg,z) =a3(kg,2) —ib3(K¢,2) ,
A4(Kg,2) = a4(Kg,2) —iby (K9, 2), (20)
As(Kg,z) =as5(kg,2z) +ibs(kp,2),
Ag(K,2) =a(Kg,2) —ibg (Ko, 2) , 21

A7(Kg,K0,2) =a7(Kg,K,2) +1b7 (g, K¢, 2),
Ag(Kg,K0,2) =ag(Kg,Kg,2z) —ibg (Ko, K0,2) , (22)
where a;(z)=-J(z),
a5(z) =Sy(z)cos(2y(2)),
b, (z) =Sy (2) sin(2y0 (z)) ,

(x2),

So(2) = )
0
1(Z
k) +k -
a3(Kg,z) = —th (ﬁo,Z)COS(Yo _kzZ) .
2(k%,
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0 -
b3(k0,Z):— kZ +liZ Jl (ﬁo,Z)Sil’l("{O _RZZ)’
2k%k,
k) -k .
34(]20,2):— Z 0~Z Jl(ﬁo,Z)COS(’Yo‘i‘kZZ),
2iK,
0—~ ~
by (Rg,2) = — ks kj 11 (Ro,2)sin(vo +k,z),
24k,
k, +k)
as(kgz) = ——=2 OZ J5 (xg.2)cos(yg —k,z),
kZ
k, +kD
bs(ig2) = ——*== J5 (kg,2)sin(vg —k,z),
kZ
k, —k
ag(Kg,z)=——= OZ J5 (xg,2)cos(yq +k,z),
kZ
k, k)
b6(K0,Z):— Z ZJ2(K0,Z)SiH(Y0+kZZ),
K
ay(Kg,%0,2) =—k22—1£2kz I3 (ﬁO,KO,Z)cos((EZ —kz)z) ,
. k, +k . -
b7 (Rg,Kg,2) = — szqz 213 (Ro» x0,2)sin ((k, —k,)z) ,
ag(Kg,®g,2) =— Z%kz J3(l~<0,K0,z)cos((EZ+kZ)z),

z

bg (Ko, kq,2) =—k221£k

£]5 (IZO,KO,Z)sin((f(Z +kZ)z).

Jo (Z),JI(KO,Z),
J5(x0,2), I3 (K9, %g,2) are defined by integrals

z

The functions

Jo(z>=°§dp ¥y (p.2)(¥o (p.2)),

1
p (p)

o0

Ji(xg.2) = gdp$\l’o (p,z)(‘P(p,KO,Z))VZ ,(23)
3o (k0.2) = Idpﬁ‘lf(pmo#)(‘l’o (p.2)),.

33 (Rov0.2) = [ dp——¥ (puxcg.2)(¥ (p. R0 7)), (24)
0

& (P)

The dependence of these integrals on the z
coordinate arises from the dependence of the root of the

dispersion equation k(z) and the plasma frequency o, ,

which enter into the function (2; 6). In the final form,
the formulas for these integrals are cumbersome and are
not given for brevity. Note, however, that the integrals
(23-24) should be calculated directly from the Bessel
equation. Finally, the integral equations for the real
functions f;,g; (1=12,3,4) in (16-17), taking into
account the expansion of the coefficients A; into real

and imaginary parts, take the form:

fi(2) =1+ [dz {0 Dy () + a2 DT (2) + By (D2 (D)} +

[dz [ a8 (8,2)f5(8.2)+ B3 (9.2) g3 (9.2) + oy (8.2)14 (8.2) +

0
z 72
0 0
+B4(8,2)24(8,2)1,

81(2) = [dZ2{oy (Dg1 (D) + a2 (D)2 (D) - B D (D)} +

fr(z)= Jdi{az (D1 (2)-B1(2)g)(2) + 0y (Df, (2)} +
1
z T2

[dz | d@{oc4(~,Z)f3(~,2)—B4(~,2)g3(9,2)+ (27

a3 (8.2)f4(8.2) - By (8.2) 24 (8.2)0.

(25)

g(2)= Idi {0 (2)g1(2)+Br (D) (2) + a1 (2)g, (2)] +
1
z T2

[dz [ dBos(9.2)e;(8,2)+Ba (8.2)15(8,2)+

1 0
oy (8,2) g4 (8,2)+B5(8.2) 4 (3.2),

(28)

£5(9,2) = [ dz{as(9,2)f; (2) -Bs(9,2)g (2) +
0

+a6(8,2)f5(2) +B6(8,2)g,(2)} + 29)

z

n2
[dz [ dzia; (8,9,2)f5 (8,2) B, (3.9.2) &5 (8.2) +
0 0

ag(8,9,2)f,(8,2) +Bg (8,9, 2)g4 (3. 2)},
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23(9,2) = [dZ{Bs(9,2)f; () +
0
+015(9,2)g1 (2) + 04 (9, 2)25 (2) — B (9, 2)F5 (2) |+ G0)

z

jdznfd&i{% (8.9.2)g3(8.2) +B; (8.9.2) 85 (8.2) +
iag(zé, 9.2)24(8,2)-Bs(8,9.9)1,(3,2)},

£4(9,2) = fdz{%(s, 2)f1(2) B (9, 2)2 (2) +

as(9, Z)le(i) +B5(9,2)2,(2) |+

z 72
[az [ d8{o5(9,9,2)8(8,2)—Bs (8.9.2) 5 (8,2) +
1 0

€2))

+017(8,9,2)f4(8,2) +B7(8,9,2)g4(3,2),

g24(8,2) = fdi {OL6 (9,2)g1(2) + B (9, 2)f1 (2) +
1

+05(9,2)2,(2) = Bs (9,215 (2)} +

+'T‘dzn/2 B a8(§18,2)g3(§~,2)+ (32)
Lo |+Bs(9.9.2)f5(8,9.2)+

+07(8,9,2)24(8,2)-B7(3,9,01,(8,2)},

where Z=z/L (0<z<1), and the dimensionless
o;,B; 1i=1-8) are related to the

coefficients a;, b; (1=1-28) by the relations:

coefficients

a,(z) = O‘lL(z), az(z)=“2T@, bﬂz)z@,
a3(g,2) = a3k(312) » b3(kg,2) = %,
a4(K0,Z)=%SI:2), b4(1<0,z)=%,

z z
as(icg,2) = 33D bS(KO,Z)Z@,
a6(kg2) = 22D oy, = P2,

a7('~<0»'<0=Z)=M7 b7(‘~<0a‘<0a2):%,
z z

ag(ﬁO,KO,Z):%, bg(ﬁo,Ko,Z):%.
z z

Having found the asymptotic form of the integral
in the expansion (10) and the corresponding Poynting
vector, we obtain the angular distribution of the

radiation power at acute angles P*(0) and obtuse
angles P~ (0) :

dPT () ¢
do 4k

(f32 (0,L)+ g%(e,L)),

dP~(0
de( ):ﬁ(ff(n—9,0)+gi(n—9,0)). (33)

The amplitudes fi(z), g(z), f,(2), g, (2)

determine the surface wave field and the corresponding
Poynting vector, which allows to find the powers of

both Py (z) and P;(z) the transmitted and reflected
surface waves, respectively.
The

coefficients for a surface wave are equal to:

transmission m; and reflection T

+ Pi(z—> o) 2 2
=== f L L )
1o Py (z > —o) (1( e ))
o :w = (f22 (0)+g§(0)) . (34
Py (z > —»)

Relations (33-34) allow us to find radiation
patterns, as well as the coefficients ™ and n~

transformations of the energy of the surface wave into
the radiation energy at acute and obtuse angles,
respectively:

n/2 +
o | o P7©)
PJ(Z—)—oo) 0 do
/2 (35)
T
= [ ao(F@.1)+g @),
0
n/2 —
- | dedpde(e):
Pt (z—> —
0z =0) 7 (36)

n/2
= | de(ff(n—e,O)Jrgﬁ(ﬁ—G,O))-

T

2. Results of the computations

The system of integral equations (25-32) was
solved numerically by the method of successive
approximations. The zeroth approximation for the
amplitudes is given by the following relations:

fi(2)=1,2(2) = f1(2) = g2(2) =

:f3 (89 Z) =823 (89 Z) = f4 (99 Z) = g4(99 Z) =0, (37)

Conditions (37) correspond to the passage of a
surface wave through a section with an inhomogeneous
plasma without distortion.

In the present paper it is assumed that the function

n.(z) is such that the dielectric permittivity
gp(2)=1- cog (z)/ ’ increases linearly as shown in
fig. 3. The dependence is chosen in the form:

gy (2)=—1-¢gg —£ +£7,

—1—8'—80 £sp(2)ﬁ—l—80, (33)

where €7 >0 u ¢ >0. The parameter e s equal to

the gradient of the dielectric constant of the plasma:
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N :(gp)'i.

It is clear from fig. 3 that g; determines the

(39)

function jump for &,(z) where Z=1. Emphasize that

the function &, (Z) can be arbitrary. The solution of the

problem is completely determined by the electric radius
of the plasma cylinder a/L , the electrical length of the
inhomogeneity section L /A, the relative wall thickness

of the b/a, the dielectric

of the

dielectric  cylinder
permittivity €4 and the parameters 80,8'

function &p(2).

-1-¢, J

-1l-5,-¢

Fig. 3. Dependence of the permittivity of the plasma
&p (Z),where Z=2z/L on the section with longitudinal

inhomogeneity of the plasma density (line 1)

The accuracy of the computations is determined by
the difference approximation of the integrals in
equations (25-32) and by the validity of the
approximation (18). Accuracy was controlled with the
help of obvious equality:

Mo +Mp +n" +n_ =1. (40)

In the present paper we confined ourselves to the
parameters of the problem when it is possible to use the
substitution (26). For large values of the parameters
a/A, b/a, and the absolute value of the dielectric

permittivity of the plasma |sp| in the antenna, there is

more than one surface wave. In this case, the method of
spectral decomposition is extremely complicated so that
it becomes practically inapplicable.

Physically, this complication is due to the fact that it
is necessary to take into account the coupling of all waves
to each other, including surface and spatial waves.

Mathematically, this leads to an increase in the
number of equations in a system of equations of the type
(25-32). Therefore, we confined ourselves to the values
of the parameters a/A and b/a for which only one
surface wave exists in the antenna.

Fig. 4-8 show the results of calculations of the

surface wave energy transformation coefficients ng, 1
(34), " (35), n~ (36), where g, = 10, a/A = 0.1,

depending on the plasma permittivity gradient &' for
L /A= 2 for different values of the parameters ¢4 and

b/a . The transformation coefficients shown in fig. 4—
6, correspond to the value g4 =2,5 (polyethylene,
polystyrene), and in fig. 7-8 — g4 =10 (sapphire).
These substances have a sufficiently small tangent of
the loss angle, which is approximately equal

tgd ~ 10™*. From fig. 4-8, that it is possible to calculate

the coefficients:ng, mng, n", n~ with sufficient

accuracy for a very rapid change in the plasma density.

At g, =10, and & =10000, we get from the formula

€ :1—0312) / o, that the plasma density at the end of

p
the inhomogeneity region decreases by about 100
compared to the density by z=0.

It is seen that the energy of the surface wave is
mainly converted into radiation energy at acute angles
and the energy of the surface wave transmitted through
the inhomogeneity.

The coefficient 1" increases with the gradient of

the dielectric permittivity ¢ and reaches values of

N ~ 15-35%, depending on the geometric parameters
and physical properties of the antenna. The function
n*(¢') monotonically grows, therefore at e > 10000,
radiation is possible with even greater efficiency. With

increasing £ , however, it is necessary to reduce the steps
of integration into (25-32), which requires an
inordinately large computer resource. From a comparison
of not only fig. 4 and 5, but also fig. 7 and 8, it is seen,
that with increasing of the relative thickness of the wall of

the dielectric b/a , the coefficient n* decreases.
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Fig. 4. Dependence of the energy transformation
coefficients of the surface wave on & for g = 10,
L/A=2,a/A=0.1, b/a=1.01, g4 =2.5
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Physically, this is explained as follows. The
surface wave is partially propagated along the dielectric.
This part of the wave propagates without distortion,
since the dielectric is homogeneous. The transformation
of the wave occurs only on plasma inhomogeneities.
The thicker the dielectric, the more uniform the plasma
antenna, which leads to a weakening of the
transformation of the surface wave into radiation.
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Fig. 5. Dependence of the energy transformation
coefficients of the surface wave on & for go = 10,
L/x=2,a/A=0.1, b/a=12,¢e4=2.5
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Fig. 6. Dependence of the energy transformation
coefficients of the surface wave on & for go = 10,
L/A =5 a/A=0.1, b/a=1.01, g4 =2.5

The functions n+(s') and ng (s') slightly change
when the electrical length of the inhomogeneity part is
changed L/A and are determined mainly by the
parameter b/a . This is illustrated in fig. 6. The fraction
of the energy of the reflected surface and backward
scattered waves is very small. With an increase in the
jump in the permittivity at the end of the inhomogeneity
region determined by the parameter g, the efficiency

of the transformation of the energy of the surface wave

into radiation, that is, the parameter ", where all other

conditions being equal, decreases.
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Fig. 7. Dependence of the energy transformation
coefficients of the surface wave on & for gy = 10,
L/x =2, a/A=0.1, b/a=1.01, g4 =10

Therefore, for effective antenna operation, the
plasma density at the end of the plasma inhomogeneity
region should be small, as far as possible, compared
with the density at the beginning of the inhomogeneity
region.

Examples of normalized radiation patterns, are
shown in fig. 9, where L/A =2, a/A =0.1 for different
values of the permittivity €4 and parameter b/a . It can
be seen, that the normalized rediation patterns has one
lobe, and it is highly directional with a maximum beam
located  at  small  angles O to  the

axis z . As the thickness of the dielectric b/a and the
dielectric permittivity €4 increase, the surface wave

slows down due to the dielectric shell of the plasma
antenna. As the deceleration increases, the maximum
radiation angle increases and approaches the value /2.
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This is a common property of traveling wave
antennas [6—12]. This property explains the increase
0, in the half-widths of the normalized radiation

patterns, with increasing values of b/a and ¢ .

In addition, with an increase in the longitudinal
velocity of the plasma density and a decrease in the
electric thickness of the plasma cylinder, the width of
the normalized radiation patterns, and the angle 0,

decrease.

Thus, the plasma cylinder in question with a strong
longitudinal inhomogeneity is the basis for creating an
effective plasma antenna with a sharply directed
paraxial radiation. In such a plasma antenna, the energy
introduced into the antenna is converted into radiation at
acute angles with high efficiency.

In addition, the positive property of such an
antenna is the absence of sidelobes in its directional
pattern.

Conclusion

The efficiency of transformation of a surface
axially symmetric wave into radiation in a cylindrical
plasma column bounded by a dielectric cylinder is
studied. The plasma is longitudinally inhomogeneous.

For the analysis of such systems, the spectral
decomposition method is effective.

According to this method, the electromagnetic
field is decomposed into a complete set of functions,
including surface and volume waves. A system of
integral equations for the expansion coefficients is
obtained.

These coefficients determine the efficiency of the
transformation of the energy of the surface wave into
radiation energy and the radiation pattern. Longitudinal
heterogeneity can be arbitrary, including a very strong.

Calculations are performed for different values of
the electric radius of the cylinder, the relative thickness
of the dielectric, the electrical length of the plasma
inhomogeneity section, the dielectric permittivity of the
plasma, and the dielectric.

It is shown, that as the gradient of the dielectric
permittivity increases, the part of the surface wave
energy converted into radiation, increases and reaches
35%.

The normalized radiation patterns and the
coefficients of transformation of the energy of the
surface wave into the radiation energy depend only
slightly on the electrical length of the region of plasma
inhomogeneity.

The normalized radiation patterns have a single
beam, located at a small angle to the plane of the plasma
layer. This angle, as well as the width of the beam,
decrease with increasing rate of change of the function
&p(2) and are equal to several degrees.
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BUMPOMIHIOBAHHA NPOCTOPOBO OBEMEXEHOI HEOQHOPIAHOI MIIA3MU
B.J. Kapnos, 10.B. Kupudyenko, A.M. Apremerko, O.B. Jlykamryk

Hocniooceno egpexmusnicmv nepemeopenusi enepeii noeepxHesoi Xeuli N03008HCHLO HEOOHOPIOHO20 YUNIHOPUUHOZO
n1azmo6020 cmoena y eunpominiosants. Iliazma obmedsicena Oienekmpuunolo 00010HKO0. AHaniz npogedeno memooom
CHeKMPANbHO20 PO3KAAOAHHS NO NOBHOMY HAOOPY DYHKYIN, Wo Mmicmums y cobi nosepxHesi ma nPocmoposi Xuii NAa3mo8020
cmoena. Bugooumucsi cucmema inmezpo-ougepenyitinux pigHans 015 Koeghiyicumis posknadanns. Li koepiyicnmu eusnauaiomo
amnaimyoy po3ciaHoi Xeuni, a Makoic amniimyou no8epxXHesux X6ulb w0 NpouuLiy HeoOHOPIOHICMb abo 6i06UUCH 8i0 Hei.
Cucmema pisHaHb Po36 ’a3yeEmbCsi OISl O0GLILHO20 3MIHeHHs winbHocmi naasmu. OOuucieno 3anexchocmi Koegiyienmis
mpancgopmayii enepeii nogepxHesoi xeuni 6i0 epadicHma WilbHOCMI NAA3MU, eLeKMPUYHOT O08HCUHU OLIAHKU HEOOHOPIOHOCII
NIAzMU, eleKmpUYHO20 paodiyca NAAZMO8020 YUNIHOPA, OleNeKmpudHoi npoHUKHOCmi ma moewjunu Oienekmpuxa. Hasedeno
nPpUKIaou, KOIU 4acmka eHepaii noGepxHesoi X6ui, ujo nepemeopiocmybCs y GUNPOMIHIOBAHHS Ni0 20CMPUMU KyMamu, 00ca2ae
35%. Hiazpamu Hanpasnenocmi € 20Cmpo HANPAGLEHUMU U MAlOmMb OOHYy Nemocmky. Makcumym 6unpominioeannsa 6ionogioae
Kymy @ OeKilbka 2padycié no GiOHOWEHHIO 00 HANPAMKY pO3N0GCI00dceHHs nogepxuegoi xeuni. [Lupuna neniocmku
amenuyemscs, a il nonoscenns scyéaemocs 00 ° npu 30invwenni epadienma winbrnocmi naazmu. JJocaioncyemvces 6naus
enacmusocmeil OieNeKMpUuKa Ha XapaKxmepucmuKy UNpOMIHIO8aAHHS.

Kniouogi cnosa: yunindpuuna niasmosa anmend, Memoo CHeKmpaibHo20 pO3KIAOAHHS, BUNPOMIHIOBAHHS, NOBEPXHES]
X@ini.

WU3NYYEHUE NPOCTPAHCTBEHHO OrPAHWYEHHOW HEOOQHOPOOHOM MNA3Mb
B.J. Kapnos, 10.B. Kupuuernko, A.H. Apremenko, E.B. Jlykamyk

Hccneoosana s¢pgpexmuernocms npeobpazoeanus sHepeuu HOGEPXHOCIMHOU 80IHbL NPOOOIbHO HEOOHOPOOHO20 YUTUHOPUYe-
CK020 naasmenHo2o cmonba 6 uziyuwenue. Iliazma ocpanuuena Oudrexmpuyeckoll 06oaoukou. Ananuz nposeden mMemooom
CNEeKMPAbHO20 PA3N0ACEHUS. NOSL NO NOJIHOMY HAOOPY (DYHKYuUL, eKII0UaloueMy 6 cebsi NOBEPXHOCMHbIE U NPOCTPAHCMGEHHbLE
60IHBL NIAZMEHHO20 cmonba. Bvigooumcs cucmema unmezpo-ou@pepeHyuanbHblX YpasHeHuti osi Kodpuyuenmos pasznoice-
Hus. Dmu koapduyuenmol onpedenirom amnaumyovl npouieouletl, OMpaxceHHOU U paccessHHol 80NIH, a MAaK’ce OUAzpamMmyvl Ha-
npasnennocmu uznywenus. Cucmema ypagnenuti peuwaemcst Oisi RPOU3BONbHO20 NPOOOIbHO20 USMEHEHUS. NIIOMHOCIU NLA3MbL.
Boruucaenvt 3aeucumocmu kospuyuenmos mpancgopmayuu Hepeul NOBEPXHOCMHOU GOIHbI OM 2PAOUEHMA NAOMHOCU
NAA3ZMbL, INEKMPUYECKOU ONUHBL YUACMKA HEOOHOPOOHOCIU NIA3MbL, DNEKMPUUECKO20 PAOUYCd NIA3MEHHO20 YUIUHOPA, Ou-
NEKMPULECKOU NPOHUYAEMOCIU U MOTWUHbL Oudiekmpuka. Ilpusedenst npumepsl, K020a 0051 IHEPUU NOBEPXHOCMHOU BOJIHYL,
Komopasi mpancpopmupyemcst 6 uziyyerue noo ocmpwimu ynamu, cocmaeisiem 35%. Jluazpammol HanpasieHHOCmu S8sI0MCsL
OCMPOHANPABIEHHBIMU U UMEIoN 00UH Jenecmok. Makcumym usiyueHus npuxooumcs Ha y2oi 8 HeCKOIbKO 2padyco8 no OmHo-
WeHUI0 K HANPAGIEHUI0 PACRPOCMPAHEHUsl NOBEPXHOCMHOU 60aHbl. LLupuna renecmka ymenvuiaemcsl, a e20 nOA0ACeHue cogu-
caemes k 0° npu ysenuuenuu zpaduenma nnomnocmu nnazvel. Hccnedyemes enusnue ceoticme Ousnekmpud Ha Xapakmepucmu-
KU U3LYYeHUsL.

Knrouesvie cnoea: yununopuveckas nia3mMeHHAs AHMEHHA, Memo0d CReKMPAIbHO20 PA3LONCEHUS,, USLYUEHUe, NOBEPXHOCI-
Hble GOJIHbI.
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