Po3BUTOK pagioTexHiYHOro 3abe3nevyeHHs,
ACY Ta 3B’a3Ky lNoBiTpaHnx Cun

UDC 626.4 DOI: 10.30748/nitps.2018.32.06

M. Borysenkol, S. Herasimov', A. Kostenko®, D. Makarchuk®

' Ivan Kozhedub Kharkiv National Air Force University, Kharkiv
? National Academy of the National Guard of Ukraine, Kharkiv
3 State Flight Academy of Ukraine, Kropyvnytskyi

DEVELOPMENT OF OPTIMUM NAVIGATION INFORMATION
PROCESSING ALGORITHM

The purpose of a navigation system or a complex of navigation systems of any object is achieving of navigation
parameters vector as a result of the initial measurements and their further processing which are further used in con-
trolled systems of the object motion. The achieving of navigation parameters in such systems is based on the "ideal
work" algorithm, which, with without abnormal primary information sensor system (measurers of velocity and
course and also acceleration and angels that position the gyroscopes) and in the assumption of zero-error of these
sensors ensures the error-free parameterisation. The implementation of the "ideal work" algorithm ensures the sys-
tem unexcitability by useful signal, which is the valid values of navigation parameters. Despite the fact that the in-
difference of system errors from the true motion of the object, taking into account the multiplicative component er-
rors, the unintentional smoothing of the high-frequency objects moving through the inertia of the sensors is carried
out approximate, the algorithm of the system of calculating coordinates and the inertial system tend to bring as
close as possible to the "ideal work" algorithm. For this purpose, the mathematical devise for the development of an
optimal algorithm for the navigation information processing is grounded in the article. The optimal algorithm for
processing of navigation information is proposed to provide the necessary accuracy of determining the position of

an object in the route of movement.

Keywords: the navigation system, the navigation information, the processing algorithm, the position of an ob-

Jject, the route of movement.

Introduction

Target setting. Inertial navigation systems are the
basis of navigation complexes of modern motion ob-
jects. This is because they provide complete information
about navigation trajectory parameters — yaw angle,
trim, bank, acceleration, speed and location details.
However, they are completely autonomous, that is, they
do not require outside information. Due to the ability to
determine the high precision flight attitude and furnish
data with high frequency, inertial navigation systems
have no alternatives for today [1-2].

Analysis of literature. The development of iner-
tial navigation framework began in the 1930s of the last
century. It should be noted that a significant role in the
theoretical foundations of inertial navigation is played
by the theory of stability of mechanical systems, in
which mathematician Lyapunov had made the grate
contributions [3—4].

Practical implementation of inertial navigation
methods often faces significant obstacles needed to pro-

vide high accuracy and reliability of all devices at pre-
scribed weight and dimensions.

Increasing the accuracy of motion objects naviga-
tion is due to enhancements both measuring equipment
and mathematical support information processing solu-
tions [5—11]. Therefore, assignments directed towards
achievement of high level of navigation accuracy should
be realised by using of the navigation information proc-
essing effective techniques and taking into account the
influence of the irregularity figure of the Earth. It is
clear that the complication of navigation algorithms is
appropriate only in the conditions of small instrument
errors of navigation systems, which are provided today
only in some cases [12—-14].

In that regard actual relevant scientific research in
the spheres of navigation and control appears — methods
and models synthesis of marine navigation increased
activity under uncertainty.

The purpose of the article. Substantiation of the
mathematical apparatus for the development of optimal
algorithm for the processing of navigation information.

38 © Borysenko M., Herasimov S., Kostenko A., Makarchuk D., 2018



Poszsumox padiomexniunozo 3abesneuenns, ACY ma 36 ’s3xy Iosimpsnux Cun

Main part
Based on the analysis of navigation systems and
factors which affect the efficiency with which they
function, output signal of navigation system \ , which
generates /-dimensional vector y of navigation pa-

rameters for the case of discrete time can be written as:
(k) =y (k) + Ay (k) =y (k) + B, ()X, (k). (1)

T
where X :(A\VT, AT) is dimensional vector 1

which describes the navigation system errors and satisfy
the system of equations:

X (k)= A [ X (k=1), k ]+ W, (k). )

In expression (2) B, — [/x 1 ] — matrix [E | 0], while

E is unit matrix [/x /] M, 0 — zero matrix [/x1; —/]. More

generally vector Ay is not a subvector of X;. It is a

linear combination of its components.

As an example, there is a relation

Ay =BX;. 3)

It is clear that on the basis of navigation system er-

rors description satisfying the system of equations (2)

and matrix B, the possible solutions of analysis of nav-

igation accuracy parameters producing which is com-

posed of Ay random vector's definite properties. The

situation qualitatively changes if simultaneously with

navigation system which generates \ vector, at least

one other navigation system functions, for the output
signal Y of which is accordingly

Y (k)=F[ Ay (k), k]+n(k),
where F is known, generally nonlinear, function de-
pending from navigational parameters; n=n;+n, —
measuring error, while n; and n, =V are slow vari-

able and high-frequency (white noise) composite errors
of this navigation system.
Let’s consider, that

my (k) =B, (k)X (k). “)
r, —dimensional vector X, satisfies the equation:

When operating within several navigation systems
(this particular case will be further considered), the sig-
nal Y(k) is a vector; all expressions resulting this signal
are matrix. The expression for measuring with the use of
(3) and (4) will be get in the form

Y (k) =F [ X (k), k |+B, (k)X, (k) +V(k). (6)

F, is known function X; and k is expressed in F

and B;. Let's input augmented r-dimensional vector
X, .
X = <. | r=n +1, that satisfy the system of equa-
2

tion

X(k)=A[X(k-1), K|+ W(k), (7

W, A0
where W = , A= .
W, 0 A,

Rewrite (6) in the form

Y (k)=H[X(k), k]+V(k). ®)
We shall notice, that (4) and (5) follow
H(0) = 0. Q)

When there are at least two simultaneously operat-
ing navigation systems (the first system is usually con-
tinuous operating inertial like system or system of cal-
culating coordinates; it is convenient to give the second
system the value of correcting the first one) it is possible

task setting to obtain an estimate of (k) vector of

navigation parameters on measurements Y (i) which are
made basing on the interval ie[0,k], where 0 is the

moment when the navigation systems have got started.
The estimate should provide minimum differences
() -v(K).

It is easy to understand that solving of this task is
equal derivation of estimate Ay vector y—\y , that

provides the small quantity
e(k)= Ay (k)-Ay(k), (10)
because with a taken as Yy=y—-Ay, we get:

V-y=¢.

Given that € is random vector because of random-
ness X and Y, its level can be characterised only as the
average set of possible values X and Y. For this pur-
pose, it is convenient to use covariance matrix

G, = M(SST), where M (-) provide averaging over X

and Y.
Let \y is optimal estimate (in contrast to any other

estimate ), if

A, =G,-G, >0, (11)

where G, = M[(AW—AW)(A\TJ—AW)TJ = M(E'ET),

Ay =y —vy, €=Ay—-Ay; inequality means symmet-
ric positive definite matrix Ae.

It should be noted that derivation of optimal esti-
mate of navigation parameters error vector \y by the

criterion (11) is in agreement with the basic require-
ments of navigation practice. Using the properties of
positive definite matrix [15], it should be mentioned that
diagonal elements of matrix Ag 3 (11) are inseparable.
Therefore, the root-mean-square errors of optimal esti-
mates of all navigation parameters \y are minimal.
Hence, the popular name of the criterion (11) is root-
mean-square criterion.

Further, in the allocation of error estimates vectors
to a normal law of isosurface density form the disper-
sion volume. The equations of which have the next form
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T
€€
=22,

GS
At the fixed / the volume of ellipsoid is propor-
1/2

(12)

tional to |G8| and the probability that the vector ¢

will take the wvalue inside the ellipsoid (12)
l—exp(—/2/2) [16]. We now show that from (11) we

get inequality
G| <[Gel, (13)

It determines the minimum size of the dispersion
volume error of the optimal estimation.

Let's convert the error vector € and € using non-
degenerate matrix T in order that
G, =TG,T' =diag(1)=AE should provide for vector
covariance.

Note that first G, and G = TC_}STT

the inequality (11), secondly the inequality (as yet uni-

equality

also satisfy

dentified) for determinants |G8| i |C_}S| is preserved for
the determinants |G’8| i |G’8| , because (17) for C = AB
we receive |C| =|A|x|B].

Let's define covariation &€ = Te using

G, = UTdiag(xi)U, (14)

where A; —matrix G’ eigenvalues.

The structure G|, allows to present it in the form
G, = [_JTdiag(ki)I_J. Taking into account this fact and
if plugging of equation (14) in (11) we arrive at inequal-
ity A; =X whence it follows the inequality proof (13):

G, =[O f[x S[1% 2 =[Gy
i=1 i=1
The following 1
o] ol-{or -

equation is used here:

We also note that the obtained properties of the
criterion are also fulfilled for the sub-vector €. It is quite
enough in any vector a, that has a quadratic form, to
leave non-zero elements of corresponding Ay vector
components that matter to us. That will make sure that
using the common criterion in minimality of root-mean-
square errors of estimate in any linear combinations of
the components Ay, minimality of the dispersion vol-
ume area error of object coordinates estimation.

To avoid methodological difficulties, related to the
formation covariation matrix determinant and other
forms of criteria (11) in the case of different navigation
parameters physical dimensions let's consider that these
parameters are pre-reduced to one dimensions by some
scaling conversions.

By rewriting (3) in the form Ay = BX, where B =
(B;, O), O — zero-matrix of order [/xr, ], put the prob-
lem of X(k) vector
Yé‘ = {Y(i), i= ﬂ} according to the criterion

k)=[G(k)-G(k)]=0.

By analogy with (11) let's introduce
G=M| (x-X)(x-%)" |, G| (x-R)(x-%)" ]

where X is optimal, and X — any estimate X.

estimate on measurements

(15)

As noted above, the estimation BX of the linear
combination of vector X components is the optimal es-
timation of the vector Ay of the errors of navigation
parameters.

Ay =BX . (16)

This shows that solution of optimal estimate X on
measurements Y(lf using (16) and =y —Ay ratio
leads to an optimal estimation of navigation parameters
vector. The “extension” of the task — the evaluation of
high-dimension vector X to obtain the estimate of sub-
vector Ay usually lesser dimension ensures the possibil-
ity of the Markovian approach usage, which opens ways
to simplify the filtration procedure. The results of this
unit are general; under the vector X it is possible to un-
derstand and the subvector Ay.

In the general theory of statistical filtration, the
following result is one of the main: optimal according
the criterion (15) the estimate of the form

X(k)=M[X(k)/Y], (17)
where Y is — some synergy of measurements of vector
X(k); symbol M(:/+) indicates conditional expectation.
Let's show it.

Let X(k) is the estimate X(k), defined on meas-
urements Y by any filter. To the error of the estimate
g(k)=X(k)-X(k) we give the form

E=X-X+X-X=¢+35,
where & — estimate of the
8(k)=X(k)-X (k).

Let's write the covariance matrix of the estimate

error X(k) by virtue of (18) in the form

(18)
(17);

error

(19)

The mathematical expectation in this formula is
taken on the strength of random variables (X)k and Y
and needs to be defined sequentially:

Myy ( )=My[Mx( /Y)].

Using this rule, we can write:
X(e87) =My [MX (87 /Y)].

G=G+M(es")+M(se")+M(s5" ).
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Additional error 5(k) — the difference of estimates —
is the function of measurements and at fixed Y doesn't
depend on X(k). The same is true and for the estimate

X (k) . Therefore, 8 and X can be brought outside the
sign of conditional mathematical expectation:
M(z8" ) =My [MX (X—X/Y)ST] =

=My {[M(x/Y)-X]s"}.

Using (17), we obtain the equation,

M(aST):O,

it allows us to conclude that there is no correlation of
optimal estimate error X(k) on measurements Y with
any function of these measurements.

Likewise it can be shown that the third addend in
the expression (19) is also equal to zero. Now, we see

that A(K) =G (k) -G (k) = M| 3(k)8" (k)]

As M(SST) is covariation matrix, which is al-

(20)

ways sufficiently definite, the estimate (17) meet the
criteria (15), that has to be shown. The condition (20) is
necessary and enough criteria for optimal estimate.

The population of random variables is completely
described by total density of probability distribution. Let
the population Xlg (set of state vectors X(0), ..., X(k))
and Yé( (set of measurements Y(0), ... Y(k)) corre-
sponds to density f (xlé, ylé). Now we can write the

estimate (17) in the form

X (k)= [x(k)n[x(k)]dx (k) (21)
where
a[x (k)] = [£(x(k)/ YE )= Jr(xb, v8 jnt™ (22)

(XOa 0 )dxo

is a posterior density of random vector X(k).

Here and further integrals are understood as infi-
nite integrals, and vector differential — as a product of
the differentials of their components. In addition, we
will use small letters to denote the density arguments,
corresponding to random variables whose densities are

considered. Use in (22) Yé‘ as density argument instead
of ylé means the substitution in the function f (xlé , yg)

obtained measurement realisation.
If there are no special assumptions about proper-
ties of sequences X(k) and Y(k), then multidimensional

density f (xl(;, ylé) can be of very complicated struc-
ture, and prevents using formulas (21) and (22) as an

algorithm for calculating the optimal estimate. In par-
ticular, the calculation of a posterior density according

to the formula (22) does not have the properties of re-
currence.

Optimal filtering of measurement results at Mark-
ovian error model. Signals of navigation systems are
characterized by specific properties that allow a little
progress in solving the tasks of optimal nonlinear filtra-
tion. These characteristics are related to the Markovian
character of the navigation signals. Using them, we
specify the expression (22) for posterior density

T [x (k
It is known that a random sequence has Markovian

property if it is described by a finite-difference stochas-
tic equation [16]. In our case, we create the sequence

X(k)
&(k)=| 5
Y (k)
expressions (7) and (8), for this sequence, we can write
the equation:
&(k)=B[&(k-1), k]+ Ve (k)

)] and get recurrent relation for it.

J, where Y (k)=Y(k-1). Using the

where
A[X(k-1),k]

, . (W(k)
SEC =[H[x(k—1),k—1}]’ ¥ _[V(k—l)}

This fact allows us to define concretely the kind of

joint density f (xlé, ylé), which is the part of the ex-

pression (22), giving it through the transition density of
Markovian sequence &(k) [17]. They have some spe-
cifics which are connected with the fact that at first, the
sequence X(k), satisfying the equation (7) is Markovian
and secondly, measurements according to the ratio (8)
depending only from X(k). Due to it transition density

of sequence &(k) in this case have the form

fle(k)/g(k- 1] f[x (k) /x(k=1), (k-1)]x
fo[x(i)/x(i—l)]z
=f[x(k)/x(k-1)]f[§(k)/ y(k-1)].

Let's write the expression for general density
k+1
flef™):
f( k+1 ~k+1) f|:X :IX
k+1 (23)

<)/ x -] e[5()/5(-1))
i=l
B . . . kK _k
ecause we are interested in density f (Xo , Yo ) or
f(xlé, 5115“), we integrate (23) on variables x(k + 1),

y(k—l).

¥(0) in infinite limits and substitute ¥ (k)=
Then
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f(xlésylé)=
(24)
}Hf[x /x1 l]Hf[y /x ]

After it we get recurrence equat1on for the poste-

:f[x

rior density n[x(k)] . For this using the expression
(24), let’s write at first the recurrence equation for pos-
terior density:

f(xlé,yo) f[x )/ x(k- l:|><
(25)

xf[y(k ]f[ K= l,yo_ ]
Substituting (25) into (22), we obtain.
n[x(k)}: f[Y(k)/X(k)} y
LY (k)/x(k

[e[x(k)/x (k- 1]f(
Xjf[x k)/x (k=1) ] (x6 7, Yé‘“)dxlg‘ldx(k)'
Let's

Y(l)(_l )dx]é_1

split numerator and denominator in

Jf(xlé_l , Yé(_l )dxlé_l that by virtue of equation
(s, Y k™

r(xs v Jaxk™

=n[x(k—l)],

then

Y () (K]
O R ]

JE[x(k)/x(k=1) ][ x(k—1)]dx (k1)
jf[x /x(k=1)]n[x(k-1)]dx(k—1)dx (k)

Because
£ (k) /x (k=1) ]l x (k=1)] = £ x(k), x(k=1)/ V5|

integral, that is in numerator (26), become the density of

o[x (k)] = x(k)/ Y |

= [ x(k)/x(k=1) ][ x(k-1)]dx (k-1),
thus we can write (26) in the form
f [Y [x(k)Je[ x (k)]
O]

/X(k)] by content is the

(26)

@7n

b
NI
The function f[Y

function of state vector veracity on k step according to
the obtained measurement results Y (k).
The initial condition for the recurrence equation

0)] of

result

given by (27), (28) is always prior density f [x(
the vector X(0) at

[ x(0)]=f[x(0)/Y

rence equation.

this the

0)] is the first step of recur-

The next step for defying of this equation is to ob-

tain the expressions for density f [x(k)/ x(k—l)} and

flY(k)/x

and V(k) Gaussian white noise with covariations Q(k)
and R(k) accordingly, then we receive [16]:

k)] from the equation (7) and (8). As W(k)

fx(k)/x(k-1)]= |Q|__11//22 x
|27 29)
xexp{—g[x(k)_A[(k_l)]f—"(k)‘z[(k‘l)]};
LY (k) /x(k)]=fy {Y (k)-H[x(k)]} =
|R|—1/2 ‘%[Y(k)‘H[X(k)ﬂT | (30
T |

Pl y()-H[()]
R

Obtaining of the recurrence equation for the poste-
rior density in the task of processing of navigation
measurements is finished after substituting (29) in (27)
and (30) in (28).

The denominator (28) is normalising constant for
posterior density, that is denote by p(k). Because of the
integrand in  the denominator is  density

f[x(k), y(k)/Yé“l] under y(k) = Y(k) (here like in

(22), making use of the notation Y instead of the density
argument y means substituting of already achieved
measurement)

p(k)=f[ Y (k)/ Y5 |. (31)

Thus, the optimal algorithm for processing naviga-
tion information should work as follows.

1. Using the relations (27) and (28), when the fur-
ther measurement result Y (k) is obtained, recalculate
posterior density, then the vector X (k) optimal estimate
is obtained from the formula (21), which is used for
getting (according to the relation (16) estimate error of

navigation parameter vector Aﬁ/(k) measured by the
first system.

2. The relationship (k)= (k)-Ay (k) com-
pletes the solution of obtaining an optimal estimate of
navigation parameters vector after measurements Yé‘ .

3. To determine the accuracy of the estimates, the
posterior covariation matrix of error vector estimate

P(k): 32)

= [[&(K)~x ())& (k) ~x(k)]" n[x(k)]dx (k)

and obtained posterior covariation matrix of error vector
estimate according to (10) and (16)

P, (k)=B(k)-P(k)-B" (k) should be used.

)
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4. The covariation matrixes G (k) and G (k)
which are used to form the criterion of optimality (11),
(15), differ from covariation matrixes P (k), P(k),
conditioned to the measurement results, which are real-

ized Yé( , they allow the average with all possible values

Yé( , as a random vector.

Markovian description of navigation systems er-
rors, which ensured the transition from the ratio (22) for
posterior density to the recurrence ratio (28), leaves,
however, significant difficulties in realisation of filter
that estimate on computer, "unable" to solve the func-
tional equation correctly (28).

Conclusions

The practical solving of the optimal filtration prob-
lem is based on certain simplifications under task setting,
that leads to the loss of optimal estimates of navigation
parameters and consequently, increase the estimate error.

However, if sub-optimization of the filter proceeds
from one or another simplification of the optimal proce-
dure, it remains possible to provide small losses of accu-
racy of the implemented algorithms in comparison with
the optimal algorithm, which provides the highest, po-
tential precision.

Further research is proposed to carry out on the
line of the development estimation methods for inertial
navigation systems error signals.
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PO3POBKA ONTUMAIIbHOIO ANFOPUTMY OBPOEKW HABIMALUIMHOIT IHOOPMALIIT
M.B. bopucenxko, C.B. I'epacumos, O.1. Koctenko, I.B. Makapuyk

Toxazano, wo npuznaueHHAM HagieayiuHol cucmemu abo KOMNIEKCy Hagieayltinux cucmem 06y0b-1k020 06 ' €kma € eupoo-
JIeHHA 8 pe3yIbMami npo8eoeH s BUXIOHUX BUMIPIOBAHDb | iX N0OanbWOI 00POOKU 6eKMOPA HAGI2AYIIHUX NAPAMEMPIs, WO GUKO-
PUCMOBYEMBCS Y NOOANLUIOMY 6 CUCIEMAX YNpasints pyxom ob ‘ekma. Bupobnenns nagicayilinux napamempie y maxkux cucme-
Max OCHOBaHe Ha ANOpUMMI «ideanbHoi pobomuy, aKuil npu 6e3HAOMIpHItl cucmemi 0amyukie nepeunHoi iHgopmayii (eumipio-
6aui6 WEUOKOCMI Ma Kypcy, a MAKoHC NPUCKOPEHHS. ma KYymie, AKi 3a0aimb NOA0NCEHHS 2IPOCKONI8) i 8 NpUNYueHHI 8i0CymHo-
cmi noXuboK yux damyuxie 3abesneyyc 6e3NOMUIKoge 6upobenHs Hasieayitinux napamempis. Peanizayis arcopummy «ioeans-
HOI pobomuy 3abe3neuye He30ypeHicme cucmem KOPUCHUM CUSHATOM, 3d AKULL 6UCMYNAIOMb OIUCHI 3HAYEeHHs HABIaYIliHUX na-
pamempis. Hezeaoicaiouu na me, wjo He3anedCHICMb NOMULOK CUCEM 8i0 ICMUHHO20 PYXYy 00'€KmMa 3 ypaxyeaHHaM MyIbmunii-
KAMUGHUX CKIAO0BUX NOXUDOK, HEMUHYHO020 3271A0NHCYBAHHS GUCOKOYACMOMHUX nepemiuyenb 00'€Kma 3a paxyHox inepyiinocmi
0amuuKi6 6UKOHYEMbC HADIUICEHO, Ancopumm pobomu cucmemu 34UCienHs KoopouHam i iHepyianbHoi cucmemu npazHyms
MAKCUMATLHO HAOIUUMU 00 ANeOpumMy «ideanvbhoi podomuy. 3 yiero memoio y cmammi 00IpyHMOBAHUT MAMEMAMUYHUL ana-
pam 011a po3poOKU ONMUMATLHO20 aleopummy 06poOKu HasieayiliHoi iHopmayii. 3anponoHo8aHuli oONMUMATLHULL Al20PUMM
00pobKuU Hagieayitinoi iHghopmayii 01 3a6e3neyents HeoOXiOHOI MOYHOCMI BUSHAYEHHS NOJONCEHHS 00 €Kma Ha Mapuipymi
Pyxy.

Knrouosi cnosa: nagicayiiina cucmema, nasieayiiina ingpopmayis, aneopumm o6podKu, nozuyis 0b'ckma, mapupym pyxy.

PA3PABOTKA ONMTUMANBLHOIO ANFTOPUTMA OBEPABEOTKN HABUTALLMOHHOW UHOOPMALIUK
M.B. Bopuceunko, C.B. I'epacumos, A.U. Kocrenko JI.B. Makapuyk

Tloxasano, umo nasnauenuem HABULAYUOHHOU CUCMEMbl UMY KOMINEKCA HABULAYUOHHBIX cCUCeM 1106020 00beKma A6is-
emcs gulpabomka 8 pesyivbmame NPOBEOeHUs BLIXOOHBIX USMEPEHUN U UX nociedyouel 0opabomxu 8eKmopa Ha8U2ayUuOHHbIX
napamempos, UCnoIb3yemo20 6 Oanbheliule;M 8 CUCIeMax ynpasnenus osudicenuem obvekma. Buipabomka nagueayuonuvix na-
Ppamempos 6 makux CUCemMax OCHOBAHO HA AN2OPUMME «UOeanrbHOU pabombly, KOMOPLIL NPU OnpedeeHHON cucmeme 0amyu-
KO8 NepeudHoll unghopmayuu (Usmepumeneti CKOpoCmu U Kypca, a makdice YCKopeHue u yaos, 3a0aroumux noioxcenue eupocko-
n06) U 6 NPeonoNOHCeHUYU OMCYMCMBU NOZPEWHOCMEL IMUX 0amuuKkos obecneuusaem 6e30uubouUHoe 6bIpaboOMKU HABUSAYU-
onHbIX napamempos. Peanuzayus aneopumma «uoeanvroii pabomuly obecneuugaem 1neeo30youUMOCMb CUCHIEM NONE3HbIM CUSHA-
JIOM, 3 KOMOPbL BbICIYNAIOM OelCmEUmensvHble 3HA4eHUs HagUeayuonHblx napamempos. Hecmomps na mo, umo nezagucu-
Mocmb OWUOOK cucmem om UCMUHHO20 OBUIICEHUS 0ObEKMA C y4emom MyabmunIuKamueHolx COCMAagIAIoWUx nozpewHocmeil,
Heu30edICH020 CeNadCUBanus BbICOKOYACMOMHBIX nepemewjeull 00bekma 3a cyem UHepYUOHHOCMU OAMYUKOS8 GbINOHAEeMCs
NPUOIUIICEHHO, aneopumm pabomsl cucmemsl CHUCIeHUs KOOPOUHAM U UHEPYUATLHOU CUCEMbl CIPEMAMCA MAKCUMATLHO NPU-
oauzumoe K aneopummy «udeanvrotl pabomory. C amoii yenvio 6 cmambe 060CHO8AH MameMamuyecKuli annapam oas paspabom-
Ki ONMUMAnbHO20 aneopumma o6pabomku HasueayuonHol ungopmayuu. IIpednodcen onmumanvhulii ancopumm 06pabomxu
HABU2AYUOHHOU UHDOpMayuu 015 obecneyenuss mpedyemol MoYHOCIU onpedeieHus NON0XHCeHUs 00beKma Ha mapupyme 08u-
JICEHUS.

Knrouesvie cnosa: nasueayuoHHas cucmema, HAGUSAYUOHHAA UHGOpMayus, aneopumm o6pabomxu, nosuyus obvekma,
Mapuipym O8UICEHU.
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