Канд. физ.-мат. наук Г. В. Снежной, д-р техн. наук В. Е. Ольшанецкий,

канд. техн. наук В. Н. Сажнев

Запорожский национальный технический университет, г. Запорожье

О СТРУКТУРНОЙ И МАГНИТНОЙ СТАБИЛЬНОСТИ АУСТЕНИТА

Экспериментально установлена количественная зависимость удельной магнитной восприимчивости χ_0 парамагнитного аустенита от содержания никеля в хромоникелевых и марганца в марганцовистых сталях. Показано, что с увеличением содержания никеля, кроме стабилизации аустенита, наблюдается увеличение χ_0 . Влияние марганца на χ_0 в марганцовистых сталях противоположное. Выявлено локализованное распределение элементов Cr и Ni на границе аустенитных зерен в хромоникелевой стали и присутствие на этих границах участков ферромагнитной фазы.

Ключевые слова: сталь, деформация, аустенит, мартенсит, магнитная восприимчивость, микротвердость.

Введение

Согласно диаграмме Fe-Ni, при температуре выше 910 °С ү- область (решетка ГЦК) существует во всем интервале концентраций никеля от 0 до 100 %. В соответствии с принятым подходом, эта фазовая область в пределах концентраций железа от 0 до 50 % называется аустенитом (при наличии в системе углерода), а вторая часть концентрационного интервала характеризует такую же структуру, но уже на основе никеля. Иногда эту фазу на основе ГЦК решетки никеля называют в жаропрочных сплавах никелевым аустенитом. Поскольку никель (в отличие от марганца) является чистым ферромагнетиком, то его присутствие в аустенитных никелевых сталях с повышением концентрации должно ослаблять склонность аустенита к сохранению парамагнитного состояния. По-видимому, увеличение содержания в стали никеля изменяет в электронной структуре аустенита соотношение числа локализованных и коллективизированных электронов, что, скорее всего, и приводит к увеличению числа спаренных электронов в размытых *d*-оболочках атомов железа (т. е. проявление определенной склонности к ферромагнетизму). Эти обстоятельства должны влиять на изменение магнитной характеристики χ_0 (парамагнитная восприимчивость) в сторону ее увеличения при повышении в стали содержания никеля или, наоборот, к значительному ее уменьшению в марганцовистых сталях (при увеличении содержания марганца), что, естественно, должно усиливать парамагнетизм аустенита.

С целью подтверждения приведенных соображений и были проведены экспериментальные исследования на аустенитных хромоникелевых и марганцовистых сталях.

1 Материал и методика эксперимента

Образцы опытных хромоникелевый сталей были получены открытой плавкой в литейной лаборатории

36

Запорожского национального технического университета в 10 кг индукционной тигельной печи с кислой футеровкой. Шихта состояла из лома стали 08кп по ГОСТ 10501-88, ферросплавов (ферросилиций ФС65 по ГОСТ 1415-93, феррохром ФХ001А по ГОСТ 4757-91), марганца электролитического чешуйчатого Mn 99.7 и порошка никелевого электролитического ПНЭ-2 по ГОСТ 9722-97. Плавки проводили с использованием метода порционной разливки (заливали стержни Ж16 мм). Первая плавка (пл.1) содержала: C-0,08 %, Si-1,2 %, P-0,015%, S-0,015%, Cr-16,5%, Ni-7,52%, Mn-0,9%, Cu-0,035%, Mo-0,03%, Nb-0,0%, Ti-0,45, Co-0,02, Al-0,005. При этом, вследствие использования одной исходной плавки, исключалось воздействие нежелательных вариаций технологических параметров (в случае наличия разных плавок), что позволило определить влияние возрастающего содержания никеля в стали на изучаемые факторы в чистом виде. После отбора каждой порции металла вводили порошок никеля, причем, содержание никеля в полученных плавках составило: пл. 1-7,52%, пл. 2-8,57%, пл. 3-10,63%, пл. 4-11,99%, пл. 5-13,15%, пл. 6-14,47%, пл.7-15,76%.

Высокомарганцевые стали с переменным содержанием марганца от 8.43 до 17,5 % ранее были получены в индукционных тигельных электропечах в виде слитков 100×100×200 мм и подвергнуты закалке в воду от 1050 °C (время выдержки при температуре закалки 3 часа). Содержание других элементов в марганцовистых сталях удерживалось в пределах химического состава для стали 110Г13Л (ГОСТ 977-88).

Металлографические исследования проводили на растровом электронном микроскопе PEM-1061, который был оснащен системой энергодисперсионного микроанализа. Микрогвердость структурных составляющих полученных сталей определяли с помощью твердомера ПМТ-3 (при нагрузке 50 г, согласно ГОСТ 9450-76). Прибор был снабжен цифровой видеокамерой для визуального наблюдения, съемки и передачи изображения на компьютер, а также был оснащен светодиодным осветителем. Фиксацию результатов исследований проводили в цифровом режиме, что позволило повысить точность измерений, а также получать общее увеличение микроструктуры до × 900.

Для непосредственных магнитометрических исследований из середины закаленных слитков вырезали механическим способом образцы в виде прямоугольных параллелепипедов размером ~3×3×3 мм³, а затем их электрополировали. Медленную пластическую одноосную деформацию на сжатие проводили при комнатной температуре на специальной лабораторной установке. Степень остаточной деформации *K* рассчитывали по отношению толщин до (d_0) и после (d) деформации: $K = (d_0 - d)/d_0$. Удельную магнитную восприимчивость χ определяли с помощью специальной автоматизированной установки [1].

Весьма низкое содержание ферромагнитных фаз P_{α} (карбиды, мартенсит деформации, феррит) в объемных процентах устанавливали, используя чувствительный магнитометрический метод, учитывающий намагниченность парамагнитной аустенитной матрицы [2].

2 Результаты и их обсуждение

Образцы хромоникелевой стали были подвергнуты закалке с температуры 1050 °С (выдержка 30 мин.) в воде. Размер аустенитного зерна двух плавок приведен на рис. 1.

Рис. 1. Металлография хромоникелевой стали: *a* - пл.1, *б* – пл.7

Метод энергодисперсионной спектроскопии выявил равномерное распределение элементов всех элементов по объему зерна и локализованное распределение элементов Сг и Ni на границах зерен. Было установлено (см. линия 2 на рис. 1, рис. 2), что граница зерна перенасыщена хромом на 20÷23 % при уменьшении содержания никеля на 20÷26 % (по-сравнению с объемом зерна).

Толщины приграничных зон зерен с каждой последующей плавкой уменьшаются. Обнаруженные значительные расхождения концентраций элементов на границе зерен вместе с утолщением приграничных зон свидетельствует о наличии каких-то других, отличных от аустенита, фаз. Данное утверждение было подкреплено результатом магнитометрических исследований.

Рис. 2. Локализованное распределение элементов Сг (кривая 1) и Ni (кривая 2) на границе зерен (интервал Б) и по объему зерна (интервал А и В) в хромоникелевой стали, пл 1

Магниометрический метод выявил, что после термообработки образцы плавок 1...3 хромоникелевой стали содержали ферромагнитную фазу P_{α} в количестве 2,99, 0,34 и 0,03 % соответственно (рис. 3). При этом металл плавок 4...7 был полностью аустенитный и его удельная магнитная восприимчивость аустенита χ_0 составила 3,05, 3,25, 3,61 и 4,00·10⁸ (м³/кг). Таким образом, с увеличением содержания никеля от 11,99 % до 15,76 % удельная магнитная восприимчивость аустенита χ_0 данных плавок увеличивается от 3,05·10⁻⁸ до 4,00·10⁻⁸ м³/кг (рис. 4).

Рис. 3. Зависимость *P*_α от содержания Ni в хромоникелевой стали (пл. 1....3)

Рис. 4. Зависимость χ_0 от содержания Ni в хромоникелевой стали (пл. 4...7)

После термообработки (аустенизации) марганцевые стали Г8Л и Г10Л еще содержали некоторое количество ферромагнитных фаз (ферриты, карбиды): 0,071 % и 0,028 % соответственно. Для этих сталей значения удельной парамагнитной восприимчивости аустенита χ_0 составило 3,90 10⁻⁸ и 2,81 10⁻⁸ м³/кг [3]. Поскольку стали Г13Л и Г18Л были предварительно полностью аустенизированны, то $P_{\alpha} = 0$ и значения удельной парамагнитной восприимчивости аустенита χ_0 составило 2,36 10⁸ и 1,90 10⁸ м³/кг. Таким образом, в марганцовистых сталях с увеличением содержания марганца от 8,6 % до 17,5 % удельная магнитная восприимчивость аустенита χ_0 уменьшается от 3,90·10⁻⁸ до 1,90·10⁻⁸ м³/кг (рис. 5).

Рис. 5. Зависимость χ_0 от содержания Mn в марганцевой стали

Экспериментальные результаты, приведенные на рис.4 и 5, свидетельствуют о принципиально различном (противоположном) влиянии никеля и марганца на парамагнетизм аустенита: первый из них эту характеристику увеличивает, а второй уменьшает. В то же время, как следует из литературных данных, оба элемента должны расширять у - область и повышать стабильность аустенита относительно образования мартенсита деформации. Проверка этого положения была проведена нами с целью установления новых дополнительных нюансов в характере изменения этой качественной характеристики (т. е. стабильности аустенита, касательно ряда сплавов конкретного состава). Для этого все полученные образцы после аустенизации были деформированы на сжатие и установлен характер выбранных физических изменения показателя стабильности. Далее были проведены эксперименты, которые касались плавок с содержанием никеля на нижнем и верхнем уровнях.

Образцы плавки № 2 хромоникелевой стали до пластической одноосной деформации на сжатие не были полностью аустенитными, что подтверждается наличием некоторого наклона линии 1 зависимости χ (1/*H*) (рис. 6, прямая 1). С увеличением степени деформации наклон кривых 2...7 увеличивается, что свидетельствует о росте содержания ферромагнитной фазы (α' - мартенсита деформации). Зависимость количества α - фазы и α' - мартенсита от степени деформации представлена на рис. 7.

Рис. 6. Зависимость χ(1/*H*) при различных значениях деформации хромоникелевой стали (пл. 2). Деформация: 1 – 0; 2 – 1,11; 3 – 3,70; 4 – 4,96; 5 – 6,52; 6 – 7,78; 7 – 9,48 %

Рис. 7. Зависимость α -фазы P_{α} и количества возникающего мартенсита деформации $P_{\alpha'}$ от относительной деформации сжатия *K* хромоникелевой стали (пл. 2):

 $1-P_{lpha}$, $2-P_{lpha'}$

Плавка № 7 хромоникелевой стали до пластической одноосной деформации на сжатие была полностью аустенизирована, что подтверждается горизонтальной линией с(1/*H*) (рис. 8, прямая 1).

Рис. 8. Зависимость χ(1/*H*) при различных значениях деформации *К* хромоникелевой стали, пл.7. *К*: 1 – 0; 2 – 6,46; 3 – 16,56; 4 – 21,81; 5 – 26,89; 6 – 31,16 7 – 40,57, 8 – 47,78, 9 – 62,49

При этом исходное значение парамагнитной восприимчивости χ_0 аустенита составило 4,00·10⁻⁸ м³/кг. Деформация до 26,89 % (см. рис. 8, прямая 5) для этой стали привела к росту парамагнитной восприимчивости χ_0 до значения 4,31·10⁻⁸ м³/кг. Наблюдаемый эффект роста парамагнитной восприимчивости аустенита с увеличением степени деформации до появления первых порций мартенсита аналогичен измерениям χ_0 в стали 12Х18Н10Т [4]. При дальнейшем увеличении степени деформации появляется наклон прямых $\chi(1/H)$, что свидетельствует о возникновении ферромагнитного α' - мартенсита деформации, так как величина χ уже зависит от соотношения фаз, т.е. аустенита и мартенсита. Так, при деформациях 31,16 % и 40,57 % были зафиксированы порции возникающего α' - мартенсита деформации в количестве 0,009 % и 0,011 % (см. рис. 8, прямые 6 и 7). Следует обратить внимание и на то, что прямые 6 и 7 (см. рис. 7) пересекли начальные горизонтальные прямые 4 и 5. При экстраполяции вышеуказанных прямых на ось с ($H \rightarrow \infty$) получили для них значения результирующей удельной магнитной восприимчивости $\chi_{\infty} 4,08 \cdot 10^{-8}$ и $4,19 \cdot 10^{-8}$ м³/кг, которые лежат ниже максимального значения парамагнитной восприимчивости аустенита $\chi_0^{max} = 4,30 \cdot 10^{-8} \text{ м}^3/\text{кг.}$ Таким образом, в интервале деформаций от 31,16 % до 40,57 %, помимо ферромагнитной фазы α' - мартенсита, присутствует новая парамагнитная фаза с меньшим, по сравнению с аустенитом, значением парамагнитной восприимчивости. Эта новая парамагнитная фаза, по аналогии с [4] может быть идентифицирована, как ємартенсит деформации. Зависимость количества возникающего α' - мартенсита от степени деформации представлена на рис. 9.

Зависимость микротвердости приграничной области аустенитного зерна и самого зерна (рис. 10) от концентрации никеля приведена на рис. 11.

Рис. 9. Зависимость количества возникающего мартенсита деформации P_α, от относительной деформации сжатия K хромоникелевой стали, пл. 7

Рис. 10. Металлография при определении микротвердости с помощью твердомера ПМТ-3 (при нагрузке 50 г) структурных составляющих хромоникелевой стали: *а* – пл. 1, *б* – пл. 7

Микротвердость аустенитного зерна и приграничной области определяется влиянием двух элементов, а именно никеля и хрома. Поскольку в приграничной области меняется соотношение этих элементов, т.е. имеет место локализованное увеличение содержания хрома и уменьшение никеля (по-сравнению с их содержаниями в объеме зерна). В связи с тем, что оба элемента влияют на твердость аустенита (хром как правило в сторону увеличения, а никель – уменьшения), а в случае феррита – наоборот, то в приграничных ферромагнитных прослойках твердость превышает твердость самих зерен, что позволяет утверждать, что в них присутствует ферритная фаза.

Рис. 11. Зависимость микротвердости аустенитного зерна (маркер А) и приграничной области (маркер Б) от содержания Ni в хромоникелевой стали (1...7 – номера соответствующих плавок)

Зависимость микротвердости марганцовистой стали от содержания Mn приведена на рис. 12.

Уменьшение микротвердости в марганцевых сталях с повышением содержания Mn можно попытаться объяснить тем, что при локальной деформации (от индентора твердомера) дислокации, с одной стороны, встречают меньшее сопротивление решетки из-за возможного снижения модуля упругости (благодаря присутствию марганца), а с другой стороны, эта же деформация приводит к расщеплению в сталях такого типа полных дислокаций на частичные, которые обладают повышенной подвижностью. Зависимость микротвердости марганцовистой стали от χ_0 приведена на рис. 13.

Рис. 12. Зависимость микротвердости марганцевой стали от содержания Mn

Имеет место увеличение микротвердости с повышением χ_0 . Таким образом, при пониженных содержаниях марганца стабильность марганцевого аустенита уменьшается и появляется склонность к возникновению различных промежуточных иных фаз.

Рис. 13. Зависимость микротвердости марганцевой стали от χ₀

Выводы

1. На основании анализа полученных результатов, касающихся влияния никеля в хромоникелевых сталях при постоянном содержании хрома, было установлено, что с увеличением содержания никеля, кроме стабилизации аустенита, наблюдается ослабление его парамагнетизма, поскольку никель относится к элементам ферромагнитной группы.

2. На основании исследований установлено, что марганец как аустенитообразующий элемент в отношении парамагнетизма аустенита ведет себя противоположным образом: с увеличением содержания марганца в системе Fe-C-Mn наблюдается усиление парамагнетизма аустенита, благодаря резкому снижению

χ₀ парамагнитной восприимчивости.

3. На основании магнитных измерений и измерений микротвердости приграничных зон и непосредственно в объемах зерен аустенита подтверждено, что в хромоникелевых сталях наблюдается сильное ослабление парамагнитных свойств аустенита из-за присутствия на границах зерен участков ферромагнитной фазы (феррита или мартенсита деформации).

Список литературы

- Сніжной Г. В. Автоматизована установка для визначення магнетної сприйнятливості криць та стопів / Г. В. Сніжной, Є. Л. Жавжаров // збірник наукових праць «Вісник Національного технічного університету України «Київський політехнічний інститут». Серія – Радіотехніка. Радіоапаратобудування». – 2012. – № 49. – С. 136–141.
- Снежной Г. В. Магнитное состояние аустенита вблизи истинной деформационной мартенситной точки хромоникелевых сталей аустенитного класса / Г. В. Снежной // ФММ. –2011. – Т. 111. – № 6. – С. 599–604.
- Снежной Г. В. О связи механических свойств высокомарганцевых сталей с парамагнитной удельной восприимчивостью аустенита / Г. В.Снежной, В. Е. Ольшанецкий // Новые материалы и технологии в металлургии и машиностроении. – 2012. – № 2 – С. 25–29.
- Ольшанецкий В. Е. О формировании двух типов мартенситных фаз при пластической деформации аустенитной хромоникелевой стали / В. Е. Ольшанецкий, Г. В. Снежной // Физика и техника высоких давлений. 2013. Т. 23. № 2. С. 78–87.

Одержано 29.09.2014

Сніжной Г.В., Ольшанецький В.Ю., Сажнєв В.М. Про структурну і магнітну стабільність аустеніту в сплавах, що містять нікель і марганець

Експериментально встановлено кількісну залежність питомої магнітної сприйнятливості χ_0 парамагнітного аустеніту від вмісту нікелю в хромонікелевих і марганцю в марганцевих сталях. Показано, що зі збільшенням вмісту нікелю, крім стабілізації аустеніту, спостерігається збільшення χ_0 . Вплив марганцю на χ_0 в марганцевих сталях протилежне. Виявлено локалізований розподіл елементів Cr і Ni на межах аустенітних зерен у хромонікелевій сталі і наявність на цих межах ділянок феромагнітної фази.

Ключові слова: сталь, деформація, аустеніт, мартенсит, магнітна сприйнятливість, мікротвердість. Snezhnoi G., Olshanetskiy V., Sazhnev V. Structural and magnetic stability of the austenite in the nickel and manganese alloys

The quantitative dependence of the specific magnetic susceptibility χ_0 of paramagnetic austenite on content of nickel in nickel-chromium and manganese in the manganese steels was established experimentally. Increasing the nickel content causes an increase in the stabilization of austenite and χ_0 revealed. With the increase in the content of manganese in the manganese steels decrease χ_0 observed. Localized distribution of the elements Cr and Ni in the austenite grain boundaries in the stainless steel and the presence of these borders areas ferromagnetic phases identified.

Key words: steel, deformation, austenite, martensite, magnetic susceptibility, microhardness.