Канд. техн. наук П. Д. Жеманюк¹, В. В. Клочихин¹, Н. А. Лысенко¹, Н. И. Гречанюк², д-р техн. наук В. В. Наумик³

 1 AO «Мотор Сич», г. Запорожье 2 OOO «НПП «ЭЛТЕХМАШ», г. Винница 3 Запорожский национальный технический университет, г. Запорожье

НАПРАВЛЕННАЯ КРИСТАЛЛИЗАЦИЯ ОТЛИВОК ИЗ ВОЗВРАТНЫХ ОТХОДОВ СПЛАВА ЖС26-ВИ, РАФИНИРОВАННЫХ ЭЛЕКТРОННО-ЛУЧЕВЫМ ПЕРЕПЛАВОМ

Исследовали качество материала отливок направленной кристаллизации, полученных из возвратных отходов жаропрочного никелевого сплава ЖС26-ВИ, прошедших последовательное рафинирование вакуумно-индукционным и электронно-лучевым переплавом. Химический состав, макро- и микроструктура, а также механические и жаропрочные свойства опытного материала, удовлетворительные и отвечают требованиям нормативно-технической документации для сплава ЖС26-ВИ.

Ключевые слова: жаропрочный сплав, возвратные отходы, электронно-лучевой переплав, химический состав, макроструктура, микроструктура, механические и жаропрочные свойства, направленная кристаллизация.

Состояние вопроса

Необходимость использования дорогостоящего технологического возврата жаропрочных никелевых сплавов в процессе изготовления литых лопаток авиационных двигателей и силовых установок является несомненной. При этом по-прежнему открытым остаётся вопрос разработки и промышленного опробования эффективной технологии рафинирования возвратных отходов суперсплавов.

Известно, что в результате многократных переплавов с использованием возвратных отходов жаропрочных никелевых сплавов в вакуумной индукционной печи в 2...3 раза увеличивается концентрация кислорода и азота в готовом металле [1], повышается содержание кремния, что приводит к заметному ухудшению качества сплавов и отливок, существенному снижению уровня их технологических [2], механических и жаропрочных свойств [3].

Вакуумная плавка позволяет провести активную дегазацию металла, удалить неметаллические включения [1], понизить в сплавах концентрацию вредных примесей цветных металлов, таких как свинец, висмут, теллур, селен, медь и других.

Преимуществами электронно-лучевого переплава по сравнению с другими методами (вакуумно-дугового и вакуумно-индукционного) являются наивысшее качество рафинирования и возможность точно воспроизводить параметры для обеспечения требуемого состава сплава, что подтверждается обобщением полученных результатов по её применению [4]. В процессе переплава в электронно-лучевых печах (ЭЛП) поверхность расплава перегревается электронным лучом и

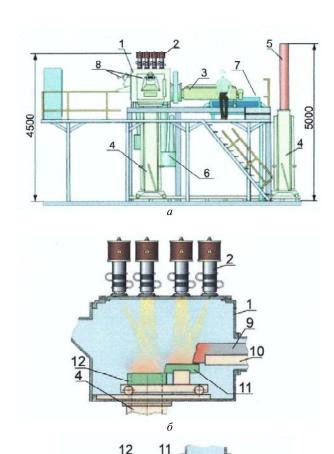
отсутствует контакт жидкого металла с керамическими материалами. Известно [5], что температура металла в фокальном пятне достигает 1800...2000 °C. Все это позволяет дополнительно очистить сплав от примесей серы, фосфора, цветных металлов, неметаллических включений и газов (азот, кислород). Также существенно снижается содержание кремния [6], что особо важно для жаропрочных никелевых сплавов, применяемых для получения отливок с направленной и монокристаллической макроструктурой и невозможно в процессе проведения вакуумно-индукционной плавки.

Однако преимущества ЭЛП (сверхвысокий вакуум и длительное время рафинирования расплава) одновременно связаны и с определенными недостатками такого процесса: угар элементов с высокой упругостью пара и большие экономические расходы. Поэтому в настоящее время она не получила широкого распространения на машиностроительных предприятиях.

При этом в родственных металлургических процессах, например, при получении особо чистых подшипниковых сталей для приборных высокоточных подшипников, нашли широкое применение комплексные технологии рафинирования металла: ЭШП + ВДП; ВИП+ВДП и т. п. Поэтому заслуживает внимания возможность применения подобных комплексных технологий рафинирования высоколегированных никелевых сплавов, особенно в случае использования их возвратных отходов.

Ранее на основе способа электронно-лучевой гарнисажной плавки с электромагнитным перемешиванием расплава [7] был разработан и опробован совмещенный индукционный и электронно-лучевой переплав (ВИП+ЭЛП) жаропрочных никелевых сплавов, применяемых в авиационном и энергетическом машиностроении [8, 9]. При участии сотрудников АО «Мотор Сич», с использованием известных результатов об эффективности рафинирования металлов и сплавов высокотемпературной обработкой в вакууме [10, 11] изучено влияние совмещенной индукционной и электронно-лучевой плавки на качественные показатели жаропрочных никелевых сплавов как материала литых рабочих лопаток [5, 12-14]. Установлено, что совмещённая индукционная и электронно-лучевая плавка обеспечивает эффективное рафинирование литейных отходов сплавов ЖС3ДК-ВИ и ЖС26-ВИ от вредных примесей и газов, что позволяет отливать из них качественные мерные шихтовые заготовки для последующих переплавов. Механические свойства и длительная прочность сплавов, полученных переплавом заготовок совмещённой плавки, отвечают требованиям технических условий, превышают средний уровень свойств металла серийного производства [5].

В развитие указанных исследований возник вопрос эффективности применения рафинирования электронно-лучевым переплавом возвратных технологических отходов вакуумно-индукционной плавки жаропрочных никелевых сплавов для последующего их использования при получении качественных литых лопаток турбин.


Основной материал исследований

На базе АО «Мотор Сич» провели исследование качества литых лопаток, полученных методом высокоскоростной направленной кристаллизации из возвратных отходов сплава ЖС26-ВИ, рафинированных электронно-лучевым переплавом. Плавки проводили в три

Предварительно на установке FM-1-2-100 фирмы «ULVAC» провели четыре плавки с использованием в качестве шихты возвратных технологических отходов жаропрочного никелевого сплава ЖС26-ВИ (прибыльных частей литниковой системы). Температуру расплава доводили до 1530...1550 °C с выдержкой в течение 5 минут.

Химический анализ показал, что состав материала опытных вакуумно-индукционных плавок удовлетворительный и отвечает требованиям ТУ1-92-177-91 По данным четырёх плавок содержание элементов в % по массе составило: С - 0,140...0,157; Cr - 4,69...4,81; Co - 8,86...8,97; W - 11,59...11,73; Al - 5,82...6,02; Ti - 0,92...0,93; Mo - 0,91...0,95; Fe - 0,06; Nb - 1,47...1,51; V - 0,97...0,99; Si - 0,11...0,12; Mn - 0,06...0,07; B J 0,015; S \leq 0,005; P \leq 0,010.

На следующем этапе полученные заготовки прошли рафинирование методом электронно-лучевого переплава (ЭЛП) на предприятии ООО «НПП «ЭЛТЕХ-МАШ» (г. Винница) на установке нового поколения типа L-4, разработанной и введенной в промышленную эксплуатацию на данном предприятии (рис. 1).

Рис. 1. Схема общего вида (*a*) и рабочей камеры (δ , *в*) промышленной электронно-лучевой установки L-4:

1 – рабочая камера; 2 – электронные пушки; 3 – загрузочная камера с механизмом подачи шихты; 4 – механизм вытягивания слитка; 5 – слиток; 6 – паромаслянные насосы вакуумной системы; 7 – гидроблок системы охлаждения; 8 – смотровые системы; 9 – переплавляемый материал; 10 – выдвижной лоток; 11 – промежуточная ёмкость; 12 – кристаллизатор

Данное оборудование позволяет получать высококачественные слитки и слябы с необходимым химическим и фазовым составом из тугоплавких металлов и сплавов. Конструкция установки позволяет проводить переплав непосредственно в кристаллизатор, а также с использованием промежуточной камеры. Могут переплавляться материалы в виде слитков, кусковой шихты и различных отходов (например, прессованной стружки). Плавка ведётся при остаточном давлении в камере $1,3\cdot 10^{-2}...1,3\cdot 10^{-1}$ Па. Производительность установки до 300 тонн в год.

Таблица 1 – Химический состав материала опытных плавок возврата сплава ЖС26-ВИ после рафинирования методом электронно-лучевого переплава

Данные	Содержание элементов, %										
	С	Cr	Co	W	Al	Ti	Mo	Fe	Nb	V	В
Согласно сертификата	до 0,12	5,00	9,10	11,30	5,95	1,05	0,87	0,11	1,56	1,01	<0,01
ТУ1-92-177-91	0,12- 0,17	4,3- 5,3	8,7- 9,3	11,2- 12,0	5,6- 6,1	0,8- 1,2	0,8- 1,2	≤0,5	1,4- 1,8	0,8- 1,2	≤0,015
Данные	Содержание элементов, %										
	Si	Mı	ı	S	P	I	Pb	Bi	(O_2	N_2
Согласно сертификата	0,04	<0,0	04	<0,004	<0,004	0,0	0001	0,0001	<0	,002	<0,0002
ТУ1-92-177-91	≤0,2	≤0,3		≤0,005	≤0,010	≤0,0	0005	≤0,0005	≤0	,002	≤0,002

Согласно данным предоставленного ООО «НПП «ЭЛТЕХМАШ» сертификата, химический состав всех плавок ЖС26-ВИ также соответствует требованиям ТУ1-92-177-91 (табл. 1).

Анализ химического состава материала опытных слитков, полученных до проведения рафинирования металла методом ЭЛП и после ЭЛП, показал, что содержание элементов в них, как до, так и после рафинирования, находится примерно на одном уровне и соответствует требованиям ТУ1-92-177-91 для сплава ЖС26-ВИ.

Следует отметить, что заметного снижения содержания основных легирующих элементов после электроннолучевого рафинирования в опытных слитках не наблюдается. При этом существенно снижается содержание углерода с 0,157 % до 0,12 % и, что особо важно для жаропрочных никелевых сплавов, применяемых для получения отливок с направленной и монокристаллической макроструктурой, кремния — примерно в 3 раза: с 0,11...0,12 % до 0,04 %. Анализ также подтвердил высокую чистоту полученного металла по газам и вредным примесям.

Исследования темплета, вырезанного в осевом се-

чении слитка, полученного из возврата сплава ЖС26-ВИ, после рафинирования методом электроннолучевого переплава показало, что он характеризуется структурной неоднородностью с чётким разделением слоёв послойной кристаллизации и осевой направленностью столбчатых кристаллов (рис. 2.). На боковых поверхностях имеются трещины длиной до 42 мм, образовавшиеся по границам кристаллизационных слоёв (см. рис. 2).

При металлографическом исследовании в материале образцов, вырезанных из различных частей темплета слитка, прошедшего рафинирование ЭЛП (преимущественно в нижней части) обнаружены загрязнения металла в виде плен и грубых шлаковых включений (рис. 3 a, δ). В остальных зонах размер редко встречающихся оксидов не превышает 12 мкм (рис. 3 a, ϵ , табл. 2).

В центральной части опытного темплета имеется усадочная рыхлота (рис. 4a). Далее по сечению металл достаточно плотный, в особенности, в зонах со столбчатым строением кристаллизационных слоев (рис. 4δ). В зонах с равноосной структурой обнаружены микропоры размером до 45 мкм (рис. 4δ).

Рис. 2. Макроструктура темплета, вырезанного в осевом сечении слитка, полученного из возврата сплава ЖС26-ВИ после рафинирования методом ЭЛП

Таблица 2 – Размеры структурных составляющих в материале образцов, вырезанных из темплета слитка полученного из возврата сплава ЖС26-ВИ после рафинирования методом ЭЛП

	Место вырезки микрошлифа						
№ образца		эвтектика (ү-ү')	кар	биды		Расстояние между осями дендритов II	
			глобулярные типа МеС	пластинчатые типа Me_6C	оксиды	порядка, мкм	
1	верх	532	210	560	до 6	2540	
2	оороница	528	212	580	до 8	3550	
3	середина	520	312	540	до 12	4065	
4	низ	_	1.512	524	ло 200	1525	

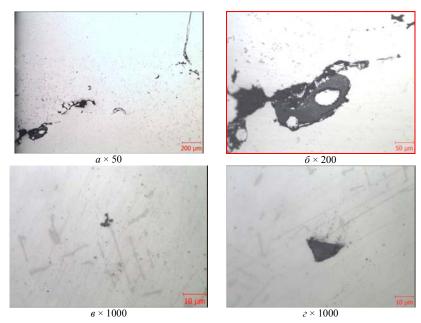
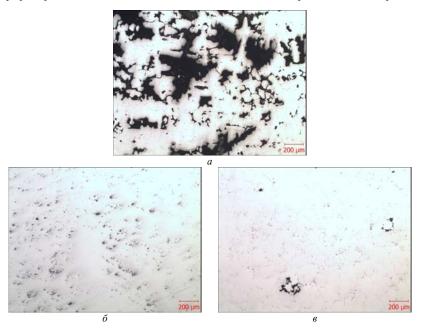
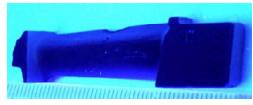



Рис. 3. Оксидные включения и плены в материале образцов, вырезанных из темплета слитка полученного из возврата сплава ЖС26-ВИ после рафинирования методом ЭЛП: *а*, *б* − нижняя часть; *в* − верхняя часть; *г* − средняя часть темплета

Рис. 4. Усадочная рыхлота (a) и микропористость (b, b) в материале образца, вырезанного из слитка полученного из возврата сплава ЖС26-ВИ после рафинирования методом ЭЛП, Ч 50:


a — верхняя часть слитка; δ — со столбчатой структурой; ϵ — зона с равноосной структурой

Микроструктура представляет собой γ - твердый раствор с наличием интерметаллидной γ' - фазы, эвтектической (γ - γ') - фазы, карбидов, и карбонитридов, соответствует литому состоянию сплава ЖС26-ВИ.

Из слитков полученных из возврата сплава ЖС26-ВИ после рафинирования методом ЭЛП, на установке УВНК-8П методом высокоскоростной направленной кристаллизации (ВНК) были отлиты рабочие лопатки.

Исследовали лопатку из данной партии, прошедшую стандартную термообработку (гомогенизацию при температуре 1265 ± 10 °C в течение 1 + 15мин в вакууме).

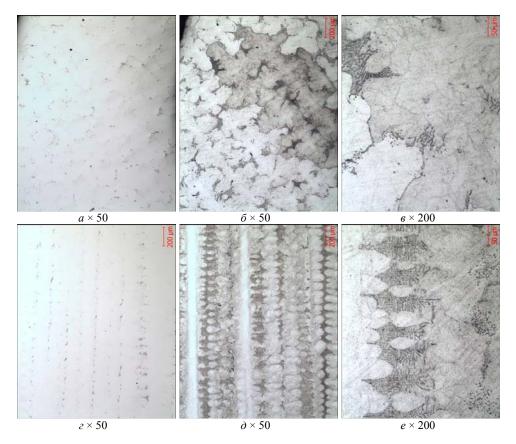
При люминесцентном контроле методом ЛЮМ1-ОВ на опытной литой лопатке свечений люминофора, превышающих требования ТУ не выявлено (рис. 5).

Рис. 5. Внешний вид опытной литой рабочей лопатки из сплава ЖС26-ВИ (ВНК)

Микроструктура опытной лопатки представляет собой γ - твердый раствор, упрочненный интерметаллидной γ' - фазой, с наличием карбидов и карбонитридов, что соответствует нормальному термообработанному состоянию сплава ЖС26-ВИ (ВНК); следов перегрева при термообработке не установлено (рис. 6).

Микроструктура лопатки (ВНК), полученной из возврата сплава ЖС26-ВИ (ЭЛП), после термообработки характеризуется однородностью и отсутствием выделений эвтектической ($\gamma - \gamma'$) - фазы (вследствие ее полного растворения в γ -твердом растворе в процессе термической обработки при температуре 1265 °C).

Параметры микроструктуры исследуемой лопатки в пере и хвостовой части представлены в таблице 3.


Методом высокоскоростной направленной кристаллизации (ВНК) из слитка, полученного из возврата сплава ЖС26-ВИ после рафинирования методом электрон-

но-лучевого переплава, изготовили 2 блока литых образцов (\varnothing 15 мм; L = 135 мм).

Монокристаллическая структура была получена на одном из 12-ти литых образцов. Угол кристаллографической ориентации на этом образце составил 2,5 угл. град. На остальных образцах получена направленная макроструктура, состоящая из нескольких кристаллов.

Механические и жаропрочные свойства определяли на образцах, термообработанных по стандартному режиму (гомогенизация при температуре $1265 \pm 10 \, {\rm cC}$ в течение 1 ч 15 мин в вакууме).

В результате предел прочности при $20\,^{\circ}\text{C}$ σ_{e} составил 85,4 кгс/мм 2 (при норме $\geq 85,0$) а относительное удлинение $\delta-16,8$ % (при норме $\geq 6,0$). Время до разрушения при $975\,^{-*}-^{*}-^{*}$ С, под нагрузкой 26 кгс/мм 2 τ_{p} составило 117,0 часов (при норме $\geq 40,0$).

Рис. 6. Микроструктура в пере (a, δ, s) и хвостовой части (c, δ, e) рабочей лопатки из сплава ЖС26-ВИ (ВНК)

Таблица 3 – Размеры структурных составляющих в материале рабочей лопатки из сплава ЖС26-ВИ (ВНК)

Место вырезки микрошлифа	Размер струк	турных составляющих, м	Расстояние между осями дендритов, мкм		
	кар				
	глобулярные типа МеС	пластинчатые типа ${ m Me}_6{ m C}$	оксиды	I порядка	II порядка
перо	220	560	до 5	120170	5065
хвостовик	220	565	до 5	200250	6075

Таким образом, механические и жаропрочные свойства опытных образцов из сплава ЖС26-ВИ (ВНК), полученных из возврата после рафинирования методом электронно-лучевого переплава, удовлетворительные и отвечают требованиям нормативно-технической документации (18Т-ТУ-165; 36ТУ-179; 436ТУ-6; 317ТУ-2).

Микроструктура образцов (ВНК) (\emptyset 15 мм; L=135мм) аналогична микроструктуре литой рабочей лопатки и соответствует утвержденной «ВИАМ» шкале микроструктур для сплава ЖС26-ВИ (ВНК); следов перегрева при термообработке не установлено.

Выводы

Химический состав исследованных слитков, полученных из возврата сплава ЖС26-ВИ, как до, так и после рафинирования методом электронно-лучевого переплава, находится примерно на одном уровне и соответствует требованиям ТУ1-92-177-91. Заметного снижения содержания основных легирующих элементов после электронно-лучевого рафинирования в опытных слитках не наблюдается. При этом существенно снижается содержание углерода с 0,157 % до 0,12 % и, что особо важно для жаропрочных никелевых сплавов, применяемых для получения отливок с направленной и монокристаллической макроструктурой, кремния — примерно в 3 раза: с 0,11...0,12 % до 0,04 %. Анализ также подтвердил высокую чистоту полученного металла по газам и вредным примесям.

Микроструктура материала рабочей лопатки, а также образцов отлитых на установке УВНК-8П методом высокоскоростной направленной кристаллизации (ВНК) из слитков возврата сплава ЖС26-ВИ после рафинирования методом ЭЛП соответствует утвержденной «ВИАМ» шкале микроструктур для сплава ЖС26-ВИ (ВНК). Следов перегрева в процессе термообработки не установлено.

Механические и жаропрочные свойства опытных образцов из сплава ЖС26-ВИ (ВНК), полученных из возврата после рафинирования методом электроннолучевого переплава, удовлетворительные и отвечают требованиям нормативно-технической документации.

Список литературы

- Каблов Е. Н. Литые лопатки газотурбинных двигателей (сплавы, технология, покрытия) / Каблов Е. Н. – М. : «МИСИС», 2001. – 632 с.
- Durber G. Effect of small amounts of nitrogen and silicon on microstructure and properties MAR-M200 nskel-baise superalloys / G. Durber, S. Osgerby // Metals Technol. –

- 1984. -Vol. 11. № 4. P. 129-137.
- Возможности использования литниковых отходов при выплавке жаропрочных сплавов за счет высокотемпературной обработки расплава / [В. В. Сидоров, В. А. Панкратов, П. Д. Родионов, С. О. Миронов] // Приложение к журналу «Авиационная промышленность». – М.: Машиностроение, 1989.– № 2. – С. 36–38.
- Электронно-лучевая плавка / [Б. Е. Патон, Н. П. Тригуб, Д. А. Козлитин и др.] К.: Наукова думка, 1997. 266 с.
- Электронно-лучевая плавка в литейном производстве / Под ред. С. В. Ладохина. – К. : Издательство «Сталь», 2007. – 626 с.
- Логунов А. В. Современные жаропрочные никелевые сплавы для дисков газовых турбин (материалы и технологии) / А. В. Логунов, Ю. Н. Шамотин. – М.: Наука и технология, 2013. – 264 с.
- Ладохин С. В. Применение электронно-лучевой плавки в литейном производстве / С. В. Ладохин, В. Т. Шмигидин // Металл и литье Украины. – 1995. – № 4. – С. 16–21.
- Установка для совмещенной индукционной и электронно-лучевой плавки металлов и сплавов / [Ю. Ф. Аникин, А. Д. Жежера, С. В. Ладохин, Т. В. Лапшук] // Металл и литье Украины. – 1998. – № 5–6. – С. 8–10.
- Аникин Ю. Ф. Технологические параметры выплавки сложнолегированных сплавов в электронно-лучевых литейных установках / Ю. Ф. Аникин, С. В. Ладохин, В. Т. Яковлев // Процессы литья. – 1998. – № 3–4. – С. 23–26.
- Ахонін С. В. Процеси рафінування у вакуумі та оптимізація режимів електронно-променової плавки високореакційних та тугоплавких металів: автореф. дис. на здобуття наук. ступеня докт. техн. наук / С. В. Ахонін. – Київ: ПОП ІЕЗ ім. Е. О. Патона, 2002. – 37 с.
- 11. Шаповалов В. О. Наукові та технологічні основи плазмово-індукційного вирощування крупних монокристалів тугоплавких металів : автореф. дисер. на здобуття наук. ступеня докт. техн. наук / В. О. Шаповалов. Київ : ПОП ІЕЗ ім. Е.О. Патона, 2003. 36 с.
- Совмещенная индукционная и электронно-лучевая плавка литейных отходов жаропрочных сплавов ЖСЗДК и ЖС26-ВИ / [Ю.Ф. Аникин, Ю.Г. Добкина, В.В. Клочихин и др.] // Проблемы специальной электрометаллургии. – 2002. – № 2. – С. 43–49.
- Innovation in Superalloys Melting for Gas Turbine Engines Casting Production / [S.V. Ladokhin, Yu. F. Anikin, P.D. Zemanyuk, V.V. Klochihin] // Proceedings of the 65th World Foundry Congress, october 20–24, 2002. – Gyeongyu, Korea, 2002. – P. 1033–1036.
- Барабаш О. М. Структура и свойства металлов и сплавов. Кристаллическая структура металлов и сплавов. Справочник / О. М. Барабаш, Ю. Н. Коваль. К.: Наукова думка, 1986. 387 с.

Одержано 27.04.2016

Жеманюк П.Д., Клочихін В.В., Лисенко Н.О., Гречанюк Н.І., Наумик В.В. Спрямована кристалізація виливків зі зворотних відходів сплаву ЖС26-ВІ, рафінованих електронно-променевим переплавом

Дослідили якість матеріалу виливків спрямованої кристалізації, отриманих зі зворотних відходів жароміцного нікелевого сплаву ЖС26-ВІ, які пройшли послідовне рафінування вакуумно-індукційним і електронно-променевим переплавом. Хімічний склад, макро- і мікроструктура, а також механічні та жароміцні властивості дослідного матеріалу задовільні та відповідають вимогам нормативно-технічної документації для сплаву ЖС26-ВІ.

Ключові слова: жароміцний сплав, зворотні відходи, електронно-променевий переплав, хімічний склад, макроструктура, мікроструктура, механічні та жароміцні властивості, спрямована кристалізація.

Zhemanyuk P., Klochikhin V., Lysenko N., Grechanyuk N., V. Naumyk V. Directional crystallization of castings made from the recyclable waste alloy HA26-VI, refined by electron-ray melting

It's studied the quality of the material of directional solidificated castings made from the recyclable waste of heat-resistant nickel alloy HA26-VI, held successive refining by vacuum-induction and electron-ray melting. Chemical composition, macro and microstructure, as well as mechanical and heat-resistant properties of the experimental material are satisfactory and meet the requirements of normative-technical documentation for HA26-VI alloy.

Key words: superalloy, recyclable waste, electron-ray melting, chemical composition, macrostructure, microstructure, mechanical and heat-resistant properties, directional crystallization.