ІІІ КОНСТРУКЦІЙНІ І ФУНКЦІОНАЛЬНІ МАТЕРІАЛИ

УДК 669.245.018.044:620.193.53

Канд. техн. наук С. В. Гайдук

Запорожский национальный технический университет, г. Запорожье

ПРОЕКТИРОВАНИЕ ЛИТЕЙНОГО ЖАРОПРОЧНОГО КОРРОЗИОННОСТОЙКОГО НИКЕЛЕВОГО СПЛАВА ДЛЯ ИЗГОТОВЛЕНИЯ ТУРБИННЫХ ЛОПАТОК МЕТОДОМ НАПРАВЛЕННОЙ (МОНО) КРИСТАЛЛИЗАЦИИ

По алгоритму разработанной комплексной расчетно-аналитической методики (КРАМ) спроектирован новый литейный жаропрочный коррозионностойкий никелевый сплав ЗМИ-3У-М1 для изготовления турбинных лопаток методом направленной (моно) кристаллизации. Разработанный сплав обладает коррозионной стойкостью на уровне промышленного коррозионностойкого сплава ЗМИ-3У, при этом имеет повышенные характеристики жаропрочности $\sigma_{40}^{975} = 260$ МПа на уровне авиационного литейного жаропрочного некоррозионностойкого спава ЖС26-ВИ с направленной (моно) структурой.

Ключевые слова: литейные жаропрочные никелевые сплавы (ЖНС), параметры работоспособности, методика (КРАМ), регрессионная модель (РМ), регрессионное уравнение (РУ), служебные свойства.

Введение

В настоящее время без применения новых жаропрочных материалов и технологий производства из них деталей газотурбинных двигателей (ГТД) невозможно обеспечение повышенного уровня требований к перспективным ГТД. Поэтому, одним из важных направлений повышения эксплуатационных характеристик ответственных деталей ГТД является получение турбинных лопаток методом направленной (моно) кристаллизации из новых литейных коррозионностойких никелевых сплавов, обладающих повышенной жаропрочностью [1–6].

К наиболее известным литейным жаропрочным никелевым сплавам (ЖНС), широко применяемым для изготовления лопаток методом направленной (моно) кристаллизации, относятся промышленные сплавы ЖС6У, ЖС26 и др. Так, например, сплав ЖС26, легированный алюминием в количестве 5,5-6,2 % (по массе), в котором объемная доля γ' - фазы достигает 58-62 %, обладает более высокой жаропрочностью и лучшим сопротивлением высокотемпературной ползучести материала при 1000 °C, по сравнению с коррозионностойким промышленным сплавом ЗМИ-ЗУ, легированным алюминием в количестве 2,8-4,0 % (по массе), в котором объемная доля у' - фазы в среднем меньше на 15%, что составляет 44-52%. Однако, промышленный сплав ЖС26 не обладает стойкостью к газовой коррозии, что делает его применение для стационарных газотурбинных установок (ГТУ) малоперспективным. В тоже время, промышленный сплав ЗМИ-ЗУ обладает необходимым уровнем высокотемпературной коррозионной (ВТК) стойкости, однако не обладает требуемым уровнем жаропрочности, что также ограничивает его возможности для применения в перспективных ГТУ [6–11].

В связи с вышеизложенным, проектирование и внедрение в промышленность новых литейных коррозионностойких ЖНС с повышенным уровнем жаропрочности для изготовления лопаток методом направленной (моно) кристаллизации к перспективным ГТУ с помощью разработанного экспрессного метода компьютерного проектирования, заменившего малоэффективный эмпирический метод «проб и ошибок», является для Украины актуальным, конкурентным и экономически выгодным направлением.

Постановка задачи

Целью настоящей работы является проектирование с помощью разработанного экспрессного комплексного расчетно-аналитического метода (КРАМ) [12] нового литейного коррозионностойкого ЖНС с повышенными прочностными характеристиками на уровне литейного жаропрочного некоррозионностойкого сплава ЖС26 для изготовления литых лопаток первой ступени с направленной (моно) структурой турбин типа Д-336 разных модификаций.

Поиск перспективных композиций разрабатываемого сплава проводился по алгоритму компьютерного моделирования методом КРАМ на основе системы легирования промышленного литейного жаропрочного коррозионностойкого никелевого сплава ЗМИ-3У, взятого за прототип, химический состав которого приведен в таблице 1, вместе с составом промышленного жаропрочного сплава ЖС26-ВИ, взятого за аналог.

Марка		Среднее содержание элементов, % (по массе)										
сплава	С	Cr	Со	Mo	W	Al	Ti	Nb	V	Y	В	Ni
ЗМИ-ЗУ	0,11	13,3	5,0	0,8	7,3	3,4	4,8	-	-	0,03	0,015	Осн.
ЖС26-ВИ	0,15	5,0	9,0	1,1	11,7	5,9	1,0	1,6	1,0	-	0,015	Осн.

Таблица 1 – Химический состав промышленных литейных никелевых сплавов ЗМИ-ЗУ и ЖС26-ВИ среднего уровня легирования [6]

В выбранную базовую систему легирования сплава ЗМИ-ЗУ (Ni-Co-Cr-Al-Ti-Mo-W-Y-B-C) вводился новый элемент – тантал (Та), что было обусловлено следующими обстоятельствами:

 во-первых, тантал способствует увеличению объемной доли основной упрочняющей γ'- фазы и повышению ее термодинамической стабильности;

- во-вторых, тантал способствует повышению температуры эвтектических превращений и полного растворения основной упрочняющей γ' - фазы, а следовательно, увеличению остаточного количества γ' - фазы при рабочих температурах, что положительно влияет на характеристики жаропрочности, особенно длительную прочность;

 в-третьих, тантал способствует сужению интервала кристаллизации, что положительно влияет на технологичность сплава при получении бездефектной направленной (моно) структуры в образцах и лопатках;

- в-четвертых, тантал положительно влияет на температурную стабильность и морфологию карбидной фазы типа MeC, при этом заметно подавляется механизм образования неблагоприятных и менее термодинамически устойчивых карбидов типа Me₂₃C₆, что способствует повышению структурной и фазовой стабильности материала.

Опираясь на вышеизложенное, были сформулированы исходные условия для проектирования сплава в новой системе многокомпонентного легирования Ni-Co-Cr-Al-Ti-Mo-W-Ta-B-Y-La-C. В таблице 2 приведены контролируемые параметры, закладываемые в расчет для многокритериальной оптимизации состава проектируемого сплава.

Анализ результатов

В данной работе представлены результаты компьютерного проектирования и экспериментальных исследований нового литейного коррозионностойкого никелевого сплава, обладающего повышенными прочностными характеристиками, а также технологичностью на уровне промышленного сплава ЖС26-ВИ при изготовлении рабочих лопаток первой ступени методом направленной (моно) кристаллизации для установок типа Д-336 разных модификаций в условиях промышленного производства ГП «Ивченко-Прогресс».

Следует отметить, что в отличие от более жаропрочного промышленного сплава ЖС26, содержащего (Cr = 5 %; Ti = 1,0 %) и не обладающего коррозионной стойкостью, промышленный коррозионностойкий сплав ЗМИ-3У содержит в составе большее количество (Cr = 13,3 %; Ti = 4,8 %). При этом, сплав ЗМИ-3У не обладает требуемым уровнем жаропрочности, так как количество основной упрочняющей γ' - фазы не соответствует условиям (V_{γ'}²⁰ i 60 %). Поэтому, для много-критериальной оптимизации состава разрабатываемого сплава были сформулированы следующие требования и выбраны основные контролируемые параметры, закладываемые в комплексный расчет:

Контролируемые параметры	Единица измерения	Уровень параметра
Параметр стабильности, $\Pi_{T\Pi Y} = Cr / [Cr+Mo+W]$	-	$0,825 \pm 0,025$
Суммарное к-во электронных вакансий в γ - тв. p-pe, $\overline{N} v_{\gamma}$	-	≤ 2,45
Суммарное к-во валентных электронов в ү- тв. р-ре, $\overline{M} d_{\gamma}$	-	≤ 0,93
Суммарное к-во валентных электронов в сплаве, $\overline{M} d_{C}$	-	$0,980 \pm 0,008$
Параметр дисбаланса системы легирования, ΔE	-	$\pm 0,04$
Суммарное содержание $\sum_{\gamma} = (Mo+W+Ta+Re+Ru)$	%, масс.	\geq 11,0
Суммарное содержание $\sum_{\gamma'} = (Al+Ti+Nb+Ta+Hf)$	%, масс.	\geq 11,0
Температура солидус, t _S	°C	≥ 1290 °C
Температурный интервал кристаллизации, Δt_{KP}	°C	≤ 80
Температурный интервал для гомогенизации, $\Delta t_{\Gamma OM}$	°C	\geq 20 °C
Количество упрочняющей ү'- фазы (20 °С), V _γ ²⁰	%, масс.	≥ 60
Размерное несоответствие решеток ү- и ү'- (мисфит), б	%	0,15–0,45
Предел кратковременной прочности (20 °C), σ_B^{20}	МПа	\geq 950
Относительное удлинение (20 °C), δ^{20}	%	\geq 5,0
Длительная прочность $ au_{PA3P}^{975}$, σ_{260}^{975}	час.	≥ 40
Параметр коррозии, $\Pi_{KC} = \sqrt{Cr \times [Ti / Al]}$	-	\geq 3,0
Уровень выхода годного литья лопаток по макроструктуре	%	На уровне сплава ЖС26-ВИ

Таблица 2 – Основные параметры для многокритериальной оптимизации состава проектируемого сплава

- выполнение условий структурной стабильности по параметрам: $\Pi_{TITY} = Cr / [Cr+Mo+W] = 0.825 \pm 0.025;$

 $\overline{N}_{V_{\gamma}} \leq 2,45, \overline{M} d_{\gamma} \leq 0,93, \Delta E = \pm 0,04, \overline{M} d_{C} = 0,980 \pm 0,008;$ - обеспечение прочностных характеристик, близких

к уровню промышленного литейного жаропрочного сплава ЖС26-ВИ, взятого за аналог: количество основной упрочняющей γ' - фазы V_{γ}²⁰ \geq 60 % (по массе); крат-ковременная прочность $\sigma_{\rm B}^{20} \geq$ 950 МПа; $\delta^{20} \geq$ 5,0 % и длительная прочность $\sigma_{260}^{975} \geq$ 40 часов в соответствии с ТУ 14-134-446;

- обеспечение коррозионной стойкости близкой к уровню промышленного литейного коррозионностой-кого сплава ЗМИ-3У, взятого за прототип: параметр коррозии $\Pi_{uc} = Cr \times [Ti/Al] \ge 3,0.$

Указанные в таблице 2 значения характеристик для разрабатываемого сплава, достигались путем многокритериальной оптимизации состава, легированного танталом на основе промышленного сплава ЗМИ-ЗУ, взятого за прототип, с помощью алгоритма, разработанного экспресс-метода КРАМ (рис. 1). К концептуально новому подходу в сбалансированности легирования литейных ЖНС можно отнести следующие положения:

- для обеспечения работоспособности разрабатываемого сплава необходимо сбалансировать общий химический состав сплава: по γ' - образующим элементам $\sum_{\gamma'} = (Al+Ti+Nb+Ta+Hf) \ge 11$ % по массе; по элементам упрочняющим γ - твердый раствор $\sum_{\gamma} = (Mo+W+Ta+Re+Ru) \ge 11$ % по массе;

- для обеспечения требуемого уровня прочностных характеристик необходимо повышение величины мисфит-фактора δ, за счет увеличения размерного несоответствия периодов кристаллических решеток γ' - фазы и γ'- твердого раствора, что достигается введением в новую систему легирования разрабатываемого сплава оптимального количества Та, который положительно влияет на величину мисфит-фактора (δ);

- введение в систему легирования проектируемого сплава оптимального количества нового элемента Та (4 %) при снижении в базовом составе сплава ЗМИ-ЗУ среднего содержания Cr – с 13,5% до 11,5 % и C – с 0,12 % до 0,06 %, а также снижении верхней границы легирования по Ti с 5,5 % до 4,8 % при одновременном повышении нижней границы легирования по Al с 2,8 % до 3,4 % по массе, обеспечит повышение температурного уровня прочностных характеристик и повысит работоспособность материала.

В качестве переменных факторов для исследуемых расчетных составов были выбраны следующие варьируемые легирующие элементы (ЛЭ) – новый вводимый элемент тантал (Та), а также элементы, входящие в состав базового сплава ЗМИ-ЗУ – хром (Сг) и углерод (С). Диапазон варьирования концентраций исследуемых компонентов в выбранной новой системе легирования Ni-Co-Cr-Al-Ti-Mo-W-Ta-Y-B-С задавался в следующих пределах (% по массе): Та (0,0–5,0)%; Сг(11,0-13,5)%; С (0,04–0,16)%.

Изначально в компьютерном эксперименте проводилась оценка структурной стабильности расчетных составов в заданном диапазоне варьирования указанными элементами по параметрам $\overline{N}v_{\gamma}$, $\overline{M}d_{\gamma}$, $\overline{M}d_{C}u \Delta E$, как традиционными методами по известным регрессионным уравнениям (РУ) [1–4, 6, 7, 13–18], так и по математическим регрессионным моделям (РМ) в соответствии с алгоритмом (рис. 1) разработанной методики КРАМ [12, 19–22].

Рис. 1. Алгоритм компьютерного расчета проектируемого сплава ЗМИ-ЗУ-М1 по разработанной методике КРАМ [12]

Известно [1, 2, 14, 15], что величина и знак параметра дисбаланса легирования ΔE определяет направление реакций в γ - твердом растворе, определяющих склонность жаропрочных никелевых сплавов к выделению того или иного типа ТПУ- фаз. Так, в сплавах с большим отрицательным дисбалансом легирования ($\Delta E < -0,04$) велика вероятность образования гетеротипных соединений: карбидов типа M_6C , α - фаз на основе W и Mo, а также топологически плотноупакованных фаз типа σ -, μ -. Сплавы с большим положительным дисбалансом легирования ($\Delta E > +0,04$) склонны к образованию гомеотипных соединений типа η - фазы на основе Ni₃Ti, Ni₃Nb, Ni₃Ta, а также эвтектических (перитектических) фаз на основе Ni₃Al. Если величина $\Delta E = 0$, то состав сплава считается идеально сбалансированным.

В таблице 3 представлены опытные варианты составов 1–5 проектируемого сплава, вместе с составами промышленных сплавов ЗМИ-ЗУ и ЖС26 среднего уровня легирования. Композиции составов, которые удовлетворяли условиям: $\Pi_{THY} = 0,80-0,85;$ $\overline{N}v_{\gamma} \le 2,45$ и $\overline{M}d_{\gamma} \le 0,93;$ -0,04 $\le \Delta E \le +0,04$ и 0,972 $\le \overline{M}d_C \le 0,988$, считались фазово-стабильными. Расчеты параметров структурной стабильности $\overline{N}v_{\gamma}$, $\overline{M}d_{\gamma}$, ΔE , $\overline{M}d_C$ проводились путем перевода химических составов γ - твердых растворов и общих составов в ат. %.

Из таблицы 3 видно, что опытные составы 1–4, а также промышленные сплавы ЖС26 и ЗМИ-3У сбалансированы с точки зрения условий дисбаланса легирования $\Delta E = \pm 0,04$. Величина дисбаланса системы легирования ΔE в опытных составах 1–4 находится в пределах от +0,0054 до -0,0400, что удовлетворяет условиям сбалансированного легирования. При этом, величина дисбаланса системы легирования в опытном составе 5 ($\Delta E = -0,0856$) не удовлетворяет условиям сбалансированного легирования состава. Далее в соответствии с алгоритмом методики КРАМ (рис. 1) для фазово-стабильных композиций 1–4 рассчитывались группы параметров: структурно-фазовые, физические, температурные, коррозионные и прочностные.

При выборе оптимальной композиции проектируемого сплава для направленной (моно) кристаллизации показано, что структурная стабильность является необходимым, но не достаточным условием для достижения требуемых показателей жаропрочности. Необходимыми структурными и физическими факторами, обеспечивающими требуемый уровень жаропрочности в температурном интервале 800–1000 °С, является величина объемной доли γ' - фазы, которая должна быть $V_{\gamma}^{20} \ge 60 \%$ по массе, а также мисфит-фактор, величина которого должна находиться в пределах $\delta = 0,15 \%$ –0,45 %.

С учетом сравнительного анализа полученных данных по группам расчетных характеристик для опытных композиций, путем многокритериальной оптимизации состава по контролируемым параметрам (см. табл. 2), для дальнейших экспериментальных исследований был выбран опытный состав 4 (см. табл. 3), с присвоенным обозначением марки ЗМИ-ЗУ-М1.

Экспериментальные исследования осуществлялись на опытных образцах тестовых плавок по заданным параметрам в соответствии с таблицей 2. Химический состав оптимального уровня легирования спроектированного сплава ЗМИ-ЗУ-М1 приведен в таблице 4.

Для сравнительной оценки склонности к структурной и фазовой нестабильности оптимизированного состава спроектированного сплава ЗМИ-ЗУ-М1 использовались как традиционные расчетные методы PHACOMP (Nv) [7, 11], New PHACOMP (*Md*) [13], ДЕ-метод [1, 2 14, 15] с их известными регрессионными уравнениями (РУ), так и полученные математические регрессионные модели (РМ) [12, 19–22].

№ состава	Вар элем г	ьирова иентам ю масс	ние и, % е	К-во, % масс.	Мисфит, %	Параметры структурной стабильности						
	С	Та	Cr	$V_{\gamma'}^{20}$	δ	Π _{TΠy}	Nvγ	Mdγ	Md _C	ΔΕ		
ЗМИ-ЗУ	0,12	-	13,5	50,9	0,207	0,8419	2,2801	0,9164	0,9870	+0,0356		
1	0,12	1,0	13,0	53,9	0,230	0,8434	2,2846	0,9168	0,9813	+0,0054		
2	0,10	2,0	12,5	57,0	0,275	0,8381	2,2941	0,9178	0,9772	-0,0167		
3	0,08	3,0	12,0	59,9	0,318	0,8325	2,3036	0,9187	0,9729	-0,0393		
4	0,06	4,0	11,5	62,6	0,359	0,8265	2,3016	0,9185	0,9728	-0,0400		
5	0,04	5,0	11,0	65,0	0,399	0,8200	2,3241	0,9207	0,9642	-0,0856		
ЖС26-ВИ	0,16	-	5,0	61,9	0,207	0,5614	1,9604	0,8852	0,9835	+0,0168		

Таблица 3 – Влияние варьирования легирующими элементами в базовом составе промышленного сплава ЗМИ-ЗУ на параметры структурной стабильности

Таб	лица 4	-0	птимизированный	состав с	проектир	ованного	о сплава	3M	1И-	3У	'-N	11
-----	--------	----	-----------------	----------	----------	----------	----------	----	-----	----	-----	----

Сплав			Соде	эжание с	сновных	к легиру	ющих эл	іементов	з %, по м	lacce		
ЗМИ-ЗУ-М1	С	Cr	Со	Al	Ti	W	Mo	Та	Y	La	В	Ni
	0,06	11,5	5,0	3,5	4,5	7,0	0,8	4,0	0,03	0,01	0,010	Осн.

На основе критериев (параметров) работоспособности литейных ЖНС, обоснованных в работах [12, 19– 22] были проведены расчеты методом CALPHAD [23] по структурно-фазовым и физическим параметрам [24]. Компьютерное моделирование процесса кристаллизации сплава осуществлялось от температуры жидкого состояния (1400 °C) до комнатной температуры (20 °C) с температурным шагом 10 °C по всему диапазону, что позволило спрогнозировать наиболее вероятный тип, количество и состав выделившихся фаз в процессе кристаллизации. В таблицах 6 и 7 представлены расчетные значения структурно-фазовых и физических параметров для проектируемого сплава ЗМИ-ЗУ-М1 оптимального уровня легирования.

В таблице 8 представлены расчетные и экспериментальные значения, которые были получены методом дифференциального термического анализа (ДТА) на установке ВДТА-8М в среде гелия при постоянной скорости нагрева (охлаждения), равной 80 °С/мин [25, 26]. В качестве эталона использовался термически инертный образец чистого вольфрама (W-эталон). Технология калибровки по температурам плавления чистых металлов позволила получить хорошо воспроизводимые результаты, независимо от скорости нагрева.

Комплекс сравнительных экспериментальных исследований проводился на опытных образцах тестовых плавок из разработанного сплава ЗМИ-3У-М1, в сравнении с аналогичными образцами промышленных сплавов ЗМИ-3У и ЖС26-ВИ. Опытные образцы из спроектированного сплава ЗМИ-3У-М1 получали вакуумно-индукционной плавкой на установке марки УВНК-8П для направленной (моно) кристаллизации по серийной технологии.

Расчетные исследования ВТК – стойкости проводились для состава спроектированного сплава ЗМИ-ЗУ-М1 (табл. 4) для синтетической золы при температурах испытаний 800, 850, 900 и 950 °С на базе 100 часов по полученным математическим РМ для данной группы параметров [12, 21].

|--|

Сплав		Параметры с	груктурной стаб	ильности	
ЗМИ-ЗУ-М1	$\Pi_{\rm THY} = 0,825 \pm 0,025$	$\overline{N}v_{\gamma} \leq 2,45$	$Md_{\gamma} \leq 0.93$	$\Delta E = \pm 0.04$	$Md_C = 0,980 \pm 0,008$
Расчет по РУ	-	2,2159	0,9020	-0,0400	0,9720
Расчет по РМ	0,8265	2,3016	0,9185	-0,0400	0,9728

Таблица 6 – 3	начения структурно-	фазовых парамет	ров сплава ЗМИ-	-3У-М1 [[24]

Тип	Количество фа	зы, %				CALPH	[AD-метс	од [24]					
фазы	по массе		Расчетный химический состав фаз при 20°С, % по массе										
	Эксперимент	Расчет	С	Co	Cr	Al	Ti	Mo	W	Та	Ni		
γ-	38,2-35,55	36,05	-	10,34	25,73	0,28	0,06	0,61	7,59	0,15	55,24		
γ'-	60,5-63,0	62,6	-	2,19	1,52	5,43	6,90	0,04	4,38	6,09	73,45		
MC	0,35-0,45	0,40	10,40	-	0,28	-	27,29	0,12	9,15	52,76	-		
M ₂₃ C ₆	0,95-1,00	0,95	5,11	0,84	73,19	-	-	14,59	4,31	-	1,96		

Таблица 7 – Значения физических параметров сплава ЗМИ-ЗУ-М1 [24]

Сплав			(Физические	параметрь	при 20 °C			
3МИ-3У-М1	ρ	E	α·10 ⁶	Cp	r ·10 ⁶	λ	a _{γ'}	a _y	δ
Ед. измер.	г/см ³	ГПа	1/K	Дж/г·К	Ом·м	Вт/м·К	A°	A°	%
CALPHAD	8,46	213,66	11,29	0,42	0,70	10,39	3,591	3,578	0,359

Примечание: ρ – удельная плотность; E – модуль упругости Юнга; α – коэффициент термического расширения; C_p – удельная теплоемкость; r – удельное электросопротивление; l – теплопроводность; $a_{\gamma'}$ – параметр кристаллической решетки γ - твердого раствора; δ – (мисфит) размерное несоответствие параметров решеток.

Таблица 8 – Температурные параметры сплава ЗМИ-ЗУ-М1 [12, 20, 26]

Сплав		Температурные параметры, °С												
3МИ-3У-М1	Σγ	t _L	ts	$\sum_{\gamma'}$	t _{ЭВТ.}	t _{H.P.} γ'	$t_{\Pi.P.}^{\gamma'}$	$\Delta t_{\rm KP}$	$\Delta t_{\Gamma OM}$	t _{rom}				
Расчет по РМ	11,8	1374	1296	12,1	1293	850	1258	78	38	-				
Эксперимент	-	1365	1305	-	1290	-	1248	60	42	1250				

Примечание: t_L – температура ликвидус; t_S – температура солидус; t_{ЭВГ.} – температура локального плавления эвтектической (перитектической) γ-γ' – фазы; t_{H.P.}^{γ'}, t_{П.P.}^{γ'} – температуры начала и полного (конца) растворения γ'- фазы; Δt_{KP} – интервал кристаллизации сплава; Δt_{FOM} – температурный интервал для проведения гомогенизации; t_{FOM} – оптимальная температура гомогенизации для сплава. Экспериментальные исследования ВТК – стойкости образцов тестовой плавки сплава ЗМИ-ЗУ-М1 с направленной (моно) [001] структурой проводились в синтетической золе при температурах испытаний 800, 850, 900 и 950 °C, в сравнении со сплавами ЗМИ-ЗУ и ЖС26-ВИ по методике, разработанной Никитиным В.И. (ЦКТИ им. И. И. Ползунова), широко применяемой в отрасли [8–10].

Для коррозионных испытаний использовались стандартные цилиндрические образцы диаметром 10 мм и длиной 12 мм, на которые после предварительного обезжиривания, измерения и взвешивания на аналитических весах с точностью ($\pm 0,0005$ г), наносилась синтетическая зола в количестве 15 мг/см², имитирующей продукты сгорания газотурбинного топлива следующего состава: Na₂SO₄ – 66,2 %; Fe₂O₃ – 20,4 %; NiO – 8,3 %; CaO – 3,3 %; V₂O₅ – 1,8 % (по массе). Затем исследуемые образцы помещались и выдерживались в печи на платформе из огнеупорного материала в воздушной атмосфере. Испытания при всех температурах проводились в течение 100 часов.

После проведения экспериментов продукты коррозии удалялись по методике водородного восстановления окалины. После проведения коррозионных испытаний образцы исследовались методами весового, металлографического и рентгеноструктурного фазового анализов. Стойкость образцов опытных составов к ВТК

оценивалась по средней скорости коррозии \overline{V}_{q} г/м² с. В таблице 9 представлены расчетные и эксперимен-

тальные значения коррозионных параметров спроектированного сплава ЗМИ-3У-М1.

Механические испытания проводились на стандартных цилиндрических образцах из разработанного сплава ЗМИ-ЗУ-М1 с направленной (моно) структурой на кратковременную и длительную прочность стандартными методами. Испытания на кратковременную прочность проводились на образцах с направленной (моно) [001] структурой при температурах 20, 800, 900 и 1000 °C на разрывных машинах УМЭ-10ТМ и ГСМ-20 (ГОСТ 1497-61, ГОСТ 9651-73, ГОСТ 1497-84). Испытания на длительную прочность проводились при температурах 800, 900, 975 и 1000 °C на машинах АИМА-5-2 и ZTZ 3/3 (ГОСТ 10145-81).

В таблицах 11, 12 представлены расчетные и экспериментальные значения пределов кратковременной и длительной прочности образцов тестовых плавок спроектированного сплава ЗМИ-ЗУ-М1 при разных температурах.

Путем многокритериальной оптимизации состава на основе расчетных и экспериментальных исследований, разработанный сплав ЗМИ-ЗУ-М1 при заданных условиях проектирования обеспечивает необходимый уровень требуемых параметров и характеристик. Сбалансированный состав содержит с указанными пределами легирования оптимальное содержание: $Ta = (4,0 \pm 0,3)\%$; более низкое содержание $Cr = (11,5 \pm 0,3)\%$ и $C = (0,06 \pm 0,02)\%$ по массе, чем у сплава ЗМИ-ЗУ, взятого за прототип; более низкое содержание $W = (7,0 \pm 0,3)\%$, чем у сплава ЖС26-ВИ, взятого за аналог.

В таблице 13 представлены сравнительные результаты расчетных и экспериментальных значений характеристик спроектированного сплава ЗМИ-3У-М1 по группам параметров: структурная стабильность, структурно-фазовые, физические, температурные, коррозионные и прочностные характеристики, в сравнении со значениями аналогичных характеристик для промышленных сплавов ЗМИ-ЗУ [27] и ЖС26-ВИ [3–6].

Таблица 9 – Средняя скорость коррозии сплава ЗМИ-ЗУ-М1 при разных темпе	ратурах	[12, 21]
	P / P /	

Сплав	Средняя скорость коррозии V_q^t , г / м ² с						
31VIVI-3 9 -1VI I	$\Pi_{\rm KC} \ge 3,0$	$V_q^{800} \cdot 10^{-3}$	$V_q^{850} \cdot 10^3$	$V_q^{900} \cdot 10^3$	$V_q^{950} \cdot 10^3$	t _{КРИТ} .,°С	
Расчет по РМ	4,24	0,0322	0,6653	2,5354	4,4107	829	
Эксперимент	-	0,02	0,60	2,50	3,95	~830	

Таблица 10 – Количество	/- фазы	в сплаве ЗМИ-ЗУ-М1	при	разных темпе	ратурах	: [12	, 22	1
			-				2	

Сплав	Предел кратковременной прочности ов ^t , МПа							
3МИ-3У-М1	${\sigma_{\rm B}}^{20}$	$\sigma_{ m B}^{\ \ 800}$	$\sigma_{ m B}^{900}$	$\sigma_{ m B}^{1000}$	δ^{20}	δ^{800}	δ^{900}	δ^{1000}
Расчет по РМ	1112	1025	914	628	-	-	-	-
Эксперимент	1090-1220	930-1030	835-900	620-680	5,4-7,3	8,0-10,1	14,0-19,7	14,0-18,2

Таблица 11 –	 Предел кра 	атковременной п	рочности сплава	аЗМИ-ЗУ	/-M1	[12, 22]
,			1			

Сплав	Количество упрочняющей у'- фазы, % по массе					
ЗМИ-ЗУ-М1	$V_{\gamma'}^{20}$	$\mathrm{V}_{\gamma'}{}^{800}$	$\mathrm{V}_{\gamma'}{}^{900}$	$\mathrm{V}_{\gamma'}{}^{1000}$		
Расчет по РМ	62,60	63,00	58,70	51,60		
Эксперимент	61.80	_	_	_		

Таблица 12 – Предел длительной прочности сплава ЗМИ-ЗУ-М1 [12, 22]

Сплав	100- и 1000- часовой предел длительной прочности σ_{τ}^{t} , МПа						
ЗМИ-ЗУ-М1	$\sigma_{100}^{\ \ 800}$	σ_{1000}^{800}	σ_{100}^{900}	σ_{1000}^{900}	$\sigma_{100}{}^{1000}$	$\sigma_{1000}{}^{1000}$	
Расчет по РМ	648	490	405	195	200	90	
Эксперимент	580-640	460-500	380-400	180-220	180-200	80-90	

V	Зна	чения характеристик сплаво)B
Характеристики параметров по	Сплав-прототип	Спроектированный сплав	Сплав-аналог
Трушам	ЗМЙ-ЗУ	3МИ-3У-М1	ЖС26-ВИ
Структурная стабильность:			
$\Pi_{\text{THY}} = 0.825 \pm 0.025$	0,8419	0,8265	0,5614
$Nv_{v} \le 2.45$	2,2801	2,3016	1,9604
Md < 0.93	0.9164	0,9185	0.8852
$Md_c = 0.980 \pm 0.008$	0.9870	0.9728	0.9835
$\Delta F = +0.04$	+0.0356	-0.0400	+0.0168
		-,	
$\Sigma > 11.9$ (Ho Mode)	8.2	12.1	8.4
$\sum_{\gamma'} \geq 11.\%$ (110 matce)	0,2	12,1	12.8
$\sum_{\chi} \ge 11\%$ (flo Macce)	0,1	11,0 60 5 62 0	58 0 62 0
$V_{\gamma'}^{20} \ge 60\%$ (по массе)	48,0-32,0	00,5–05,0	38,0-02,0
Физические:			
р, г/см ³	8,29	8,46	8,57
мисфит 0,15 ≤ δ ≤ 0,45 %	0,203	0,359	0,213
Температурные:			
t _L °C	1343	1365	1383
$t_{\rm L}, c_{\rm L}$	1245	1305	1310
$t_{S} \ge 1200, C$	98	60	73
$\Delta t_{\rm KP.} \leq 80, C$	1235	1290	1284
l _{ЭВТ.} , C	840	850	855
$t_{\text{H.P.}}, C$	1167	1248	1260
$t_{\Pi.P.}$, C	1107	1246	1200
$\Delta t_{\Gamma OM} \ge 20, {}^{\circ}C$		42	12(59 + 109
t _{rom} ,°C	$1180^{\circ} \pm 10^{\circ}$	$1230^{\circ} \pm 10^{\circ}$	$1265^{\circ} \pm 10^{\circ}$
Коррозионные:			
$\Pi_{\rm KC} \ge 3.0$	5,15	4,24	0,39
$Vq^{800} \times 10^{-3}, r/m^2 \cdot c$	0,014	0,02	1,19
$Vq^{850} \times 10^{-3}$, $r/m^2 \cdot c$	0,30	0,60	19,7
$Vq^{900} \times 10^{3}$, r/m ² ·c	1,22	2,50	56,1
$Va^{950} \times 10^{3} \text{ r/m}^{2} \text{ c}$	2,29	3,95	71,5
trout °C	~850°	~830°	~590°
Кратковрем проиность:			
$\sigma_{-}^{20} > 950 \text{ MH}_{2}$	840-940	1090-1220	860-930
σ^{800} MTa	850-955	930-1030	910-1030
$\sigma_{\rm B}$, MIIa	720 750	835 000	850,880
$\sigma_{\rm B}$, MIIa	720-750	620,680	670 690
	-	020-080	070-090
= ⁸⁰⁰ мп-	450 520	590 (40	545 (20)
0_{100} , IVII 12	450-520	300-040	343-020
σ_{1000} , MIIa	350-390	460-500	460-500
$\sigma_{100}^{\circ\circ}$, MIIIa	260-280	380-400	380-410
σ_{1000} , MIIa	140–170	180-220	220–240
σ_{100} , MIIa	-	180–200	180–200
σ_{1000} , MIIa	-	80–90	80–100
$\sigma_{260}^{9/5} \ge 40$ часов	-	58–101	67–121
Характеристики	Зна	чения характеристик сплавс)B
параметров по группам	Сплав-прототип ЗМИ-ЗУ	Спроектированный сплав	Сплав-аналог ЖС26-ВИ
параметров по группам	Сплав-прототип Эмиг-3 у	ЗМИ-3У-М1	
Усталостная прочность			
при 20 °С; σ ₋₁ , МПа ;	215	240	220
$N = 2 \cdot 10^7$ циклов			
Выход годных лопаток по	20.25	40.50	40.50
макроструктуре, %	20-25	48-50	48-50
I IJ JT ?? `			1

Отливка рабочих лопаток первой ступени турбины высокого давления (ТВД) установки Д-336 проводилась на вакуумно-индукционной установке для направленной кристаллизации марки УВНК-8П в соответствии с серийной технологией. На рисунке 2 представлен внешний вид рабочих лопаток с направленной (моно) структурой из разработанного сплава ЗМИ-ЗУ-М1. Исследования микроструктуры опытных образцов из спроектированного сплава ЗМИ-ЗУ-М1 с направленной (моно) структурой проводились на нетравленых и травленых микрошлифах, плоскость которых была ориентирована вдоль и по нормали к поверхности образцов, на световом оптическом микроскопе «Olympus IX-70» с цифровой видеокамерой «ExwaveHAD color video camera Digital Sony» при увеличениях × 200, 1000.

Рис. 2. Литые рабочие лопатки турбины высокого давления (ТВД) с направленной (моно) структурой турбины Д-336, изготовленных из спроектированного сплава ЗМИ-3У-М1 в промышленных условиях ГП «Ивченко-Прогресс»: *а* – внешний вид отлитых лопаток со стартовыми кристаллами и конусами; *б*, *в* – брак лопаток по макроструктуре; *г* – макроструктура годной лопатки

Рис. 3. Микроструктура спроектированного сплава ЗМИ-ЗУ-М1 в литом состоянии при разных увеличениях: (*a*, *δ*) – × 200; (*в*, *г*) – ×10000: *a* – без травления; *б* – травление в электролите; *в* – ось дендрита; *г* – межосевое пространство

Металлографические исследования показали, после литья образцы и отливки лопаток из разработанного сплава ЗМИ-ЗУ-М1 имели типичную для литейных ЖНС направленную структуру дендритного строения, в которой первично кристаллизуемой фазой является γ - твердый раствор в виде дендритов (рис. 3 a, δ). Вследствие микроликвации легирующих элементов в процессе направленной кристаллизации в микроструктуре образцов и отливок лопаток сплава ЗМИ-ЗУ-М1 наблюдается химическая и структурная неоднородность, которая в большей степени устраняется последующей термической обработкой. Тонкое исследование микроструктуры образцов спроектированного сплава ЗМИ-ЗУ-М1 в литом состоянии и после ТО проводилось методом электронной микроскопии на растровом микроскопе JEOL JSM–6360LA при увеличении × 10000. Исследования структуры показали, что размер и форма частиц основной упрочняющей γ' - фазы значительно различаются в осях (см. рис. 3 e) и межосных пространствах (см. рис. 3 e), в последних частицы γ' - фазы в 3–5 раз крупнее, чем в осях дендритов. Размерная и морфологическая неоднородность частиц γ' - фазы является прямым следствием дендритной ликвации в процессе кристаллизации образцов и лопаток.

После термообработки, проведенной по оптимальному режиму: гомогенизация при 1250 °C \pm 10 °C в течение 4 часов с последующим охлаждением на воздухе, произошло достаточно полное растворение неравновесной эвтектики (перитектики) γ + γ' , размеры и морфология частиц γ' - фазы по дендритной ячейке практически выровнялись, однако в осях дендритов частицы γ' - фазы остаются несколько мельче (рис. 4 *a*), чем в междендритных областях (рис. 4 δ).

После механической обработки 24 опытные лопатки, изготовленные из разработанного сплава ЗМИ-ЗУ-М1, подверглись усталостным испытаниям, которые проводились на вибростенде МИКАТ с параметрами нагружения: $\sigma_{\rm HAH}$.= 180 МПа (18 кгс/мм²); $\Delta \sigma = \pm 2$ МПа; $N = 2 \cdot 10^7$ циклов, с целью определения предела выносливости. Результаты испытаний приведены в табл. 14.

Рис. 4. Морфология γ'- фазы в термообработанном (*a*, *δ*) состоянии спроектированного сплава ЗМИ-ЗУ-М1, × 10000: *a* – ось дендрита; *δ* – межосевое пространство

В результате комплексных исследований путем многокритериальной оптимизации состава по требуемым параметрам спроектирован сплав ЗМИ-ЗУ-М1, который в условиях промышленного производства ГП «Ивченко-Прогресс» аттестован по прочностным характеристикам на двух плавках общим весом 1000 кг. Из раз-

N⁰	σ ₋₁ , ΜΠa	f,	N,	КГО	Результаты цветной
лопатки	(кгс/мм ²)	Гц	циклов		дефектоскопии ЛЮМ1-ОВ
1	240 (24)	2991	$2 \cdot 10^{7}$	НК	По перу трещин нет
2	240 (24)	3014	$2 \cdot 10^{7}$	НК	По перу трещин нет
3	240 (24)	2970	$2 \cdot 10^{7}$	Моно 3 ⁰	По перу трещин нет
4	240 (24)	2987	$2 \cdot 10^{7}$	НК	По перу трещин нет
5	240 (24)	3110	$2 \cdot 10^{7}$	НК	По перу трещин нет
6	240 (24)	2999	$2 \cdot 10^{7}$	НК	По перу трещин нет
7	240 (24)	3037	$2 \cdot 10^{7}$	НК	По перу трещин нет
8	240 (24)	2954	$2 \cdot 10^{7}$	Моно 2 ⁰	По перу трещин нет
9	220 (22)	2976	$2 \cdot 10^{7}$	Моно 3 ⁰	По перу трещин нет
10	220 (22)	3157	$2 \cdot 10^{7}$	НК	По перу трещин нет
11	220 (22)	2971	$2 \cdot 10^{7}$	НК	По перу трещин нет
12	220 (22)	2997	$2 \cdot 10^{7}$	НК	По перу трещин нет
13	220 (22)	2981	$2 \cdot 10^{7}$	-	По перу трещин нет
14	220 (22)	3118	$2 \cdot 10^{7}$	НК	По перу трещин нет
15	220 (22)	3278	$2 \cdot 10^7$	-	По перу трещин нет
16	220 (22)	3146	$2 \cdot 10^{7}$	НК	По перу трещин нет
17	200 (20)	3044	$2 \cdot 10^{7}$	НК	По перу трещин нет
18	200 (20)	2995	$2 \cdot 10^{7}$	Моно 3 ⁰	По перу трещин нет
19	180 (18)	2968	$2 \cdot 10^7$	НК	По перу трещин нет
20	180 (18)	3135	$2 \cdot 10^{7}$	-	По перу трещин нет
21	180 (18)	3275	$2 \cdot 10^{7}$	НК	По перу трещин нет
22	180 (18)	3353	$2 \cdot 10^{7}$	НК	По перу трещин нет
23	180 (18)	3029	$2 \cdot 10^{7}$	НК	По перу трещин нет
24	180 (18)	3174	$2 \cdot 10^{7}$	НК	По перу трещин нет

Таблица 14 – Результаты усталостных испытаний опытных лопаток из спроектированного сплава ЗМИ-ЗУ-М1

работанного сплава ЗМИ-ЗУ-М1 изготовлено 5 опытных комплектов рабочих лопаток первой ступени установки Д-336. Лопатки первого опытного комплекта отработали более 10 тысяч часов с положительным результатом. С целью увеличения наработки рабочего ресурса, после восстановления защитного покрытия, технологически совмещенного с восстановительной термообработкой структуры, лопатки продолжают эксплуатироваться до настоящего времени.

Выводы

1. Путем многокритериальной оптимизации состава по алгоритму разработанной методики КРАМ спроектирован новый литейный сплав ЗМИ-ЗУ-М1 для изготовления рабочих лопаток первой ступени ТВД с направленной (моно) структурой, обладающего повышенными прочностными характеристиками на уровне промышленного литейного жаропрочного некоррозионностойкого сплава ЖС26-ВИ, а также обладающего коррозионной стойкостью на уровне промышленного литейного коррозионностойкого никелевого сплава ЗМИ-ЗУ.

2. Разработанный новый сплав ЗМИ-ЗУ-М1 внедрен в промышленное производство ГП «Ивченко-Прогресс» для изготовления рабочих лопаток первой ступени ТВД с направленной (моно) структурой установки типа Д-336 различных модификаций, взамен широко применяемого некоррозионностойкого промышленного сплава ЖС26-ВИ.

Список литературы

- Каблов Е. Н. Литейные жаропрочные сплавы. Эффект С. Т. Кишкина : науч.-техн. сб. : к 100-летию со дня рождения С. Т. Кишкина / Под общ. ред. Е. Н. Каблова. – М. : Наука, 2006. – 272 с.
- Каблов Е. Н. 75 лет. Авиационные материалы. Избранные труды «ВИАМ» 1932-2007 / Юбилейный научнотехнический сборник под общ. ред. Е.Н. Каблова. – М. : «ВИАМ», 2007. – 439 с.
- Шалин Р. Е. Монокристаллы никелевых жаропрочных сплавов / Р. Е. Шалин, И. Л. Светлов, Е. Б. Качанов [и др.]. – М.: Машиностроение, 1997. – 336 с.
- Кишкин С. Т. Литейные жаропрочные сплавы на никелевой основе / Кишкин С. Т., Строганов Г. Б., Логунов А. В. – М. : Машиностроение, 1987. – 116 с.
- Жаропрочность литейных никелевых сплавов и защита их от окисления / Б. Е. Патон, Г. Б. Строганов, С. Т. Кишкин и др. – К. : Наук. думка, 1987. – 256 с.
- Каблов Е. Н. Литые лопатки газотурбинных двигателей (сплавы, технология, покрытия) / Е. Н. Каблов. – Всероссийский научно-исследовательский институт авиационных материалов, Государственный научный центр Российской Федерации. – М. : МИСИС, 2001. – 632 с.
- Симс Ч. Т. Суперсплавы II. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок / Ч. Т. Симс, Н. С. Столофф, У. К. Хагель ; пер. с англ. : в 2-х кн. : под ред. Р. Е. Шалина. – М. : Металлургия, 1995. – 384 с.
- Научные основы легирования жаропрочных никелевых сплавов, стойких против высокотемпературной корро-

зии (ВТК) / А. Д. Коваль, С. Б. Беликов, Санчугов Е. Л., А. Г. Андриенко. – Запорож. машиностр. ин-т, 1990. – 56 с. – (Препринт / КИЕВ УМК ВО; ЗМИ 1990).

- Никитин В. И. Коррозия и защита лопаток газовых турбин / Никитин В. И. – Л. : Машиностроение, 1987. – 272 с.
- Никитин В. И. Влияние состава никелевых сплавов на их коррозионную стойкость в золе газотурбинного топлива / В. И. Никитин, М. Б. Ревзюк, И. П. Комисарова // Труды ЦКТИ им. И. И. Ползунова. – Л., 1978. – Вып. 158. – С. 71–74.
- Котсорадис Д. Жаропрочные сплавы для газовых турбин. Материалы международной конференции / Д. Котсорадис, П. Феликс, Х. Фишмайстер и др.; пер. с англ. под ред. Р. Е. Шалина. – М. : Металлургия, 1981. – 480 с.
- Гайдук С. В. Комплексная расчетно-аналитическая методика для проектирования литейных жаропрочных никелевых сплавов / С. В. Гайдук // Нові матеріали і технології в металургії та машинобудуванні. 2015. № 2. С. 92–103.
- Morinaga M. New PHACOMP and its application to alloy designe [Texcr] / M. Morinaga, N. Yukawa, H. Adachi, H. Ezaki // Supearalloys 1984 (eds. M. Gell et al.), AIME, 1984. – P. 523–532.
- Морозова Г. И. Сбалансированное легирование жаропрочных никелевых сплавов / Г. И. Морозова // Металлы. – 1993. – № 1. – С. 38–41.
- Морозова Г. И. Компенсация дисбаланса легирования жаропрочных никелевых сплавов / Г. И. Морозова // Металловедение и термическая обработка металлов. – 2012. – № 12 (690). – С. 52–56.
- Логунов А. В. Методологические основы автоматизированного проектирования жаропрочных сплавов на никелевой основе. Часть 1/ А. В. Логунов, Ю. Н. Шмотин, Д. В. Данилов // Технология металлов. – 2014. – № 5. – С. 3–9.
- Логунов А. В. Методологические основы автоматизированного проектирования жаропрочных сплавов на никелевой основе. Часть II / А. В. Логунов, Ю. Н. Шмотин, Д. В. Данилов // Технология металлов. – 2014. – № 6. – С. 3–10.
- Логунов А. В. Методологические основы автоматизированного проектирования жаропрочных сплавов на никелевой основе Часть – Ш / А. В. Логунов, Ю. Н. Шмотин, Д. В. Данилов // Технология металлов. – 2014. – № 7. – С. 3–11.
- Гайдук С.В. Применение аналитических методов для расчета химического состава γ, γ'- фаз и параметров фазовой стабильности литейных жаропрочных никелевых сплавов / С.В. Гайдук, Т.В. Тихомирова // Авиационнокосмическая техника и технология. – Харьков, «ХАИ». – 2015. – № 9 (126). – С. 33–37.
- 20. Гайдук С. В. Получение прогнозирующих математических моделей для расчета термодинамических параметров литейных жаропрочных никелевых сплавов / С. В. Гайдук, В. В. Кононов, В. В. Куренкова // Современная электрометаллургия. 2015. № 4. С. 31–37.
- Гайдук С. В. Получение прогнозирующих математических моделей для расчета параметров высокотемпературной коррозии литейных жаропрочных никелевых сплавов / С. В. Гайдук, В. В. Кононов, В. В. Куренкова // Современная электрометаллургия. – 2016. – № 3. – С. 51–56.
- 22. Гайдук С. В. Применение САLPHAD-метода для рас-

чета количества γ'- фазы и прогнозирования длительной прочности литейных жаропрочных никелевых сплавов / С. В. Гайдук, Т. В. Тихомирова // Металлургическая и горнорудная промышленность. – 2015. – № 6. – С. 64–68.

- Saunders N. The Application of CALPHAD Calculations to Ni-Based Superalloys / N. Saunders, M. Fahrmann, C. J. Small // In «Superalloys 2000» eds. K. A. Green, T. M. Pollock and R.D. Kissinger. – TMS. – Warrendale. – 2000. – 803 p.
- 24. Гайдук С. В. Расчет фазового состава литейного жаропрочного коррозионно-стойкого никелевого сплава методом CALPHAD / С. В. Гайдук, В. В. Кононов, В. В. Куренкова // Современная электрометаллургия. – 2015. – № 3. – С. 35–40.
- Вертоградский В. А. Исследование фазовых превращений в сплавах типа ЖС методом ДТА / В. А. Вертоградский, Т. П. Рыкова // Жаропрочные и жаростойкие стали и сплавы на никелевой основе. – М. : Наука, 1984. – С. 223–227.
- 26. Гайдук С. В. О влиянии тантала на характеристические точки жаропрочных никелевых сплавов / С. Б. Беликов, С. В. Гайдук, В. В. Кононов // Вестник двигателестроения. – 2004. – № 3. – С. 99–102.
- Паспорт на жаропрочный коррозионностойкий никелевый сплав ЗМИ-ЗУ (ХН64ВМКЮТ) / А. Д. Коваль, С. Б. Беликов, А. Г. Андриенко и др. : утв. проректор по научной работе Н. С. Гамов. – Запорожье, 1995. – 30 с.

Одержано 07.06.2016

Гайдук С.В. Проектування ливарного жароміцного корозійностійкого нікелевого сплаву для виготовлення турбінних лопаток методом спрямованої (моно) кристалізації

За алгоритмом розробленої комплексної розрахунково-аналітичної методики (КРАМ) спроектований новий ливарний жароміцний корозійностійкий нікелевий сплав ЗМІ-ЗУ-МІ для виготовлення турбінних лопаток методом спрямованої (моно) кристалізації. Розроблений сплав має корозійну стійкість на рівні промислового корозійностійкого сплаву ЗМІ-ЗУ, при цьому має підвищені характеристики жароміцності $\sigma_{40}^{975} = 260 \text{ MII}$ а на рівні авіаційного ливарного жароміцного не корозійностійкого нікелевого сплаву ЖС26-ВІ зі спрямованою (моно) структурою.

Ключові слова: ливарні жароміцні нікелеві сплави (ЖНС), параметри працездатності, методика (КРАМ), регресійна модель (РМ), регресійне рівняння (РУ), службові властивості.

Gayduk S. High-temperature corrosion-resistant nickel-base cast alloy engineering applied for turbine blades production by directional (mono) crystallization

According to a comprehensive analytical solution method (CASM), a new high-temperature corrosion-resistant nickel-base cast alloy 3MI-3V-M1 has been developed for turbine blades production by directional (mono) crystallization. The developed alloy has the corrosion-resistance values at the same level as the industrial corrosionresistant alloy 3MII-3V has, and at the same time demonstrates the improved high-temperature properties ($\sigma_{40}^{975} = 260$ MPa), that corresponds to the level of the aircraft high-temperature noncorrosion-resistant nickel-base cast alloy KC26-BI with the directed structure.

Key words: high-temperature nickel-base cast alloys (HTNA), performance parameters, CASM-technique, regression model (RM,) regression equation (RE), service properties.